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ABSTRACT

The existence of metallic implants in projection images for
cone-beam computed tomography (CBCT) introduces un-
desired artifacts which degrade the quality of reconstructed
images. In order to reduce metal artifacts, projection in-
painting is an essential step in many metal artifact reduction
algorithms. In this work, a hybrid network combining the
shift window (Swin) vision transformer (ViT) and a convo-
lutional neural network is proposed as a baseline network
for the inpainting task. To incorporate metal information for
the Swin ViT-based encoder, metal-conscious self-embedding
and neighborhood-embedding methods are investigated. Both
methods have improved the performance of the baseline net-
work. Furthermore, by choosing appropriate window size,
the model with neighborhood-embedding could achieve the
lowest mean absolute error of 0.079 in metal regions and
the highest peak signal-to-noise ratio of 42.346 in CBCT
projections. At the end, the efficiency of metal-conscious
embedding on both simulated and real cadaver CBCT data
has been demonstrated, where the inpainting capability of the
baseline network has been enhanced.

Index Terms— CBCT projection inpainting, metal-
conscious embedding, Swin vision transformer

1. INTRODUCTION

Metallic tools like screws and plates are used in leg surgery
for the purpose of bone fixation [1]. In the process of metal
placement, cone-beam computed tomography (CBCT) de-
vices are often used to guarantee the accuracy [2]. However,
the accompanying metal artifacts will degrade the image qual-
ity because of the high attenuation of such metallic tools [3].
Many metal artifact reduction (MAR) algorithms have been
proposed, which can be defined into three categories depend-
ing on the domain the algorithms work with. Sinogram or
projection domain based algorithms tend to complete the
missing part of sinograms or projections before image recon-
struction [4-8]. Algorithms based on reconstructed volume
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use deep learning methods to reduce the artifacts in CT im-
ages directly [9, 10], but they are not suitable for CBCT
images with extra cone beam artifacts and truncation arti-
facts. Dual domain based algorithms tackle the problem in
both sinograms and volume slices [11, 12], in which higher
computational consumption is needed when applied to CBCT.
Therefore, projection inpainting appears a better solution to
MAR of CBCT, which is the focus of this work.

Despite the simplicity of the interpolation methods, such
algorithms fail to generate structure related textures in miss-
ing area when they are used for the inpainting task. Convo-
lutional neural networks (CNNs) have been reported to have
better estimation of the correlation between the background
and missing area, therefore they were successful in projec-
tion inpainting [7, 8, 13]. However, kernel-based convolu-
tional layers only focus on the relatively local correlations.
In this case, the inpainting of missing areas highly depends
on their surroundings but not the whole region. Recently vi-
sion transformer (ViT) based networks become popular be-
cause of the attention mechanism [14]. The usage of the shift
window (Swin) which defines the region for attention calcu-
lation [15] further improves ViT in dense inference applica-
tions. Considering the patch-wise modeling properties and
the long-range dependencies of ViT, global correlations can
be achieved. The works in [16,17] have shown the efficacy of
ViT-based networks in image inpainting task. However, due
to the high resolution of CBCT projections, ViT training will
be problematic and the results will not be adequate.

Motivated by what is stated above, the Swin ViT is pre-
ferred in this work for the correlation calculation. In this case,
we propose a hybrid baseline network with Swin ViT and
CNN for CBCT projection inpainting. To complement the
baseline network with additional metal information, metal-
conscious self-embedding (SE) and neighborhood embedding
(NE) methods are investigated. We test our models on both
simulation and real cadaver data sets, and the results are com-
pared among different models.
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Fig. 1. The hybrid Swin-CNN network structure (a) with the metal-conscious embedding layers (purple blocks). The lower
part shows the detailed structures of the self-embedding (b) and the neighborhood embedding (c).

2. MATERIALS AND METHOD

2.1. Hybrid network with metal-conscious embedding

To benefit the network from both local and global correla-
tion calculation, the hybrid Swin-CNN network is proposed
and displayed in Fig. 1. The baseline method without metal-
conscious embedding has cascaded Swin blocks as the en-
coder, the CNN blocks as the decoder and the skip connec-
tions in between. The input image is split to patches with the
size of 4 x 4 and each patch is embedded to 128 channels.
Together with absolute positional embedding, the sequence is
fed into Swin blocks with patch merging. The number of lay-
ers in the first Swin block is 2 and it increases to 4 and 6 after
two times of patch merging. The channel size and the number
of heads are also doubled after patch merging, with the initial
head number of 8. The window size for all Swin blocks are 8
and the even layers in Swin blocks have the shift window size
of 4. The output of Swin blocks are reshaped and then fed into
convolutional layers to guarantee the right concatenation with
CNN-based decoder. Besides, the metal mask is added to the
corresponding CNN blocks after maxpooling, which is simi-
lar to the structure of the mask pyramid network (MPN) [7].
The output has ReLLU as active function and the loss function
is the combination of mean absolute error (MAE) and adver-
sarial loss.

In order to provide the complementary metal informa-
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Fig. 2. Anexample of a metal attention matrix for the neigh-
borhood embedding. Each image patch corresponds to each
row in the matrix.

tion in the encoder, two types of metal-conscious embedding
methods are proposed and the detailed structures are dis-
played in the lower part of Fig. 1. Because the cascaded Swin
blocks are used, the two embedding methods both contribute
to all three Swin blocks. The metal-conscious SE is solely
from the metal mask itself. The metal mask is split into dif-
ferent sequences by patches with side length of 4, 8 and 16.
Each sequence is then embedded to the corresponding chan-
nel size to sum up with the inputs of Swin blocks at different
stages, respectively. The NE is conferred on the metal patches
by their surrounding patches which are embedded from the
input image, and the NE of a metal patch is obtained by an at-
tention layer which has an extra metal attention matrix. After
maxpooling of a metal mask with the kernel size k, a binary
vector m** € RV*! can be generated for the N patches in



the ¢-th window. Then a corresponding metal attention matrix
M"** is obtained as following,

MK — mFip? (1

where I € RV*! is a vector with ones. An example of such
metal attention matrix with the window size of 4 is shown in
Fig. 2, where the shadow patches contain metal. During the
process of attention calculation within a window, the metal
attention matrix M** multiplies with the attention matrix AR
from the query and key to get the metal embedding for the
Swin ViT block with the patch size of k:

E?\;E — MkiAkivki, (2)

where v¥ is the value term. In this case, the rows of E’f\} p are
zero vectors for the metal-free patches but the embeddings for
metal patches are the combinations of their neighbors. The
networks are trained for maximum 100 epochs and the train-
ing stops when the validation set has the smallest MAE in the
metal region.

2.2. Data generation

The simulated CBCT projections as well as projections of
randomly distributed metallic implants are used for model
training. In total, 50 leg volumes are selected from the SICAS
medical image repository [18]. Each volume is forward pro-
jected to 60 projections with incremental angular step of 6
degrees. The source-to-detector distance and the source-to-
isocentor distance are 1164 mm and 622 mm, respectively.
The detector has the size of 512 x 512 pixels and the pixel
size is 0.580 mm x 0.580 mm. 2700 projections are used for
model training and 300 projections are used for validation.
In addition, five extra sets of projections are generated for
model test. Data argumentation methods are performed dur-
ing training, for example, random Gaussian noise injection,
metal mask dilation and erosion, horizontal or vertical flip.
As a preliminary study on the generalizability to real data,
knee projections from cadaver scans are also used for model
training and test, with 3600 projections for training and one
scan of 400 projections for model test.

3. RESULTS AND DISCUSSION

For comparison, the projections in the test data set are in-
painted by different methods, which are interpolation, the
MPN with normal and gated convolutions, the hybrid ViT-
CNN network, and our proposed hybrid Swin-CNN network
with metal-conscious embedding. In this case, both the
projections and the reconstructed volumes are used for evalu-
ation, where MAE and the peak signal-to-noise ratio (PSNR)
are used as evaluation metrics. For better evaluation of the
inpainting task, the projections are rescaled to the original in-
tensity window and only metal regions account for the MAE

calculation. The quantitative results of different methods are
listed in Tab. 1. As it can be seen, the gated convolutions can
improve the performance of MPN, which shows our results
are comparable to the work by [13]. Moreover, the hybrid
Swin-CNN network without metal embedding shows similar
performance compared to the MPN with gated convolutions.

Table 1. Results of different methods

Projection Reconstruction
Method MAE PSNR | MAE (HU) PSNR
Interpolation | 0.135 37.204 25.403 35.501
MPN 0.111  39.606 25.089 36.394
MPN(gated) | 0.096 40.685 24.054 37.466
ViT16-CNN | 0.295 31.845 47.156 30.617
Swin-CNN 0.098 40.529 23.187 37.321
Table 2. Results comparison among different metal-

conscious embedding methods for the Swin-CNN network

Projection Reconstruction
Embedding | MAE PSNR | MAE (HU) PSNR
SE 0.088 41.323 19.081 38.227
W4 | 0.092 40.985 20.201 38.321
NE W8 | 0.087 41.381 18.625 38.780
W16 | 0.079 42.346 18.021 38.921
W32 | 0.088 41.237 20.910 38.333

After incorporating the metal-conscious embedding blocks
together with the hybrid Swin-CNN network, significant im-
provements can be observed in Tab. 2. The MAE in projec-
tion domain decreases to 0.088 with the help of the SE. At
the same time, the average PSNR increases to 41.891. In the
volume domain, the MAE decreases to 17.481 HU and the
mean PSNR increases to 45.205. In the case of the NE, the
results under different window size are compared. By setting
the window size to 16, the model achieves the lowest MAE of
0.079 and the highest mean PSNR of 42.346 in the projection
domain. The MAE and PSNR in the reconstruction domain
are 16.529 HU and 45.885, respectively. As listed in Tab. 3,
the hybrid Swin-CNN network with metal-conscious embed-
ding also has better performance for the cadaver data set over
other methods.

Table 3. Results comparison in cadaver data set

Projection Reconstruction
Method MAE PSNR | MAE (HU) PSNR
Interpolation 0.099 42.082 20.759 37.426
MPN 0.085 44.196 15.784 40.633
MPN(gated) 0.080 44.694 15.380 41.037
ViT16-CNN 0.254  35.605 31.243 34.539
Swin-CNN 0.080 44.471 14.615 41.381
Swin-CNN(SE) 0.074 45.153 13.928 41.721
Swin-CNN(NE W16) | 0.069 45.471 13.755 41.841
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Fig. 3 illustrates the inpainting results of one exemplary
case. The projection images and reconstructed volumes are
displayed in the top and bottom rows, respectively. As it can
be seen, the input projection is masked out by both thin and
wide metals. The MPN with gated convolutions provides bet-
ter recovery than interpolation. However, the inpainted ar-
eas are slightly blurred and the contours of bones are un-
clear. Those areas are pointed out by the red arrows. The
hybrid network with the ViT as the encoder leads to the worst
result, where the intensity and semantic textures inside the
metal regions are clearly wrong. On the other hand, the pre-
dictions given by the hybrid Swin-CNN networks with the
metal-conscious embedding are able to recover the bone con-
tours well. As pointed out by the red arrow below, the NE
with the window size of 16 helps the network achieve more
consistent inpainting with the background compared to the re-
sult given by the network with SE. Consequently, the hybrid
Swin-CNN network with the NE also brings the least artifacts
in reconstructions as shown in the lower part of Fig. 3.

One can conclude that the MPN approach has poor per-
formance when dealing with large metals. This is due to the
fact that MPN has relatively small receptive field because of
the kernel-based convolution. In addition, the hybrid network
with ViT as the encoder fails to accurately recover the missing
regions because of the large patch size of 16 x 16. In fact, us-
ing the large patch size leads to coarse inpainting results. With
much smaller patch split, Swin-CNN with the Swin trans-
former as the encoder is more suitable for the regression task
and it can also benefit from a relatively larger receptive field
compared with the MPN. After enhanced with the extra in-
formation of metals in the encoder, the baseline network has
better performance with the help of SE or NE. The SE only
gives an initial estimation of the missing areas, and the train-
ing process optimizes its estimation ability. Therefore, it has

inferiority compared with the NE, which confers the embed-
ding in a more reliable way. In the scenario of the NE, the
choice of window size matters. When the window size is too
small, not enough surrounding patches are taken into consid-
eration especially in the case of large metals. When the win-
dow size is too large, irrelevant patches will account for the
embedding of the unknown region, which is also unfavorable.
According to our experiment, the hybrid Swin-CNN network
has the best performance when the window size is set to 16.

4. CONCLUSION

A hybrid Swin-CNN network with metal-conscious embed-
ding has been proposed for CBCT projection inpainting. The
baseline network has comparable performance as the refer-
ence network MPN with gated convolutions. By means of
the SE and the NE, the performance of our baseline method
is further improved. By getting benefit from the NE with the
optimal window size, the best model reduces the MAE sig-
nificantly compared to the reference model MPN with gated
convolutions in both simulation and cadaver data, showing its
efficacy for CBCT projection inpainting task.

5. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using hu-
man subject data made available in open access by the SICAS
medical image repository [18]. Ethical approval was not re-
quired as confirmed by the license attached with the open ac-
cess data. This study was performed in line with the princi-
ples of the Declaration of Helsinki. Approval was granted by
the Ethics Committee of the University Hospital of Erlangen,
Germany.



6. ACKNOWLEDGMENTS

This work was supported by academic-industrial collabora-
tion with Siemens Healthineers, XP Division. The presented
method is not commercially available and its future availabil-
ity is not guaranteed.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

7. REFERENCES

Chu-An Luo, Shi-Yuan Hua, Shang-Chih Lin, Chun-
Ming Chen, and Ching-Shiow Tseng, “Stress and stabil-
ity comparison between different systems for high tibial

osteotomies,” BMC Musculoskelet Disord, vol. 14, no.
1, pp. 1-8, 2013.

Florian Kernen, Goran I Benic, Michael Payer, Alex
Schir, Magdalena Miiller-Gerbl, Andreas Filippi, and
Sebastian Kiihl, “Accuracy of three-dimensional printed
templates for guided implant placement based on match-
ing a surface scan with CBCT,” Clin Implant Dent Relat
Res, vol. 18, no. 4, pp. 762-768, 2016.

Masaki Katsura, Jiro Sato, Masaaki Akahane, Akira Ku-
nimatsu, Osamu Abe, et al., “Current and novel tech-
niques for metal artifact reduction at CT: practical guide
for radiologists,” Radiographics, vol. 38, no. 2, pp. 450—
461, 2018.

Esther Meyer, Rainer Raupach, Michael Lell, Bernhard
Schmidt, and Marc KachelrieB3, “Normalized metal arti-
fact reduction (NMAR) in computed tomography,” Med
Phys, vol. 37, no. 10, pp. 5482-5493, 2010.

Esther Meyer, Rainer Raupach, Michael Lell, Bernhard
Schmidt, and Marc KachelrieB3, “Frequency split metal
artifact reduction (FSMAR) in computed tomography,”
Med Phys, vol. 39, no. 4, pp. 1904-1916, 2012.

Muhammad Usman Ghani and W Clem Karl, “Deep
learning based sinogram correction for metal artifact re-
duction,” Electronic Imaging, vol. 2018, no. 15, pp.
472-1, 2018.

Haofu Liao, Wei-An Lin, Zhimin Huo, Levon Vogel-
sang, William J Sehnert, S Kevin Zhou, and Jiebo Luo,
“Generative mask pyramid network for ct/cbct metal ar-
tifact reduction with joint projection-sinogram correc-
tion,” in Proc. MICCAI. Springer, 2019, pp. 77-85.

Tristan M Gottschalk, Andreas Maier, Florian Kordon,
and Bjorn W Kreher, “DL-based inpainting for metal
artifact reduction for cone beam CT using metal path
length information,” Med Phys, 2022.

Xia Huang, Jian Wang, Fan Tang, Tao Zhong, and
Yu Zhang, “Metal artifact reduction on cervical CT im-
ages by deep residual learning,” Biomed Eng Online,
vol. 17, no. 1, pp. 1-15, 2018.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Hong Wang, Yuexiang Li, Nanjun He, Kai Ma, Deyu
Meng, and Yefeng Zheng, “DICDNet: Deep inter-
pretable convolutional dictionary network for metal arti-
fact reduction in ct images,” IEEE Trans Med Imaging,
vol. 41, no. 4, pp. 869880, 2021.

Yanbo Zhang and Hengyong Yu, “Convolutional neu-
ral network based metal artifact reduction in x-ray com-
puted tomography,” IEEE Trans Med Imaging, vol. 37,
no. 6, pp. 1370-1381, 2018.

Tao Wang, Wenjun Xia, Yongqiang Huang, Huaiqgiang
Sun, Yan Liu, Hu Chen, Jiliu Zhou, and Yi Zhang,
“Dual-domain adaptive-scaling non-local network for
CT metal artifact reduction,” in Proc. MICCAI
Springer, 2021, pp. 243-253.

Harshit Agrawal, Ari Hietanen, and Simo Séarkka,
“Metal artifact reduction in cone-beam extremity im-
ages using gated convolutions,” in Proc. ISBI. 1IEEE,
2021, pp. 1087-1090.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in Proc.
ICLR, 2021.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong,
et al., “Swin transformer v2: Scaling up capacity and
resolution,” in Proc. CVPR, 2022, pp. 12009-12019.

Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and
Jiaya Jia, “MAT: Mask-aware transformer for large
hole image inpainting,” in Proc. CVPR, June 2022, pp.
10758-10768.

Qiaole Dong, Chenjie Cao, and Yanwei Fu, “Incre-
mental transformer structure enhanced image inpainting
with masking positional encoding,” in Proc. CVPR, June
2022, pp. 11358-11368.

Michael Kistler, Serena Bonaretti, Marcel Pfahrer, Ro-
man Niklaus, Philippe Biichler, et al., “The vir-
tual skeleton database: an open access repository for
biomedical research and collaboration,” J Med Internet
Res, vol. 15, no. 11, pp. 2930, 2013.



	1  Introduction
	2  Materials and method
	2.1  Hybrid network with metal-conscious embedding
	2.2  Data generation

	3  Results and discussion
	4  Conclusion
	5  Compliance with ethical standards
	6  Acknowledgments
	7  References

