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ABSTRACT

The loss of limb motion arising from damage to the spinal
cord is a disability that could effect people while performing
their day-to-day activities. The restoration of limb movement
would enable people with spinal cord injury to interact with
their environment more naturally and this is where a brain-
computer interface (BCI) system could be beneficial. The de-
tection of limb movement imagination (MI) could be signifi-
cant for such a BCI, where the detected MI can guide the com-
puter system. Using MI detection through electroencephalog-
raphy (EEG), we can recognize the imagination of movement
in a user and translate this into a physical movement. In this
paper, we utilize pre-trained deep learning (DL) algorithms
for the classification of imagined upper limb movements. We
use a publicly available EEG dataset with data representing
seven classes of limb movements. We compute the spectro-
grams of the time series EEG signal and use them as an input
to the DL model for MI classification. Our novel approach for
the classification of upper limb movements using pre-trained
DL algorithms and spectrograms has achieved significantly
improved results for seven movement classes. When com-
pared with the recently proposed state-of-the-art methods, our
algorithm achieved a significant average accuracy of 84.9%
for classifying seven movements.

Index Terms— Spinal cord injury, Upper limb move-
ment, Electroencephalography, Spectrogram, Deep Learning.

1. INTRODUCTION

Decoding the movement imagination (MI) of users with
spinal cord injury (SCI) is gaining relevancy in the current
age. Resulting from workplace accidents, falls, road acci-
dents, and injuries during sports people are prone to lose
their ability to control their upper limbs due to damage to the
spinal cord. Since neural communication between the brain
and limbs relies on the spinal cord, any damage to the spinal
cord would hinder the flow of biological signals required to
perform limb movements [[1]. In such cases, patients could
require continuous support from others in the form of finan-
cial and/or physical assistance for their daily activities. The
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use of non-invasive methods such as electroencephalography
(EEG) has been getting attention for the restoration of upper
limb movement. There are several advantages that such non-
invasive methods provide such as simplicity, low cost, safe
to use, and convenience when compared to other modalities
such as surface electromyography, mechanomyography, elec-
tromyography, and functional magnetic resonance imaging
[2]. Non-invasive EEG is a way to observe and analyze on-
going brain activity and provides time series signals from the
scalp using a multi-channel electrode system. When properly
utilized, the EEG data could enable people with SCI, through
MI detection and robotics, to interact conveniently with their
environment.

Recently, several deep learning (DL) models have been
proposed that can effectively classify up to four classes of
upper limb movements [3]], [4], [S], [6]. A deep convolu-
tional neural network, using a transfer learning paradigm was
used to perform binary classification of hand movements [7]].
A band-power feature refining convolutional neural network
based on a shallow neural network was developed to classify
single-hand movement intention using the band-power fea-
tures for the classification of four movement classes [8]]. Both
movement execution (ME) and MI tasks were used for the
training of a network for the classification of MI tasks using
a BCl-transfer learning method based on a relation network
Features related to ME and MI were extracted from the in-
put EEG data and were combined for four class classification
[9]. EEGNet was proposed and used 2-dimensional depth-
wise and point-wise convolutional layers for the classification
of up to four classes of movement [[10]. Deep ConvNet and
shallow ConvNet, which comprised of four and two convolu-
tion layers respectively, were used for binary classification of
hand movements using the raw EEG time series signal as in-
put to the model [[11]. A variational autoencoder was used to
reconstruct the ME signal similar to MI data using the spatial
information inherent in the MI signals and has shown some
success in four class classification of upper limb movements
by using a pre-trained CNN as the classifier [12]. In another
study, binary classification of MI was performed using a dis-
criminative graph Fourier subspace [13]. Graph Fourier trans-
form was used on a graph signal constructed from the elec-
trode positioning to yield an optimal representation, which
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Fig. 1. Our proposed approach for movement imagination classification using EEG spectrograms.

was then used for binary classification of MI tasks.

There is a lack of studies that focus on the inclusion of a
diverse set of movements, such as those in the elbow, forearm,
and hand. In particular, two or four-movement classification
dominates the literature. However, for practical use cases, a
diverse set of movements of the elbow, forearm, and hand
could help people with SCI translate their MI into a useful
physical movement. Further, for the EEG dataset used here,
the utility and efficiency of spectrograms have not been eval-
uated so far to the best of our knowledge. Our proposed study
aims to classify seven movement classes (elbow flexion, el-
bow extension, pronation, supination, hand close, hand open,
and rest) that are associated with the elbow, forearm, and hand
using the upper limb movement decoding from EEG (001-
2017) dataset [14]. Towards this, we propose to use spec-
trograms of the EEG data related to these seven movements.
Further, we use two pre-trained DL models to observe the ef-
fect on the classification accuracy as the depth of the model is
varied. We attain robust classification performance using pre-
trained DL algorithms using spectrograms of the EEG signal,
achieving the highest classification accuracy (subject wise) of
97.20% (VGG-16) and 96.74% (VGG-19) for the deep learn-
ing models utilized.

2. PROPOSED METHODOLOGY

Our proposed methodology aims to analyze and classify mo-
tion imagination in seven different classes using EEG data.
In MI tasks, the user imagines executing the task without any
physical movement of their own. To perform the classification
of the time series EEG signals, we compute the spectrogram
of each channel of the movement and use it as an input to the
pre-trained DL models. We use a publicly available dataset,
being the only public data that contains seven MI classes. The
seven classes that we aim to classify in this study are elbow
extension, elbow flexion, hand close, hand open, pronation,
supination, and rest. A comprehensive diagram of our pro-
posed methodology is shown in Fig. [T}

2.1. EEG Data

EEG data was recorded using a 61-channel EEG headband
at a 512 Hz sampling rate. It contains EEG recordings from
15 subjects recorded in 10 trial runs, each run containing 6
sessions for each movement class.

2.2. Pre-processing and Spectrogram Generation

For the pre-processing of the data, a Chebyshev filter was
applied to the raw time series EEG data with the frequency
ranging from 0.01 to 200 Hz. Subsequently, a notch filter was
applied to reduce the power line interference at 50 Hz. Us-
ing this noise-reduced time-series EEG data we compute the
spectrogram for each EEG channel.

We use the short-time Fourier transform (STFT) for the
calculation of the spectrogram using a sliding window pro-
tocol. STFT uses blocks of the original signal to compute
the Fourier transform of the signal. The result of this Fourier
transform gives us both the time and frequency behavior of
the signal [15]]. The mathematical representation for STFT is
presented in Eq. [T}

Xm(w) = Z z(n 4+ mR)w(n)e"wntmi), (1)

n—=—oo

where z is the input signal at time n, w(n) is the window of
length m, R is the size of hop between the successive DTFTs,
and X, (w) is the DTFT of the windowed data.

2.3. Pre-trained Deep Learning Model

We use a pre-trained VGG model implemented in PyTorch.
It is pre-trained on the ImageNet-1k dataset and is available
publicly for use. VGG is a CNN consisting of multiple layers
of convolution blocks and fully connected (FC) layers. It uses
Relu as the activation function and a small convolutional filter
of 3 x 3 size and a stride of 1-pixel [16]. Here in our study,
we use VGG-16 and VGG-19, where VGG-16 consists of 13
convolution layers and VGG-19 consists of 16 convolution
layers, with fully connected layers at the end of both these
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Fig. 2. Spectrograms of different movement imaginations (a)
elbow extension, (b) elbow flexion, (c) hand open, (d) hand
close, (e) pronation, (f) supination, and (h) rest.

networks. Since the input dimension of the pre-trained VGG
is H x W x C, with C the number of channels required to be
three; we duplicate the values of the spectrogram and stacked
them on top of one another. For seven class classifications of
the data, we replaced the last layer of the pre-trained VGG
with a linear layer consisting of seven neurons.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We use a publicly available dataset, upper limb movement
decoding from EEG (001-2017) [14]. It consists of seven
classes and is the only publicly available dataset with seven
(highest) movement classes. The movement classes in this
dataset are elbow extension, elbow flexion, hand close, hand
open, pronation, supination, and rest. It has both ME and MI
classes of movement.

As the input size for the pre-trained model is 224 x 224
we calculated the spectrograms of the same size. For this
purpose, we took 788 samples from each trial of the move-
ment and take 447 points discrete Fourier transform (DFT),
which sets the height of the spectrogram at size 224. For the
specific width of the spectrogram, we set the window size at
565 and the number of overlapping samples at 564. We used
the Blackman window throughout the calculation of spectro-
grams and take the natural log of magnitude square of each
of the spectrograms so that, we can get the real values from
the computed spectrograms. Though there are many other
combinations of the window size and the overlapping win-
dow through which spectrogram of size 224 x 224 can be
computed, we have left the study of the classification accu-
racy of the DL model on different cases of spectrograms to
the future work. As our dataset consists of 61 EEG chan-
nels we calculate the spectrogram of each channel indepen-
dently. For every movement of each subject, there are 10 trial
runs and 6 sessions resulting in 3660 spectrograms for each
class for each subject irrespective of the train-valid-test split.
Fig. 2] presents the spectrogram of channel F'C'1 for the seven
classes that are classified in this study. It can easily be ob-
served that the spectrograms are different for each MI class,
which helps in better classification of MI from EEG data.

Table 1. Classification performance of the proposed method
based on EEG spectrogram using VGG-16 and VGG-19 DL
models for seven classes of movements.

Subject VGG-16 VGG-19
S1 88.93%  88.13%
S2 82.14%  80.34%
S3 79.80%  76.28%
S4 73.06%  71.81%
S5 76.03%  77.79%
S6 87.49%  87.43%
S7 90.80%  87.39%
S8 96.74%  97.20%
S9 82.00%  83.21%
S10 9229%  93.50%
S11 91.97%  92.07%
S12 90.96%  88.97%
S13 88.03%  89.65%
S14 91.25%  90.41%
S15 94.65%  94.49%
Average 87.07%  86.57%

The data were divided into 70% for training, 10% for val-
idation, and 20% for testing of the model. The pre-trained DL
model (VGG) was fine tuned using 16 as batch size and for
20 epochs. The momentum and learning rate was kept at 0.9
and 0.001, respectively. We used stochastic gradient descent
(SGD) as the optimizer and cross-entropy as the loss function.
Specifically, we used VGG with batch normalization other-
wise the model would give us an undefined loss after every
epoch. The computation of the spectrograms and the train-
ing of the DL model was done on a personal computer with
Intel®Xeon®W-2265 CPU @ 3.50GHz with 64 GB physical
memory and Nvidia®RTX ™ A5000 GPU.

We train the DL model for each subject individually and
report the accuracy of the model per subject. Table |I| shows
the performance of VGG-16 and VGG-19 for each of the 15
subjects for all seven classes of movement. For both VGG-16
and VGG-19, we obtain the best classification results for sub-
ject 8, achieving an accuracy of 96.74% and 97.20% respec-
tively. Subject 4 performs the worst achieving an accuracy of
73.06% and 71.81% for VGG-16 and VGG-19 respectively.

Fig. 3] represents the confusion matrices for both the best
and the worst performing subjects i.e., subjects 8 and 4 re-
spectively for both VGG-16 and VGG-19. It can be seen from
the confusion matrix of VGG-16 for subject 8 that it classifies
pronation class well, while for subject 4 it shows the worst
performance for hand open class. In the case of VGG-19,
it shows the best classification performance for hand open,
pronation, and rest class. On the other hand, for subject 4,
the classification results are not as good as in the former case
as VGG-19 shows the least classification performance for the



Table 2. Performance comparison of our proposed method with the existing models for 4 MI classification evaluated on the

same dataset and subjects. CSP: Common Spatial Pattern, LDA: Linear Discriminant Analysis.

Subject Proposed Proposed CVNet CSP+LDA EEGNet Deep Shallow
VGG-16  VGG-19 (2] [L7] [LO] ConvNet [11] ConvNet [11]]

S1 87 % 84% 70% 52% 62% 66% 67%
S2 79 % 79 % 63% 50% 56% 54% 58%
S3 80% 77% 72% 42% 52% 62% 65%
S4 75% 68% 69% 44% 54% 60% 52%
S5 80% 75% 73% 43% 52% 66% 54%
S6 86% 89% 72% 44% 60% 67% 69%
S7 89% 92% 66% 47% 50% 56% 54%
S8 96% 97 % 74% 43% 58% 62% 68%
S9 84 % 74% 63% 42% 52% 54% 65%
S10 93 % 91% 68% 46% 56% 60% 62%

Average 84.9% 82.3% 69% 45.3% 55.2% 60.7% 61.4%
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for elbow, forearm, hand, and rest. To apply four class clas-
sification of our data, we attach a linear layer at the end of
the model consisting of four neurons and then train the whole
network again for four classes. Table. 2] shows the classifica-
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Fig. 3. Confusion matrices for best and worst performing sub-
jects: (a) subject 8 with VGG-16, (b) subject 4 with VGG-16,
(c) subject 8 with VGG-19, (d) subject 4 with VGG-19. EE:
Elbow Extension, EF: Elbow Flexion, HC: Hand Close, HO:
Hand Open, PR: Pronation, SU: Supination, and RS: Rest.

rest and hand close class. We observed that the intraclass vari-
ations on the spectrograms for classes showing lower perfor-
mance in limited and could be the reason for these outcomes.
In future we intend to analyze variations in spectrogram gen-
eration to further improve the performance.

For a fair comparison of our proposed method with the
models reported in the literature, we apply four class classi-
fication of the movement data such that we merge the seven
classes into four classes. Particularly, we merged the two el-
bow classes into a single elbow class, the two hand classes
into one hand class, and the two forearm classes into one
forearm class. Therefore, we obtain four movement classes

tion performance of VGG-16 and VGG-19 with other models
which are trained on the same dataset as ours for 4 classes.
Our proposed EEG spectrogram-based method outperforms
state-of-the-art methods. It should be noted the the compar-
ison results are presented for the 10 subjects used in other
studies. For four class movement classifications, we observe
that the model with lesser depth (VGG-16) performs slightly
better than the deeper model. We argue that since the number
of subjects is limited, deeper models are prone to over-fitting
and hence a lower test set performance.

4. CONCLUSIONS
In this work, we proposed the classification of seven upper

limb movements based on the spectrogram of the time series
EEG signal using pre-trained DL models and a publicly avail-
able EEG dataset. Such a classification using DL algorithms
based on EEG spectrograms for seven classes of movement
has not been done before to the best of our knowledge. For
seven class movements, we obtained an average classifica-
tion accuracy of 87.07% and a maximum accuracy of 97.20%.
Our study has shown that DL models with appropriate spec-
trogram from each EEG channels show greater classification
accuracy than other methods that use feature extraction be-
forehand, or that use raw EEG as input to models. For four
classes, our method improves the accuracy significantly (an
improvement of 15%). In future, the classification accuracy
of DL models with different variations of spectrogram gener-
ation methods would be evaluated.

5. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using hu-
man subject data made available in open access. Ethical ap-



proval was *not* required as confirmed by the license at-
tached with the open access data.
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