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ABSTRACT

As an essential indicator for cancer progression and treatment
response, tumor size is often measured following the response
evaluation criteria in solid tumors (RECIST) guideline in CT
slices. By marking each lesion with its longest axis and the
longest perpendicular one, laborious pixel-wise manual an-
notation can be avoided. However, such a coarse substitute
cannot provide a rich and accurate base to allow versatile
quantitative analysis of lesions. To this end, we propose a
novel weakly supervised framework to exploit the existing
rich RECIST annotations for pixel-wise lesion segmentation.
Specifically, a pair of under- and over-segmenting masks are
constructed for each lesion based on its RECIST annotation
and served as the label for co-training a pair of subnets, re-
spectively, along with the proposed label-space perturbation
induced consistency loss to bridge the gap between the two
subnets and enable effective co-training. Extensive experi-
ments are conducted on a public dataset to demonstrate the
superiority of the proposed framework regarding the RECIST-
based weakly supervised segmentation task and its universal
applicability to various backbone networks.

Index Terms— Response evaluation criteria in solid
tumors (RECIST), weakly supervised segmentation, label-
space co-training

1. INTRODUCTION

Tumor size measurement in medical imaging and follow-ups
is a widely accepted protocol for cancer monitoring [1]. In
current clinical routine, the measurement is often performed
in computed tomography (CT) slices manually by trained spe-
cialists, following the response evaluation criteria in solid tu-
mors (RECIST) guideline [2]. Specifically, a couple of RE-
CIST diameters are marked for each lesion (Fig. 1(b)), with
the major diameter measuring the longest axis of the lesion
and the minor measuring the longest perpendicular axis to the
major, in the axial slice where the lesion appears largest. The
RECIST diameters are commonly adopted as a time-efficient
alternative to full lesion segmentation (e.g., stroking along the
lesion boundary precisely or pixel-wise annotation), i.e., a
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trade-off between measurement accuracy and annotation ef-
fort. As a coarse substitute, however, they cannot provide as
much information as the full segmentation, which would al-
low versatile quantitative analysis such as area estimation or
morphological properties.

Despite its great value, manual segmentation of medical
images is notoriously laborious, tedious, error-prone, and
subject to inter-observer variability. Therefore, tremendous
efforts have been made to develop automated methods [3].
Significant breakthroughs have been achieved in the past
decade by deep convolutional neural networks (DCNNs) [4].
However, full supervision of the DCNNs requires pixel-wise
annotations of large datasets [5], which can be difficult or
costly to obtain in practice. To reduce this burden, weak
supervision in the form of simplified or partial labels, e.g.,
bounding boxes [6] or scribbles [7], has been studied with
great interests. For lesion segmentation, the existing RECIST
annotations are a natural and rich source of weak supervision.

Recently, several works have emerged that utilized the
RECIST annotations for weakly supervised lesion segmenta-
tion [8, 9, 10, 11, 12, 13]. Despite the remarkable progress,
we identify three common drawbacks of existing works that
should be overcome to push the research towards better
clinical applicability. First, almost all the existing meth-
ods [8, 9, 10, 11] relied on the GrabCut algorithm [14]—a
classical unsupervised segmentation algorithm—to generate
initial pseudo ground truth from the RECIST diameters for
training the segmentation networks. As the quality of the
pseudo ground truth largely depended on the initial seeds
for GrabCut, the seeding strategy must be carefully devised
to optimize the pseudo ground truth, which may encounter
difficulty in generalization in practice; besides, the delicate
pre-generation stage added unnecessary complexity to the
training process, and even so, these empirical strategies were
not guaranteed to always generate lesion masks with high
fidelity. Second, many existing works involved iterative train-
ing procedures, where the pseudo ground truth was updated
and the network performance gradually improved in rounds
[9, 10], leading to exceedingly time-consuming training pro-
cess. Third, most previous works assumed that the lesion-of-
interest (LOI; an enlarged bounding box of the lesion) region
was cropped out beforehand as input [8, 9, 10, 13]. Such
assumption, while acceptable when developing early-stage
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prototypes, may pose an obstacle to practical application as
the clinicians still need to obtain the LOI first. A straight-
forward solution is to prefix a lesion detection model to the
segmentation network [11]. However, such a two-stage struc-
ture can be unnecessarily redundant if a simpler one-stage
model can achieve the same performance.

In this work, we present a novel one-stage co-training
framework for RECIST supervised lesion segmentation in
CT slices, which effectively addresses all the three draw-
backs. Rather than over-tuning a classical unsupervised
method for optimal pseudo ground truth, we instead make
an intuitive observation that the RECIST diameters natu-
rally compose two sets of masks: a quadrilateral connecting,
and a circle circumscribing the four end points. Thus, we
train a model whose two subnets are supervised with either
of the two masks, respectively, Noting that the two masks
are inherently under- and over-segmented representations
of the lesion, respectively, we obtain the final prediction by
averaging the corresponding under- and over-segmenting pre-
dictions. In this way, the training label construction is simple
and straightforward. Inspired by the recent progress in self
supervision with contrastive learning [15], we propose a novel
consistency loss that contrasts the two subnets’ predictions
for label-space perturbation based co-training [16]. Owing to
the simplicity, robustness, and efficacy of the proposed dual
label construction and label-space co-training, our framework
can accept whole CT slices as input and get rid of the itera-
tive refinement, while still being able to produce high-quality
lesion segmentation. Last but not least, our framework is
model-agnostic and can be readily applied to any standard
segmentation backbone. Experimental results on a public
dataset demonstrate the advantages of our framework over
existing approaches.

2. METHOD

Problem Formulation. Following the literature, the target
of this work is to train a model with RECIST annotations to
perform accurate dense pixel-wise classification of lesion and
non-lesion on axial CT slices. Formally, we view a slice and
its lesion mask as two K-dimensional vectors: I ∈ [0, 1]K

and M ∈ {0, 1}K , respectively, where all pixels of a slice
constitute an index set P = {p|p = 0, 1, . . . ,K − 1}. For
a pixel p, Mp = 1 indicates that it is foreground (a lesion
pixel), whereas Mp = 0 indicates background; all foreground
pixels constitute a set M = {p|Mp = 1, p ∈ P}. Hence,
M andM are alternative representations of the same mask.
Similarly, the RECIST annotation of a lesion can be repre-
sented as a mask R and a corresponding index set R, where
Rp = 1 indicates the pixel p is on the RECIST diameters and
0 otherwise. Therefore, given a training slice set with RE-
CIST annotations1 Dtrain = {(I, {R})}, the target is to train
a segmentation model that can predict accurate M̂ for any

1A slice may contain multiple lesions and thus has a set of annotations.
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Fig. 1. (a) Overview of the proposed framework. (b) Illus-
tration of the dual mask construction. Top: a CT slice with
RECIST diameters overlaid. Bottom: the same slice zoomed
for better visibility, where yellow color indicates definite fore-
ground (the quadrilateralQ), blue indicates the uncertain area
A, their combination indicates the circumscribed circle C, and
the rest color-less region indicates definite background.

unannotated test slice.
Dual Mask Construction from RECIST Diameters. In this
work, we propose straightforward construction of a pair of
simple yet contrasting masks for network supervision (Fig.
1(a)): 1) a quadrilateral that connects the four endpoints of
the RECIST diameters with enclosing pixels forming an in-
dex set Q for mask Q: Q = {p|Qp = 1, p ∈ P}, and
2) the minimum circumscribed circle of the diameters with
enclosing pixels forming an index set C for mask C: C =
{p|Cp = 1, p ∈ P}. Since most RECIST-measurable le-
sions show convex shapes [2], it is reasonable to analyze the
general properties of Q and C assuming lesions with con-
vex outlines [17]. Based on this assumption, it is easy to
see that the quadrilateral is completely contained in the le-
sion, i.e., Q ⊆M. Therefore, Q is an under-segmentation of
the genuine lesion mask M . On the contrary, C is an over-
segmentation of M , i.e.,M⊆ C. In fact, this circle is also the
minimum circumscribed circle of the lesion, i.e., the smallest
circle that can fully contain the lesion while including as little
background as possible, given the lesion is convex. This is
favorable especially compared to the bounding boxes of the
RECIST diameters [18], which guarantees neither full inclu-
sion of the lesion nor least inclusion of background. With
the obvious “flaws” of being under- and over-segmenting, di-
rectly training with either of these two seemingly naive masks
would lead to suboptimal results. Next, we describe how to
effectively utilize them to build our framework.
Co-Training with Label-Space Perturbation Induced
Consistency Loss. As show in Fig. 1(a), our framework
mainly consists of two subnetworks fQ and fC supervised by
Q and C, respectively, with its loss function defined as:

Lsup = `P
(
Q̂,Q

)
+ `P

(
Ĉ,C

)
, (1)

where Q̂ = fQ(I) and Ĉ = fC(I) are the predicted prob-
ability maps by the two networks for a slice I , respectively,
and `P(·, ·) is a segmentation loss (such as the Dice loss) ef-
fective in set P . Lsup drives fQ and fC to output predic-
tions mimicking their supervision masks Q and C, respec-
tively. Therefore, the predictions are expected to be under-



and over-segmenting. A natural approach to fusing them is
an averaging ensemble: M̂ = (Q̂+ Ĉ)/2. As later shown
in our experiment, M̂ is consistently better than both Q̂ and
Ĉ. This is reasonable: as Q̂ and Ĉ are biased estimations
of the underlying ground truth towards diverging directions,
averaging them is supposed to effectively cancel the biases.
However, such a setting is essentially a simple ensemble of
two networks trained synchronously but independently. To
bridge the two networks, we propose to co-train fQ and fC by
explicitly enforcing the consistency between Q̂ and Ĉ with a
contrasting loss:

Lcon = `P
(
Q̂, Ĉ

)
. (2)

The rationale is that Q and C are in fact intentionally in-
troduced perturbations to the same underlying ground truth
masks. Enforcing the consistency in the two subnets’ pre-
dictions across the perturbations can make them gradually
approach a proper balance between the under- and over-
segmenting biases, thus producing a more accurate segmen-
tation. With a weight factor λ, combining Lsup with Lcon

yields the complete optimization target of our framework:

L = `P
(
Q̂,Q

)
+ `P

(
Ĉ,C

)
+ λ`P

(
Q̂, Ĉ

)
. (3)

Region-Constrained Consistency Loss. Referring to Fig.
1(b), it is easy to derive that: ∀p ∈ Q, Qp = Mp = Cp = 1,
and ∀p /∈ C, Qp = Mp = Cp = 0, thus we have

∀p ∈ Q ∪
(
P − C

)
, Qp = Mp = Cp. (4)

This is to say, both Q and C are consistent with the underly-
ing ground truth lesion mask M in regions inside Q (definite
foreground) and outside C (definite background). In our de-
sign, Lcon is targeted at the ambiguous region where Q and
C disagree and the real ground truth is unknown, which is
the region outside Q but inside C: A = C − Q. On one
hand, when fQ and fC are trained well by Q and C, respec-
tively, their predictions should be the same in the agreed re-
gion Q ∪ (P − C), and Lcon does not function. On the other
hand, if either one of them makes a mistake in this region, the
mistake may mislead the other network through Lcon. There-
fore, we further propose to improve Lcon by constraining its
effective region within A instead of the whole slice P , thus
Eq. (3) becomes:

L = `P
(
Q̂,Q

)
+ `P

(
Ĉ,C

)
+ λ`A

(
Q̂, Ĉ

)
, (5)

which is expected to be more efficient, effective, and robust.
Relation with Related Work. Conventional co-training of-
ten co-trained the subnets with distinct inputs (e.g., different
views of a web page [16] or MRI sequences in an exam [19]).
In this work, in an attempt to utilize the inherent uncertainty
of the RECIST annotation, we instead co-train the two sub-
nets with two distinct supervision masks which are purposely
constructed with diverging biases. This is in contrast with the
GrabCut-based methods which tried to increase the certainty

Table 1. Training configurations.
Backbone U-Net HNN [9] ARU-Net [11] Swin Transformer [22]
Pretrain None None None ADE20K [23]

Batch size 6 16 10 6
Prepare epochs 250 250 300 150

Total epochs 600 600 1000 600
Optimizer AdaMax [24] AdamW [25]

Learning rate 1×10−3 1×10−3 1×10−3 6×10−5

Scheduler None None None None
GPU NVIDIA RTX 2080TI×1

Augmentation Flipping, cropping, padding, rotating, and scaling

of the supervising mask via engineering with empirical rules.
To this end, our work presents a new perspective of utilizing
the RECIST annotation for weak supervision. It is worth not-
ing that our label-space perturbation is also inspired by the
data-space perturbations (i.e., data augmentation) commonly
used in self-supervised contrastive learning [15].

3. EXPERIMENTS AND RESULTS

Dataset. We evaluate the proposed framework on the pub-
licly available 2019 Kidney Tumor Segmentation (KiTS19)
challenge data [20], which provides kidney tumor masks of
210 abdominal CT scans of unique patients in arterial phase.
We randomly split the 210 volumes into training and test sets
in the ratio of 80:20. For minimal preprocessing, the slices
are rescaled to the range [0, 1] with a soft-tissue CT win-
dow range of [0, 400] Hounsfield unit (HU), and resized to
512× 512 pixels. For weak supervision, we follow [9, 10] to
convert the annotation masks to RECIST diameters by mea-
suring the major and minor axes on 2D slices. The Dice score,
Jaccard index, and 95th percentile of the Hausdorff distance
(HD95) are used as evaluation metrics as in [21].
Implementation. All experiments are conducted with Py-
Torch 1.7.1 [26]. For backbone, we mainly consider the U-
Net [27] and Swin Transformer [22] (base). The former is
arguably the mostly widely used architecture for medical im-
age segmentation, and the latter is a recent SOTA model for
general image segmentation. We also implement our frame-
work with two other backbones advocated in related works:
the holistically nested networks (HNNs) [9] and ARU-Net
[11], to demonstrate its model-agnostic applicability. As our
purpose is to validate the effectiveness of the proposed dual-
label consistency loss, no advanced post-processing trick is
implemented; instead, we simply apply a default threshold of
0.5 to identify lesion pixels. The soft Dice loss [28] is used
for `P and `A. We first train the model with only the pseudo-
label supervision by Lsup until convergence (the “prepara-
tion”), and then add the consistency loss Lcon for remain-
ing epochs. This is because Q̂ and Ĉ should be reasonable
under- and over-segmentations, respectively, for Lcon to con-
trast them validly. More details about the training configura-
tions are charted in Table 1. Our codes will be released.
Dual Mask Validation. First, we verify the fundamental as-
sumption that the constructed dual masks Q and C can serve
as under- and over-segmenting supervision, respectively, by



Table 2. Lesion segmentation performance and comparison
to SOTA approaches (mean±margin of error at 95% confi-
dence level). The strong baseline [17] and upper bound are
fully supervised models trained with GrabCut-generated and
ground truth masks, respectively. A fixed λ = 0.4 is used for
our framework, given its robustness to different λ values (cf.
Fig. 3). *: significance at 0.05 level for pairwise comparison
to our framework with the same backbone.

Method Backbone Dice ↑ Jaccard ↑ HD95 (pixel) ↓
Baseline U-Net 0.854±0.025 0.778±0.028 4.083±0.204

WSSS [9] HNN 0.838±0.030 0.766±0.032 4.118±0.233*
DRL [10] U-Net+Deep Q-net 0.858±0.023 0.779±0.025 3.963±0.181
RLS [13] U-Net 0.838±0.021* 0.744±0.023* 3.989±0.185

MULAN [18] Mask R-CNN 0.878±0.022 0.808±0.025 3.718±0.199
SEENet [11] Mask R-CNN+ARU-Net 0.890±0.020 0.825±0.023 3.516±0.191

Ours
HNN 0.845±0.028 0.770±0.029 3.889±0.180
U-Net 0.862±0.026 0.792±0.028 3.955±0.206

ARU-Net 0.894±0.019 0.827±0.022 3.482±0.161
Upper bound U-Net 0.866±0.029 0.805±0.030 3.758±0.225*

Method Backbone Dice ↑ Jaccard ↑ HD95 (pixel) ↓
Baseline Swin-T 0.891±0.018* 0.822±0.021* 3.449±0.144
RLS [13] Swin-T 0.888±0.012* 0.808±0.015* 3.354±0.116

Ours Swin-T 0.907±0.016 0.846±0.020 3.316±0.158
Upper bound Swin-T 0.912±0.018 0.856±0.021 3.312±0.117

Fig. 2. Segmentation results of different methods (green:
ground truth; red: network prediction; zoomed for better vis-
ibility). Baseline, RLS, and our framework use the Swin
Transformer backbone, whereas the others use the backbone
networks suggested in the original papers.

evaluating their recall and precision against the ground truth
M . For ideal under segmentation, the recall should be low
while the precision should be high, and vice versa for over
segmentation. The recall and precision are 0.715 and 0.990
for Q, and 0.982 and 0.802 for C, verifying the assumption.
Besides, compared to fitting an ellipse to the RECIST diame-
ters [13] (recall 0.954 and precision 0.854), our C is a better
over segmentation as indicated by its apparently higher recall
and lower precision, thus more suitable for our framework.
Lesion Segmentation. We evaluate the segmentation perfor-
mance of our proposed framework and compare to several
SOTA approaches. The evaluation is done with whole-slice
input (instead of cropped LOIs) for more practical use sce-
narios, albeit more challenging. For compared methods, we
mainly use the backbones suggested in the original papers
and follow the optimal training schedules described thereby;
otherwise the U-Net and Swin Transformer are adopted and
optimized for model-agnostic approaches. The results are
shown in Table 2. As expected, the choice of the backbone
network has a major impact on the performance, with the
Swin Transformer performing the best. Despite that, when

Table 3. Ablation study (with U-Net) results in Dice scores
(mean± margin of error at 95% confident level).

`P `A Q̂ Ĉ (Q̂+ Ĉ)/2
× × 0.683±0.023 0.809±0.024 0.826±0.023
X × 0.781±0.024 0.829±0.022 0.848±0.022
× X 0.844±0.022 0.852±0.021 0.862±0.026
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Fig. 3. Effects of varying λ (x axis) on performance (y axis).

the same backbones are used, our framework not only im-
proves upon the strong baseline in all metrics, but also gen-
erally outperforms all competing methods. In fact, the Dice
scores of our framework are fairly close to those of the up-
per bound (trained with pixel-wise full supervision by ground
truth masks) using the same backbones. These results demon-
strate the effectiveness and robustness of our proposed frame-
work, although it is simpler in terms of both mask initializa-
tion (compared to the GrabCut) and network design (com-
pared to the DRL [10] and SEENet [11]). Fig. 2 shows exam-
ple segmentation results by different methods.
Ablation Study. We conduct ablation studies with and with-
out co-training by Lcon, and with Lcon effective on the whole
slice (`P ) and in the constrained region (`A). As shown in
Table 3, with `P added, substantial improvements are ob-
served in both Q̂ and Ĉ, as well as the ensemble; when addi-
tionally constraining the effective region of the consistency
loss with `A, further improvements are achieved. Eventu-
ally, the ensemble of Q̂ and Ĉ achieves the best performance
with `A. These results demonstrate the efficacy of the pro-
posed label-space co-training framework, especially with the
region-constrained consistency loss. In addition, our frame-
work introduces only one hyperparameter, i.e., λ in Eqn. (5)
that controls the relative importance of the co-training loss.
As shown in Fig. 3, the small variations (less than 0.025 Dice
score) corresponding to both backbones demonstrate that our
framework is not sensitive to the exact value of λ in a reason-
able range ([0.4, 0.7]).

4. CONCLUSION

This work presented a novel co-training framework for le-
sion segmentation in CT slices, with weak supervision by the
RECIST annotations, which effectively co-trained two sub-
nets with a novel label-space perturbation induced consis-
tency loss. Extensive experiments validated the efficacy of co-
training with the proposed consistency loss, our framework’s
superiority to existing works, and its model-agnostic property.
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