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ABSTRACT

Tumor segmentation in histopathology images is often complicated
by its composition of different histological subtypes and class imbal-
ance. Oversampling subtypes with low prevalence features is not a
satisfactory solution since it eventually leads to overfitting. We pro-
pose to create synthetic images with semantically-conditioned deep
generative networks and to combine subtype-balanced synthetic im-
ages with the original dataset to achieve better segmentation per-
formance. We show the suitability of Generative Adversarial Net-
works (GANs) and especially diffusion models to create realistic
images based on subtype-conditioning for the use case of HER2-
stained histopathology. Additionally, we show the capability of dif-
fusion models to conditionally inpaint HER2 tumor areas with mod-
ified subtypes. Combining the original dataset with the same amount
of diffusion-generated images increased the tumor Dice score from
0.833 to 0.854 and almost halved the variance between the HER2
subtype recalls. These results create the basis for more reliable au-
tomatic HER2 analysis with lower performance variance between
individual HER2 subtypes.

Index Terms— Histopathology, HER2, Subtypes, Generative
Models, Diffusion Models, Segmentation

1. INTRODUCTION

The extraction of distinct features to differentiate individual subtypes
from one composite class can be problematic for machine learning
algorithms, leading to a weakened performance for the main task and
an inconsistent performance among subtypes [1, 2]. In histopathol-
ogy, tumors can be subtyped by origin or reason for growth [3]. In
this work, we focused on different histological subtypes among Hu-
man Epidermal growth factor Receptor 2 (HER2)-stained breast can-
cer samples, defined according to scoring systems for HER2. Each
tumor cell in HER2-stained tissue can be scored as 0, 1+, 2+, or 3+,
leading to the HER2 tumor class being a composition of these sub-
types [4]. An aggregated HER2 score is usually assigned to each
tumor sample, based on the composition of HER2-scored tumor tis-
sue [5]. Treatment choices are based on the aggregated HER2 score;
thus, correct results for the subtype composition are essential when
automatic tumor segmentation is employed. In this work, we con-
sider the first step in a HER2 segmentation pipeline, which is the
segmentation of tumor tissue against background tissue. Different
HER2 subtype characteristics combined with a different prevalence

of these HER2 subtypes can lead to an inconsistent tumor segmen-
tation performance between the underlying subtypes.

During algorithm development, this inconsistent performance
across individual subtypes can be approached with oversampling
of underrepresented subtypes, which can, however, quickly lead to
overfitting due to the limited amount of training data available [6].
To avoid overfitting, the training set can be extended by synthetic
images created by a generative model, specifically Generative Ad-
versarial Networks (GANs) [7], which have been successfully ap-
plied for a wide range of medical applications. Chen et al. reviewed
105 publications in this domain, and for microscopic pathology, a
performance increase was reported for all but one work [8].

Inspired by these results, we propose to use generative models
to generate subtype-balanced synthetic tumor image datasets. Sim-
ilar to the work of Fajardo et al. [9], we employ GANs for image
generation, but extend it by semantic conditioning, i.e. a generative
model is tasked to create an output that matches a two-dimensional
label mask. Recently, diffusion models have shown great potential in
image synthesis [10] and have previously outperformed GANs [11].
Therefore, we introduce diffusion models for semantic image syn-
thesis in histopathology aiming to tackle subtype imbalances within
our dataset. Furthermore, we experiment with partial image syn-
thesis, where we use semantically-conditioned diffusion models to
inpaint tumor regions, while the background remains unchanged.

We investigate how different amounts of synthetic images from
these three generative methods (GAN-generated, diffusion model-
generated, diffusion model-inpainted) affect the subsequent tumor
segmentation performance and how well the individual subtypes are
segmented.
The main contributions of this paper include the following:

• Illustration of the suitability of GANs and especially diffusion
models to create realistic HER2 images using semantic subtype-
conditioning. Demonstration of the suitability of diffusion
models for semantic subtype-conditioned inpainting in HER2
histopathology images.

• Analysis of how different amounts of additional synthetic im-
ages influence the segmentation performance, specifically the
overall tumor segmentation performance and the performance on
individual subtypes.
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2. DATASET AND METHODS

2.1. Dataset

The data used in this work originated from 40 breast tissue sec-
tions from 40 different patients. The tissue was histochemically
stained for HER2 and digitized as Whole Slide Images (WSIs) with
the 3DHistech PANNORAMIC 1000 scanner, using a 20× objec-
tive lens. Despite methods to reduce the effort [12], annotation
of WSI is still not reasonable; thus, ten regions-of-interest of size
1.5 mm×1.5 mm were selected from each WSI. Cell groups of the
same subtype were annotated as one tumor tissue instance using
polygon contours on the EXACT platform [13]. Five subtypes of
tissue were considered: the four HER2 subtypes according to the
asco/cap guidelines [14] and, as a fifth subtype, Lobular Carcinoma
In Situ (LCIS)/Ductal Carcinoma In Situ (DCIS) as one composite
class. Figure 1 shows examples of the annotated tissue types. LCIS
and DCIS describe non-invasive tumor tissues, which could be as-
signed to one of the four HER2 classes. This assignment was not
available; therefore, these classes were handled as a composition of
the four HER2 subtypes. Annotations were performed by a medi-
cal student and reviewed by a board-certified pathologist. A 24-8-8
train-validation-test split was carried out on WSI level, with an equal
amount of HER2-scored sections in each set. In Figure 2, the tumor
tissue composition of the different dataset splits is shown.

HER2 0 HER2 1+ DCIS (HER2 0)

HER2 2+ HER2 3+ DCIS (HER2 3+)

Fig. 1. The HER2 tumor subtypes present in the HER2 annotations,
including two DCIS examples with tissue corresponding to different
HER2 subtypes.
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Fig. 2. Distribution of the different HER2 subtypes across the anno-
tated tumor regions for the combined training and validation set, as
well as for the test set.

2.2. Synthetic Image Generation

Figure 3 illustrates how synthetic images were created using seman-
tic conditioning. As a first step, we modified the label masks, so that
the resulting synthetic dataset was subtype-balanced. For this, we
sampled an image patch and the corresponding label mask from our
dataset and assigned a new, randomly selected subtype label to each
tumor tissue instance. Due to a sufficiently high number of tumor tis-
sue instances, the random assignment resulted in a subtype-balanced
synthetic dataset. The modified label masks were then utilized for
three methods of synthetic image generation as follows:

GAN image generation. We used the GAN-based architecture
proposed by Park et al. in [15] using spatially-adaptive normaliza-
tion, which enables more realistic outputs for conditioning masks
where only a single class is present. Sampling of such label masks
is a common finding in our dataset; therefore, this technique ensures
higher-quality synthetic images. To allow various outputs for the
same conditioning, we used the latent space representation of a vari-
ational autoencoder as additional input, as proposed by Park et al. in
the Appendix of their work. For image generation, a random vector
was used as additional input.

Diffusion model image generation. We utilized latent diffusion
models, as proposed by Rombach, Blattmann, et al. [16]. An autoen-
coder, which consists of a compressing encoder and decompressing
decoder, is utilized to create a lower-dimensional latent representa-
tion of the data. The image generation process takes place in the
latent space, which reduces computational cost due to the compres-
sion while achieving state-of-the-art performance. We considered
this architecture advantageous as we expect it to better scale for gen-
erating large(r) image patches and large datasets, although we used
relatively small patches of size 512 × 512 in this work. To create
synthetic images, the latent diffusion model was utilized with the
same modified label masks as the GAN.

Diffusion model inpainting. We used the latent diffusion model
to inpaint the tumor in existing images, conditioned by the modified
HER2 subtypes. Unlike the above two methods, diffusion model
inpainting only modifies the tumor tissue instances while keeping
the background unchanged. Inpainting with diffusion models takes
the context of an image into account, allowing the model to capture
background characteristics when inpainting the new tumor tissue.
Depending on how the background characteristics affect the data,
this effect could be positive or negative for the subsequent task.

The generative models, as well as the subsequent segmentation
task, were trained with the data described in Subsection 2.1. We
followed the GAN implementation provided by Park et al. 1, which
we trained with a batch size of 16 and the Adam optimizer (learn-
ing rate 1e-5). For latent diffusion, we adapted the implementation
provided by Rombach, Blattmann, and colleagues 2. The autoen-
coder for latent space computation was based on the provided vq-f4
configuration, which compressed the input by a factor of eight. The
diffusion model was trained with a batch size of 16 and the Adam
optimizer (learning rate 1e-6).

2.3. Segmentation Network

The segmentation aimed to analyze the effects of various quantities
of synthetic training images from different generative methods. We
used the U-Net architecture, proposed by Ronneberger et al. [17], for
segmentation, which has proven itself a suitable architecture for seg-
mentation in histopathology. For our experiments, we used a U-Net

1https://github.com/NVlabs/SPADE
2https://github.com/CompVis/latent-diffusion

https://github.com/NVlabs/SPADE
https://github.com/CompVis/latent-diffusion
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Fig. 3. Illustration of how the synthetic datasets are created. An image and a corresponding label mask are sampled from the real dataset, and
the subtype label of each tumor tissue instance is randomly modified. With the new label masks, synthetic images are created using a GAN,
a diffusion model or diffusion inpainting. The generated images, together with their new label masks, are added to the synthetic dataset.

architecture with a ResNet-34 [18] backbone that was pre-trained
on ImageNet [19]. The segmentation task consisted of two output
classes (background, tumor) and was optimized with a combined
Dice [20] and cross-entropy loss. Hyperparameters were optimized
on the tumor subtype-sampled dataset and retained for all experi-
ments. The Adam optimizer (learning rate 1e-6) was utilized, with a
batch size of 16.

3. EXPERIMENTS AND RESULTS

We evaluate the proposed methods both qualitatively in terms of a
visual assessment of the generated images and quantitatively with
regards to the resulting segmentation performance. For quantitative
evaluation of the tumor segmentation, two metrics were considered.
The tumor Dice score evaluates the segmentation result independent
of subtype. The variance between the HER2 tumor subtype recalls
evaluates how largely the segmentation performance varies across
the individual HER2 subtypes. We will call this metric subtype vari-
ance and lower values are favorable.

Different combinations of training data for the segmentation
network were evaluated. The two baselines sampled all tumor tis-
sue once independently of the subtypes (tumor sampled) and once
uniformly across all tumor subtypes (subtype sampled). Different
amounts of synthetic images extended the subtype-sampled dataset
to measure the impact of synthetic data. In our experiments, we
added 50%, 100%, 200%, and 400% of the original dataset size
as additional synthetic images. All experiments were repeated five
times to create reliable results.

3.1. Qualitative Results - Image Generation

Figure 4 shows an example of synthetic images created with se-
mantic conditioning. All three synthetic images are visually similar
to real HER2 histopathology images. The generated tumor struc-
tures show the staining characteristics of the subtype they were con-
ditioned on. Signs of repeating patterns are visible in the GAN-
generated images, and the background was often created as plain
white without background structures. Diffusion-generated images
show a high variation within all tissue types, and even rare back-
ground artifacts, like those seen in the example image, were gener-

Real Image Real Labels

Background HER2 0 HER2 1+ HER2 2+ HER2 3+

Modified Labels

GAN generated Diffusion generated Diffusion inpainted

Fig. 4. Visual comparison of images created by generative networks.

ated. Diffusion-inpainted images also show a high variation within
the created HER2 subtypes, but the network favored the creation of
tissue with staining closer to the original image.

3.2. Quantitative Results - Tumor segmentation

The performance metrics for the tumor segmentation are visualized
in Figure 5. Subtype sampling is superior to tumor sampling in
both metrics. Adding synthetic data to the subtype-sampled data in-
creased the tumor Dice score for all synthetic image methods, with
diffusion-generated images performing best, GAN-generated images
second, and diffusion-inpainted images last. For the subtype vari-
ance, diffusion-inpainted images performed inferior to subtype sam-
pling, while GAN-generated images and diffusion-generated images
were superior. Diffusion-generated images achieved a better subtype
variance than GAN-generated images in all but one case. The best
metrics were achieved when adding 100% synthetic images, where
diffusion-generated images increased the Dice score from 0.833 to
0.854 and decreased the subtype variance by 47.8%.
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Fig. 5. Boxplots of the tumor Dice score and the subtype variance
for different configurations. Mean and standard deviation are visu-
alized with the boxplot, while the whiskers mark the minimum and
maximum values.

For the subtype-sampled dataset and the best-performing experi-
ment, the averaged confusion matrices per subtype are shown in Fig-
ure 6. The most significant performance increase could be observed
for the HER2 0 subtype, where the recall increased from 0.64 to 0.73.
For the rest of the subtypes, minor improvements were achieved.

4. DISCUSSION

Although the qualitative results of the synthetically generated im-
ages look promising, some aspects remain open for discussion.
GAN-generated images show signs of repeating patterns, a common
finding among GANs, which was not fully avoided with spatially-
adaptive normalization [15]. Additionally, the GAN network favored
creating plain white background, which we suspect to be the net-
work collapsing to the “easiest” solution for the background present
in the training data. The diffusion-generated images were visu-
ally more compelling and even showed rare background structures,
e.g. staining artifacts, which can help the segmentation network to
become more robust toward these structures. Diffusion model in-
painting created tumor tissue with staining intensities more similar
to the original image. We suspect that the remaining background
information influenced the created staining levels in an unfavourable
manner.

All presented methods for synthetic image generation improved
the composite tumor segmentation, although no additional annotated
images were available for the generative networks. We assume that
generative networks might be able to interpolate between tissue fea-
tures; for example, they could combine subtype invariant features,
like tumor or cell shape, with subtype-specific features, like stain-
ing intensity. This could lead to synthetic tumor tissue, which has
a combination of features that is not present in the original dataset.
We suspect this to be the main reason for the lower subtype variance
when GANs and diffusion models are utilized.

The main performance benefit for diffusion models accrued for
the HER2 0 subtype, which had a significantly lower recall than the
other subtypes. We suspect that the lower recall was caused by the
absence of the brownish staining for this class, which appears to
be an easy indicator of tumor tissue. This indicates that the sub-
typing into four HER2 classes might not be optimal and a subtyp-
ing into non-stained (HER2 0) and stained (HER2 1+, HER2 2+,
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Fig. 6. Row normalized confusion matrix with the tumor subtypes.
Left are the averaged values from the subtype-sampled runs, while
right are the results from the experiment where 100% diffusion im-
ages were added.

HER2 3+) would be an interesting alternative. Diffusion models ap-
peared to be able to correctly generate non-stained HER2 tumor tis-
sue for the learned representations, thus improving the performance
for this subtype. Although we only consider tumor segmentation in
this work, this more uniform performance between subtypes could
lead to more reliable automatic HER2 scoring in the future, since the
scoring is based on the proportion of the HER2 subtype tissue [5].

These results are promising, but some limitations have to be
noted. The same persons annotated training and test data, which
could introduce a bias that affected evaluation metrics. Training of
GANs is notoriously unstable and hard to monitor; therefore, it is
possible that the model used in this work was not perfectly adapted
to the data and could have produced better results.

5. CONCLUSION

We proposed to subtype balance HER2 data with generative models.
We showed the suitability of generative models, especially diffusion
models, to generate semantically-conditioned synthetic images with
a realistic appearance. Combining an equal amount of real images
with diffusion model-generated images increased the Dice score of
the tumor segmentation by 2.43% and reduced the variance between
the tumor subtype recalls by 47.8%. This method is superior to over-
sampling subtypes and does not require additional annotated data.

The current approach requires the annotation of individual
HER2 to improve the tumor segmentation, and other kinds of so
far non-annotated subtypes might exist. Future work could explore
methods to alleviate this by, for example, unsupervised tumor area
clustering and balancing these clusters.

Another future work could explore the use of fully synthetic
training data. Besides the subsequent algorithm performance, one in-
teresting aspect could be whether the synthetic images can be traced
back to real patients. Such work could lay the foundation for using
fully synthetic datasets and thereby reduce data privacy concerns.



6. COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in studies involving human participants
were in accordance with the ethical standards of the institutional
and/or national research committee and with the 1964 Helsinki dec-
laration and its later amendments or comparable ethical standards.

7. ACKNOWLEDGEMENT

This project is supported by the Bavarian State Ministry of Health
and Care, project grants No. PBN-MGP-2010-0004-DigiOnko and
PBN-MGP-2008-0003-DigiOnko. We also gratefully acknowledge
the support from the Interdisciplinary Center for Clinical Research
(IZKF, Clinician Scientist Program) of the Medical Faculty FAU
Erlangen-Nürnberg. K.B. and J.Q. gratefully acknowledge support
by Dhip campus - Bavarian aim.

8. REFERENCES

[1] Seyma Yucer, Furkan Tektas, Noura Al Moubayed, and Toby P.
Breckon, “Measuring hidden bias within face recognition via
racial phenotypes,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), Jan-
uary 2022, pp. 995–1004.

[2] Lisa M Koch, Christian M Schürch, Arthur Gretton, and
Philipp Berens, “Hidden in plain sight: Subgroup shifts es-
cape ood detection,” in Medical Imaging with Deep Learning,
2021.

[3] Gautam K Malhotra, Xiangshan Zhao, Hamid Band, and Vimla
Band, “Histological, molecular and functional subtypes of
breast cancers,” Cancer biology & therapy, vol. 10, no. 10,
pp. 955–960, 2010.

[4] Sibylle Loibl and Luca Gianni, “Her2-positive breast cancer,”
The Lancet, vol. 389, no. 10087, pp. 2415–2429, 2017.

[5] Antonio C Wolff, M Elizabeth Hale Hammond, Kimberly H
Allison, Brittany E Harvey, Pamela B Mangu, John MS
Bartlett, Michael Bilous, Ian O Ellis, Patrick Fitzgibbons,
Wedad Hanna, et al., “Human epidermal growth factor re-
ceptor 2 testing in breast cancer: American society of clini-
cal oncology/college of american pathologists clinical practice
guideline focused update,” Archives of pathology & laboratory
medicine, vol. 142, no. 11, pp. 1364–1382, 2018.

[6] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao, “Borderline-
smote: a new over-sampling method in imbalanced data sets
learning,” in International conference on intelligent comput-
ing. Springer, 2005, pp. 878–887.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio, “Generative adversarial networks,” Commu-
nications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[8] Yizhou Chen, Xu-Hua Yang, Zihan Wei, Ali Asghar Heidari,
Nenggan Zheng, Zhicheng Li, Huiling Chen, Haigen Hu, Qian-
wei Zhou, and Qiu Guan, “Generative adversarial networks in
medical image augmentation: a review,” Computers in Biology
and Medicine, p. 105382, 2022.

[9] Val Andrei Fajardo, David Findlay, Charu Jaiswal, Xinshang
Yin, Roshanak Houmanfar, Honglei Xie, Jiaxi Liang, Xichen
She, and DB Emerson, “On oversampling imbalanced data
with deep conditional generative models,” Expert Systems with
Applications, vol. 169, pp. 114463, 2021.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel, “Denoising dif-
fusion probabilistic models,” Advances in Neural Information
Processing Systems, vol. 33, pp. 6840–6851, 2020.

[11] Prafulla Dhariwal and Alexander Nichol, “Diffusion models
beat gans on image synthesis,” Advances in Neural Information
Processing Systems, vol. 34, pp. 8780–8794, 2021.
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