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ABSTRACT

Based on the Denoising Diffusion Probabilistic Model

(DDPM), medical image segmentation can be described as a

conditional image generation task, which allows to compute

pixel-wise uncertainty maps of the segmentation and allows

an implicit ensemble of segmentations to boost the segmen-

tation performance. However, DDPM requires many itera-

tive denoising steps to generate segmentations from Gaussian

noise, resulting in extremely inefficient inference. To mitigate

the issue, we propose a principled acceleration strategy, called

pre-segmentation diffusion sampling DDPM (PD-DDPM),

which is specially used for medical image segmentation. The

key idea is to obtain pre-segmentation results based on a

separately trained segmentation network, and construct noise

predictions (non-Gaussian distribution) according to the for-

ward diffusion rule. We can then start with noisy predictions

and use fewer reverse steps to generate segmentation results.

Experiments show that PD-DDPM yields better segmenta-

tion results over representative baseline methods even if the

number of reverse steps is significantly reduced. Moreover,

PD-DDPM is orthogonal to existing advanced segmentation

models, which can be combined to further improve the seg-

mentation performance.

Index Terms— Diffusion models, medical image seg-

mentation, uncertainty, ensemble

1. INTRODUCTION

Denoising Diffusion Probabilistic Models (DDPM) [1, 2]

form a category of deep generative models which has re-

cently become one of the hottest topic in computer vision,

due to their promising results in both unconditional and con-

ditional generation tasks [2–4]. Based on the Denoising

Diffusion Probabilistic Model (DDPM), medical image seg-

mentation can be described as a conditional image generation

task, which allows to compute pixel-wise uncertainty maps of
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the segmentation and allows an implicit ensemble of segmen-

tations to boost the segmentation performance [5]. Especially

in medical applications where subsequent diagnosis or treat-

ment relies on segmentation, algorithms that provide only the

most likely hypotheses can lead to misdiagnosis and subopti-

mal treatment. If multiple consistent hypotheses are provided,

they can be used to suggest further diagnostic tests to resolve

ambiguity, or experts with access to additional information

can select appropriate hypotheses for subsequent steps [5, 6].

The Denoising Diffusion Probabilistic Model (DDPM)

consists of two Markov chains. In the forward diffusion pro-

cess, the clean images are gradually disturbed by Gaussian

noise until they are approximated to Gaussian distribution [1].

In the process of inverse diffusion, from the sampled Gaus-

sian noise, the trained denoising deep neural networks is used

to iteratively denoise the data to obtain the clean images.

Therefore, synthesizing samples from DDPM is achieved by

iteratively denoising the sampled Gaussian noise. For the

medical image segmentation, we can train the DDPM on the

ground truth segmentation, and use the image as a prior dur-

ing training and in every step during the sampling process [5].

However, a major problem with vanilla DDPM is the ineffi-

ciency of inference. Because obtaining clean segmentations

from DDPM typically requires hundreds or even thousands

of denoising steps, each of which involves forward prediction

by the denoising neural network.

To accelerate DDPMs, a few methods have been proposed.

Song et al. [7] attempted to reduce the number of diffusion

steps by using non-Markovian reverse processes. Unlike

DDPM, which defines noise scale as a constant, San-Roman

et al. [8] present a adaptive noise scheduling to estimate the

noise parameters given the current input at inference time,

which requiring less steps. In [9], the authors propose to

distill the full sampling process into a faster sampler that

requires only half as many steps. Some methods [10, 11]

shifted the diffusion process to the latent space using pre-

trained autoencoders. However, the above methods cannot

achieve significant acceleration without sacrificing the quality

http://arxiv.org/abs/2210.17408v1
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Fig. 1: Compare PD-DDPM with the vanilla DDPM. The training and sampling procedure of the method. In every step t, the

conditional information is induced by concatenating the medical images I to the noisy segmentation mask xI,t.

of power generation. Some other methods [12, 13] improve

sampling efficiency by truncating the forward and reverse dif-

fusion processes, boosting the performance at the same time.

But this method needs to combine GAN [14] or VAE [15]

models that are difficult to train. And it will break the charac-

teristic that the image dimension remains unchanged during

diffusion and sampling in the vanilla DDPM. To sum up, all

of the above methods do not implement accelerated sampling

specifically for segmentation tasks.

To mitigate the issue, we propose a principled acceler-

ation strategy, called pre-segmentation diffusion sampling

DDPM (PD-DDPM), which is specially used for medical im-

age segmentation. The key idea is to obtain pre-segmentation

results based on a separately trained segmentation network,

and construct noise predictions (non-Gaussian distribution)

according to the forward diffusion rule. We can then start

with noisy predictions and use fewer reverse steps to generate

segmentation results. PD-DDPM not only improves the effi-

ciency of vanilla DDPM without breaking any assumptions,

but as an additional benefit, improves the segmentation perfor-

mance of vanilla DDPM. Experiments show that PD-DDPM

yields better segmentation results over representative baseline

methods even if the number of reverse steps is significantly

reduced. Moreover, PD-DDPM is orthogonal to existing

advanced segmentation models, which can be combined to

further improve the segmentation performance. Since both

pre-segmentation and diffusion operations can be easily im-

plemented in one step, the pre-trained segmentation network

brings only minor computational overhead to PD-DDPM.

2. METHOD

2.1. Background on DDPMs

In DDPM [2], the forward diffusion process is a first-order

Markov chain that perturbs the data distribution q(x0) by

gradually adding Gaussian noise, with variance βt ∈ (0, 1)
at time t, until the data distribution converges to a standard

Gaussian distribution. The form of the forward process can

be summarized as follows:

q(x1:T |x0) =
T
∏

t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√

1− βtx
t−1, βtI)

(1)

where x1:T denotes the set of variables x1, x2, ..., xT . T =
1000 ∽ 4000 is a typical choice for most works. With the

limit of small diffusion rate (i.e., βt is kept sufficiently small),

the reverse distribution q(xt−1|xt) also follows a Gaussian

distribution. And thus the reverse process can be approxi-

mated using a neural network parameterized Gaussian distri-

bution pθ, starting at p(xT ) = N (xT ; 0, I):

pθ(x
0:(T−1)|xT ) =

T
∏

t=1

pθ(x
t−1|xt),

pθ(x
t−1|xt) = N (xt−1;µθ(x

t, t), σ2
t I)

(2)

The neural network is trained to simulate the reverse process

of the diffusion process defined in Equation 1. To generate an

image from the reverse process, we first sample xT from the

underlying data distribution by sampling a latent (of the same

size as the training data point x0) from p(xT ) (chosen to be an

isotropic Gaussian distribution), and then sequentially draws

sample xt−1 from pθ(x
t−1|xt) for t = T, T − 1, ..., 1 until

we get a new data x0.The generation process of a DDPM is

extremely slow as it need to sample from the transition distri-

bution pθ(x
t−1|xt) iteratively, which involves a lot of evalua-

tions of the output of the neural network.

2.2. Pre-segmentation Diffusion Sampling Denoising Dif-

fusion Probabilistic Model

One natural question raised from the vanilla DDPM could be:

can we cut the reverse process to T ′ (< T ) steps? If we

can get the noise samples xT
′

in advance, it can be achieved.

To generate image-specific segmentations, we train DDPM

on the ground truth and use images as priors during training



and sampling. To generate image-specific segmentation re-

sults, we train DDPM on the ground truth segmentation and

use medical images as conditional information during train-

ing and sampling process. Therefore, we can train a separate

segmentation network fψ using medical image conditional in-

formation.

xpre = f(I;ψ) (3)

In the sampling process, we can first obtain the pre-

segmentation result through the pre-segmentation network

fψ as shown in Figure 1. Then, according to Formula 1, the

pre-segmentation result is diffused to T ′ step to obtain the ap-

proximate sample x̂T
′

of xT
′

. In this case the reverse process

can be newly defined as:

pθ(x
0:(T ′

−1)|x̂T
′

) =

T ′
−1

∏

t=1

pθ(x
t−1|xt)pθ(x

T ′
−1|x̂T

′

),

pθ(x
t−1|xt) = N (xt−1;µθ(x

t, t), σ2
t I)

(4)

Thus, we can use the denoising neural network to denoise the

non Gaussian distribution x̂T
′

to a clean segmentation x0 in

fewer steps than the vanilla sampling process according to

Formula 4. Because the pre-segmentation result is not the real

ground truth segmentation, there will be some errors between

x̂T
′

and xT
′

. However, we empirically found through ex-

periments that PD-DDPM boosts the segmentation accuracy

of vanilla DDPM. We name the pre-segmentation diffusion

sampling DDPM as PD-DDPM. It should be emphasized that

PD-DDPM does not break the Gaussian assumption of vanilla

DDPM’ denoising process. In this way, the number of denois-

ing steps required is greatly reduced, thus effectively alleviat-

ing the pain point of high inference cost of DDPM.

3. EXPERIMENTS AND RESULTS

3.1. Datasets

We evaluate our method on the WMH dataset provided by

the White Matter Hyperintensities segmentation challenge in

MICCAI 2017 [16]. It consists of 60 cases of brain MRI im-

ages (3D T1-weighted image and 2D multi-slice FLAIR im-

age) with manual annotations of white matter hyperintensity

(binary masks) from three different institutes/scanners. And

the manual reference standard is defined on the FLAIR image.

So a 2D multi-slice version of the T1 image was generated

by re-sampling the 3D T1-weighted image to match with the

FLAIR. In this paper, all cases are randomly assigned into

five folds. Then we randomly assign these five-folds into a

training set (3-fold), a validation set (1-fold), and a test set

(1-fold).

3.2. Implementation Details

In this paper, all the networks train using Pytorch using

NVIDIA TESLA V-100 (Pascal) GPUs with 32 GB memory.

Fig. 2: Visualization of segmentation and uncertainty maps.

Table 1: Segmentation scores with different methods.

Methods Dice HD95 Jaccard F1

U-Net [17] 0.787 3.935 0.656 0.738

AttUnet [18] 0.799 4.190 0.673 0.753

U-Net++ [19] 0.798 3.915 0.672 0.751

Bayesian U-Net [20] 0.798 3.803 0.672 0.777

Probabilistic U-Net [21] 0.792 3.777 0.663 0.763

Vanilla DDPM [5] 0.796 4.179 0.669 0.779

TDPM [12] 0.801 3.608 0.676 0.776

ES-DDPM [13] 0.803 3.523 0.678 0.777

PD-DDPM 0.812 3.494 0.689 0.800

We optimized all configurations with the Adam optimizer

with the learning rate 1e-4 and the weight decay 1e-5. The

batch size is set to 12. For the WMH, images and annotation

labels were randomly cropped to 128 × 192 patches. We

choose a cosine noise schedule for T = 1000 steps. The

number of channels in the first layer of denoising network

is chosen as 128, and we use one attention head at resolu-

tion 16. In PD-DDPM, we choose the AttUnet [18] as the

pre-segmentation model.

3.3. Comparison of Segmentation Performance

The inference process of DDPM is a stochastic process. So

we can implicitly ensemble of segmentation masks to boost

the segmentation performance. For every image of the test

set, we sample 5 different segmentation masks. Then 5 dif-

ferent segmentation masks are ensembled by averaging and is

thresholded at 0.5 to obtain a binary segmentation. In Table 1,

the Dice score, the Jaccard index the 95 percentile Hausdorff

Distance (HD95), and F1 are presented.

We conduct quantitative experiments to compare our

method with a range of representative methods. Here, the
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Fig. 3: The Dice and uncertainty on testing set with respect

to T ′. The horizontal axis represents the size of T ′.

U-Net [17], AttUnet [18] and, U-Net++ [19] are the most

representative deep learning model in the segmentation field,

but none of them can estimate the uncertainty of segmen-

tation. Bayesian U-Net [20] and Probabilistic U-Net [21]

are representative methods that can estimate the uncertainty

of segmentation. And we also compare PD-DDPM with

other accelerating DDPMs, including TDPM [12] and ES-

DDPM [13]. It should be emphasized that the size of ensem-

ble in the comparison methods is also set to 5.

Table 1 shows PD-DDPM (when T ′=300) achieve the best

results with respect to all four metrics. And PD-DDPM out-

performing the vanilla DDPM. For visualization of the seg-

mentation and uncertainty maps, we select three images I1,

I2, and I3 from the test set in Figure 2.

3.4. Determining Optimal T ′

Here, we analyzed the impact of the hyperparameter T ′ on

PD-DDPM. By varying the T ′ among {50, 100, 200, 300, 400,

500, 600, 700, 800, 1000}, we train PD-DDPM for WMH

segmentation. As shown in Figure 3, PD-DDPM achieves

the best Dice score when T ′ = 300. And we also analyze

the effect of T ′ on uncertainty estimation (ie, the variation of

predicting softmax output). Figure 3 shows the uncertainty

increases with T ′ when T ′ < 500. Then the T ′ was further

increased, the uncertainty tended to saturate.

3.5. Effect of the size of ensembles

The optimal size of an ensemble is a task specific parameter

that needs to be optimized [22]. Figure 4 shows that (1) the en-

semble with multiple masks outperformed the only one mask.

(2) when ensemble sizes increased, performance tended to sat-

urate. We set the ensemble size to 5 in our methods. Figure

4 also shows standard deviation of segmentation performance

with respect to different ensemble sizes. The variation of seg-

mentation performance was reduced on dice metrics when the

ensemble size increased. It demonstrated that the ensemble
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Fig. 4: The average and standard deviation of the dice on

testing set with respect to ensemble size (when T ′=300).

Table 2: Segmentation scores of PD-DDPM with different

pre-segmentation Dice scores.

Pre-segmentation accuracy Dice Hd95 Jaccard F1

Zero (Dice=0.000) 0.353 9.899 0.235 0.677

Pre-seg (Dice=0.754) 0.790 4.364 0.662 0.776

Pre-seg (Dice=0.770) 0.795 4.121 0.667 0.770

Pre-seg (Dice=0.785) 0.798 3.974 0.671 0.786

Pre-seg (Dice=0.799) 0.812 3.494 0.689 0.800

model not only boost the segmentation performance but also

guarantee a robust segmentation result.

3.6. Effect of pre-segmentation accuracy

Because the pre-segmentation result is not the real ground

truth segmentation, there will be some errors between x̂T
′

and xT
′

. Here we analyzed the effect of pre-segmentation

accuracy on PD-DDPM. As shown in Table 2, the higher the

pre-segmentation Dice score, the higher performance of the

PD-DDPM (when T ′=300). So PD-DDPM can be combined

with existing advanced segmentation networks to further im-

prove performance and obtain uncertainty estimates.

4. CONCLUSION

To accelerating DDPM for medical image segmentation, this

paper propose a pre-segmentation diffusion sampling DDPM

(PD-DDPM), which is specially used for medical image seg-

mentation. We empirically find that PD-DDPM achieves the

best results under the parameter settings of this paper when

T ′ = 300 (T=1000). Experiments show even with a signifi-

cantly smaller number of reverse sampling steps, PD-DDPM

also outperforming the vanilla DDPM. Compared with some

existing acceleration methods, our method also get the best

result. Further, PD-DDPM is orthogonal to existing advanced

segmentation models, which can be combined to further im-

prove model performance and obtain uncertainty estimates.
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