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ABSTRACT

As the largest human cerebellar nucleus, the dentate nucleus
(DN) functions significantly in the communication between
the cerebellum and the rest of the brain. Structural
connectivity-based parcellation has the potential to reveal
the topography of the DN and enable the study of its
subregions. In this paper, we investigate a deep nonnegative
matrix factorization clustering method (DNMFC) for
parcellation of the human DN based on its structural
connectivity using diffusion MRI tractography. We propose
to describe the connectivity of the DN using a set of curated
tractography fiber clusters within the cerebellum.
Experiments are conducted on the diffusion MRI data of 50
healthy adults from the Human Connectome Project. In
comparison with state-of-the-art clustering methods, DN
parcellations resulting from DNMFC show better quality
and consistency of parcels across subjects.

Index Terms— Dentate, cerebellum, diffusion MRI,
fiber clusters,  deep learning

1. INTRODUCTION

The dentate nucleus (DN) is critical for communication
between the cerebellum and the rest of the brain. Located in
each cerebellar hemisphere and farthest from the cerebellar
midline, the DN is the largest cerebellar nucleus [1]. The
DN participates in both motor and non-motor functions,
contributing to sensorimotor processes and higher cerebellar
functions [2], [3].

Few previous studies have focused on the parcellation
of the DNs using magnetic resonance imaging (MRI). One
study utilized diffusion MRI (dMRI) probabilistic
tractography to perform parcellation of the human DN,
resulting in two parcellated zones: motor rostrodorsal and
non-motor ventro-caudal, suggesting the existence of
different functional units within the DN [3]. Another study
used a whole-brain MRI based multimodal approach to
obtain three DN atlases, two of which were based on
constrained spherical deconvolution tractography with the
third atlas derived from a fuzzy C-means clustering method
considering dMRI microstructural properties [4]. This study

also demonstrated two coherently distinct regions
responsible for motor and non-motor functions. In addition
to these MRI studies, a cadaver dissection approach
demonstrated four regions of the dentate nucleus according
to their connections with the superior cerebellar peduncle
[5]. Overall, these studies highlight the potential for DN
parcellation of using information about its connectivity.

Here we propose a new strategy for DN parcellation
based on dMRI tractography that has been parcellated into
fiber clusters. This strategy performs brain parcellation
based on the fiber clusters that intersect each voxel [6], [7].
In this work, we leverage an atlas of fiber clusters that has
been successfully used for consistent white matter
parcellation across the lifespan [8]. Previous work has
demonstrated the potential of brain parcellation by
clustering information about fiber clusters that intersect each
voxel [6]. Here we investigate the potential of such a
strategy to finely parcellate deep nuclei such as the dentate.
We propose to cluster dentate voxels based on their
connectivity, as described by the tractography clusters that
pass through each voxel.

In terms of methodology, given the fact that there is yet
no ground truth for a fine-scale parcellation of the DN,
unsupervised learning is a promising direction to cluster the
voxels within the DN for parcellation. Deep Convolutional
Embedded Clustering (DCEC) [9] is a widely used method
for unsupervised learning tasks. This method combines
convolutional autoencoders (CAE) for embedding and
k-means for clustering, within a deep learning framework.
As an alternative to k-means, which is highly sensitive to
initial conditions, sparse nonnegative matrix factorization
(NMF) has been shown to give more consistent clustering
solutions [10]. In this work, we investigate improvements to
DCEC by replacing the k-means algorithm in the embedded
clustering layer with NMF. Our methodological
investigation is motivated by related work demonstrating
non-deep NMF clustering for brain parcellation [6] and
several recent studies implementing nonlinear NMF via
combination with autoencoders [11], [12].

In this work, our main contribution is to investigate a
deep NMF clustering method for parcellation of the human
DN based on a novel description of its structural
connectivity. We assess DN parcellation results across
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multiple subjects and in comparison with the DCEC and
NMF clustering methods.

2. MATERIALS AND METHODS

2.1. Dataset and preprocessing

dMRI data of 50 healthy adults from the Human
Connectome Project (HCP) (a subset of the “100 Unrelated
subjects” release) [13] was utilized. This data was processed
with the HCP minimal processing pipeline, including
motion and distortion artifact correction and coregistration
to the standard MNI space [14]. We used 40 subjects’ data
for training and 10 for testing. Subject-specific DN masks
were obtained by applying the spatially unbiased atlas
template of the cerebellum (SUIT) method [15].
Subject-specific unscented Kalman filter tractography
(UKF) tractography [16] was performed, followed by
tractography parcellation using an anatomically curated
white matter atlas that includes 800 fiber clusters [17].

We first annotated each voxel in the DN with
information about intersecting fiber clusters, and then we
used this annotation as feature input to our deep network.
For each voxel in the DN mask, indices of intersecting fiber
clusters were recorded. We focused on a set of curated,
bilaterally defined [7], clusters that intersected cerebellar
cortex and the DNs. In general, these fiber clusters enter the
DNs from the cerebellar cortex and exit the cerebellum via
the superior cerebellar peduncle (Fig. 1). dMRI tractography
visualization was performed in 3D Slicer (www.slicer.org)
via SlicerDMRI (dmri.slicer.org) [18], [19].

Fig. 1. (a) Six anatomically curated fiber clusters
intersecting the DNs. (b) Mask of the DNs. (c) Regions of
the DNs intersected by two example fiber clusters.

2.2. Voxel annotation

We first compute a feature representation for each voxel
within the DN mask. Specifically, for each voxel i, a feature
vector vi = (xj | j = 1, …, 6) is computed, where xj is a binary
value indicating whether the voxel is intersected with fiber

cluster j. In our study, we consider a voxel is intersected
with a cluster if at least one fiber in the cluster passes
through the voxel.

2.3. Deep NMF clustering (DNMFC)

As is shown in Fig. 2, the proposed DNMFC is based on the
network structure of DCEC, consisting of a CAE to learn an
embedding feature for each input voxel and a clustering
layer to assign a cluster label for each voxel. However, the
K-means clustering method in the embedded layer is
replaced with NMF. Here, CAE is updated by minimizing
the total loss (L) that combines the reconstruction loss (Lr)
and the clustering loss (Lc):

(1)𝐿 = 𝐿
𝑟

+ γ𝐿
𝑐

where is a coefficient controlling the degree of distortingγ
the embedded space.

Fig. 2. Network structure of DNMFC.

2.3.1.  CAE and reconstruction loss
CAE is preserved from DCEC and aims to extract an
embedding feature from the input feature vector xi (as
shown in Fig. 2). However, we improve network
architecture to learn more latent features useful to the
embedded NMF clustering layer. To do so, we use a fully
connected layer that maps the flattened feature vector to a
higher dimensional embedding vector fi (D=36). This is
different from the original DCEC, where fi usually has the
same dimension as xi (D=6). Then, the rest of the network
and the reconstruction loss are the same as the DCEC [9].

2.3.2.  NMF clustering layer and clustering loss
Here for the input of N total voxels, the transpose of the
learned feature matrix is decomposed by NMF𝐹 ∈ 𝑅36 × 𝑁

into a component matrix and a coefficient𝑊 ∈ 𝑅36 × 𝐾

matrix ( , where K is the total number𝐻 ∈ 𝑅𝐾 × 𝑁 𝐹 ≈ 𝑊𝐻)
of parcels. Here each column of W is seen as a set of
features for a centroid and W-1F can give an approximate
value of H. Each column of H direcly gives K scores (soft
labels) for K parcels and the maximum score determines
which parcel the voxel belongs to. The NMF problem can
be described mathematically as:

(2)𝑚𝑖𝑛
𝑊≥0, 𝐻≥0

1
2 ||𝐹 − 𝑊𝐻||

𝐹
2

where is the Frobenius norm.||·||
𝐹

https://paperpile.com/c/w54iNa/uVhzS
https://paperpile.com/c/w54iNa/SQA4
https://paperpile.com/c/w54iNa/GqZ5
https://paperpile.com/c/w54iNa/d3vq
https://paperpile.com/c/w54iNa/pGOf
https://paperpile.com/c/w54iNa/mi2H
http://www.slicer.org
https://paperpile.com/c/w54iNa/b4Vy+Lhse
https://paperpile.com/c/w54iNa/yq5m


Unlike K-means in DCEC, where soft labels are
obtained by mapping through a student’s t-distribution, H in
NMF directly maps the learned feature vector fi from CAE
to a soft label hi in the embedded clustering layer. Thus hik is
the kth entry of hi, representing the probability of fi belonging
to the kth parcel. Then the soft labels hi are directly used in
the DCEC clustering loss:

(3)𝐿
𝑐

= 𝐾𝐿(𝑃||𝐻) =
𝑖

∑
𝑘
∑ 𝑝

𝑖𝑘
𝑙𝑜𝑔

𝑝
𝑖𝑘

ℎ
𝑖𝑘

where KL(·) is the Kullback-Leibler divergence and P is the
target distribution defined in [9].

2.3.3.  Implementation details
We implement our method using Python and Keras. As is
shown in Fig. 2, three convolution layers use 32, 64 and 128
filters, respectively. Kernel sizes are , and1 × 6 1 × 4 

with stride length equal to 2. Identical sizes are used1 × 2
for deconvolutional layers. All the layers are activated by
the ReLu function to preserve the non-negativity of features.
CAE is pretrained for 200 epochs with set as 0, and theγ
component matrix W and target distribution P are initialized
based on embedded features. Then is set as 0.1 to updateγ
the CAE parameters and W. Once the change of label
assignments between two consecutive updates is less than a
threshold , the training process ends. In a finalδ = 0. 1%
step, to correct isolated voxels, a median filter is applied to
the clustering results.

3. RESULTS AND DISCUSSION

3.1. Evaluation metrics

The quality of the parcellation result was evaluated with two
metrics. We used the Silhouette coefficient (S) to evaluate
the cohesion within parcels and the separation between
parcels, where a higher S indicates a better quality of parcels
[20]. Computation was done based on Scikit-learn [21]. The
other metric was the Sørensen–Dice coefficient (Dice) used
for evaluating the spatial consistency of parcellation results
across subjects [22]. For a pair of subjects, their overlapping
degree of the kth parcel is defined as Dicek-pair :

(4)𝐷𝑖𝑐𝑒
𝑘−𝑝𝑎𝑖𝑟

= (
2|𝐿

𝑖
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𝑗
|

|𝐿
𝑖
|+|𝐿

𝑗
| )

𝑖≠𝑗
,   𝑘 = 1,  ...,  𝐾

where Li and Lj are the label maps for the ith and jth subject.
The mean value of Dicek-pair from all the pairs was then
obtained as Dicek. A higher Dice score indicates stronger
consistency of parcellation across subjects. We determined
the number of DN clusters, K, by testing a range of values
larger than 2, where K=3 gave the best Dice performance.

3.2. Comparison across methods

The results in Table 1 indicate that the proposed DNMFC
method produces the best quality dentate parcellation
results. The silhouette coefficient results indicate that the

within-cluster cohesion and between-cluster separation of
the DNMFC method are higher than those of the compared
DCEC and NMF methods. The Dice overlap metrics of
Parcel 1 are similar across methods (as this parcel is
initialized to contain voxels intersected by only one or fewer
streamline points). The Dice overlap metrics of Parcels 2
and 3 demonstrate the high performance of DNMFC.

Table 1. Comparison of 3 parcellation methods
S 1𝐷𝑖𝑐𝑒 2𝐷𝑖𝑐𝑒 3𝐷𝑖𝑐𝑒 mean𝐷𝑖𝑐𝑒

DNMFC
DCEC
NMF

0.3089
0.2798
0.1002

0.6499
0.6519
0.6520

0.3053
0.0229
0.1394

0.4160
0.3967
0.1818

0.4571
0.3571
0.3244

3.3. Dentate Parcellation

Visualization of the DN parcellation is provided in Fig. 3
and Fig. 4. We observe three parcels. Parcel 1 is medial and
inferior, and generally is less intersected by the fiber clusters
of the current atlas. Parcel 2 is superior and lateral, while
Parcel 3 is superior and medial/posterior.

Fig. 3. Visualization of parcellation results in two example
subjects (a,b) and overall result in 10 testing subjects (c).

Fig. 4. Heatmaps for three parcels across the 10 testing
subjects. Darker red color indicates higher overlap across
subjects. Heatmaps for Parcel 1 (a),  2 (b), and 3 (c).
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Previous work in dentate parcellation focused on motor
vs non-motor regions, and demonstrated motor-related
connectivity of the superior dentate nucleus [3], [4].
However, the fiber clusters in the employed tractography
atlas (Fig. 1) connect mainly to the posterior (non-motor)
cerebellum. (Shorter streamlines connecting DNs and
anterior cerebellar cortex are not included in the employed
tractography fiber cluster atlas.) Thus our current results
subdivide regions within the dentate that have different
connectivities to the posterior cerebellum, which has
primarily cognitive function. Future work may incorporate a
more detailed, cerebellum-specific tractography atlas to
investigate the potential for finer dentate parcellation.

4. CONCLUSION

In this paper, we utilized intersecting fiber cluster
information to parcellate an important structure in the
human cerebellum, the dentate nucleus. Six fiber clusters
with strong anatomical meaning were selected for voxel
annotation. To perform dentate parcellation, we applied an
improved DCEC method with the NMF algorithm
incorporated in the embedded clustering layer. Experimental
results illustrate good quality of parcels and consistency of
parcellation across subjects. The ability to perform fine
tractography-based parcellation may provide insights into
the detailed structure and function of the dentate.
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