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ABSTRACT

This work introduces a simple deep-learning based method
to delineate contours by ‘walking’ along learnt unit vector
fields. We demonstrate the effectiveness of our pipeline on
the unique case of open contours on the task of delineating
the sacroiliac joints (SIJs) in spinal MRIs. We show that: (i)
95% of the time the average root mean square error of the pre-
dicted contour against the original ground truth is below 4.5
pixels (2.5mm for a standard T1-weighted SIJ MRI), and (ii)
the proposed method is better than the baseline of regressing
vertices or landmarks of contours.

Index Terms— CNN, MRI, Spine, SIJ, Sacroiliac Joint,
Vector Field

1. INTRODUCTION

Contouring objects is a very important step in various medical
image analysis tasks. Currently, one common approach is to
predict a segmentation map of the object and then extract the
map’s edges. However, this approach has limitations. Firstly,
the output segmentations are not necessarily a single intercon-
nected volume and thus additional post-processing is required
before finding edges, which can introduce errors (e.g. by re-
moving additional volumes). Secondly, this method does not
allow for detecting open contours. An alternative approach
is to treat pixels along the open contour as segmentation tar-
gets. However, this approach often leads to small, challenging
segmentation targets. Furthermore, these approaches do not
guarantee a unique solution or easily allow for sub-pixel pre-
cision contours in both the open and closed settings.

Therefore, in this paper, we propose a new method to de-
lineate contours, avoiding these limitations. This is done by
‘walking’ along a learnt vector field. Along the contour, the
field should point parallel to the contour, whereas outside the
contour the field should point to the nearest contour point. To
demonstrate the effectiveness of this method, we apply it to a
novel task; delineating the sacroiliac joint (SIJ) boundary in
clinical MRI scans.

Sacroiliac Joint Delineation. The S1J is the joint between the
sacrum of the spine and the ilium bones of the pelvis. There
are two SlJs per person, one on the left and one on the right.
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Fig. 1. Overview of the contouring pipeline on an example
SIJ MRI. The model outputs two vector fields, one for both
the left (red) and right (green) S1Js. Each vector field is shown
as a gradient map of the angle (in degrees) of the vector at that
point. These vector fields are then used to extract contours for
both the SIJs, shown in the bottom left panel.

MR imaging is typically done to look at the inflammation of
the S1J, or sacroiliitis, which is one of the causes of low back
pain and part of the diagnosis for ankylosing spondylitis (AS).
In AS, the severity of SIJ inflammation is used to assess dis-
ease progression. AS Grading systems often refer to specific
regions surrounding the SIJ [1]], which makes SIJ detection a
must. Since the S1J is defined as the space between two bones,
we follow the approach suggested by [2] and delineate each
SIJ as an individual open contour, which is beneficial for the
further downstream task of grading the SIJ.

Related Work. There have been multiple works on detecting
or segmenting parts of the spine in spinal medical imaging
across several imaging modalities, e.g. intervertebral discs [3]]
and vertebral bodies in MRI [4] and CT scans [3] as well as
the whole spine in DXA scans [6, [7]. However, there has
been relatively little research on detecting the SIJ and related
downstream tasks, for example, inflammation prediction or
quantifying structural changes. The closest work to date on
SIJ delineation is [8]. However, this method focuses on the
classification of sacroiliitis and requires manual annotation to
locate the SIJ region. Another closely related work is [9],



(a) Target Vertices

Fig. 2. The Unit Vector Field (UVF): (a) a slice of an SIJ MRI
with annotated landmarks in red delineating the left SI1J (with
respect to the patient), (b) the resulting target UVF, overlaid
on top of a gradient map of the field’s direction in degrees.

where the authors propose a method to detect changes in the
S1J. However, this is done without explicitly focusing on the
S1J region, instead taking the whole slice of an SIJ MRI as
input. We propose that by delineating the SIJ, models can
focus on the exact region of the disease without additional
noise from surrounding anatomical structures.

Our contouring method has analogies to several works on
shape representation using deep learning via implicit func-
tions (e.g. 10, [L1L [12]]). In this case, rather than representing
shapes as a binary mask over a regular grid of voxels, a model
learns f : R® — R, such that f(x,y, z) estimates the closest
distance from point (z, y, z) to the object of interest’s surface
(signed distance functions), or whether (x,y, z) is occupied
by the shape (occupancy functions). These methods allow for
sub-pixel/voxel precision representations of surfaces. Though
we validated our approach on SIJ MRIs, it is worth noting that
open contours are widely used in other medical imaging tasks
e.g. torso contour segmentation for better ECG interpretation
[L3]], and reconstructing 3D meshed of the heart from 2D car-
diac MRIs [14].

2. APPROACH OVERVIEW

Our method takes as input 2D images and outputs an array of
vertices delineating the contour of interest. This is done by
a two stage approach: (i) Firstly, a model to predicts a unit
vector field (UVF) for the image. At location x, the UVF in-
dicates the direction towards the nearest point on the contour
of interest (ii) Secondly, we propose a method to extract open
contours from this learned vector field. Our overall approach
for the task of SIJ delineation can be seen in Figure [T}

2.1. Unit Vector Fields

The idea of contours and vector fields in combination is not
a new one; for example, several early works in computer vi-
sion combined Snakes [15] with gradient vector flow [16],
i.e. a vector field pointing towards object edges in a given im-
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Fig. 3. Following on from the example shown in Figure 2]
alongside the UVF, we regress two 2D Gaussian heatmaps.
(a) 2 Gaussians representing the start and end points of the
contour, (b) the UVF overlaid on top of the Gaussians, (c) the
contour which starts from the Gaussian now marked in Green
and ends on the Gaussian marked in Blue, (d) the final contour
for the left SIJ marked in Red.

age. However, instead of defining the vector field using ob-
ject edges, we instead learn the unit vector field, ¥; ;, where
at each location in the vector field, (i, j), the field ‘points’ to
the nearest vertex, i.e. annotated ground truth landmark, on
the contour of the object. The unit vector field is made of two
separate x and y components corresponding to the directions
of the vectors in the field. To preserve the directionality of the
contour, we impose a rule where vectors laying on top of the
contour should ‘point’ to where the next vertex is expected.
An example unit vector field can be seen in Figure 2]

2.2. Extracting Contours From Unit Vector Fields

The unit vector field alone does not obviously indicate where
a contour starts and ends. We solve this by also predicting the
start and end points with the same network that generates the
unit vector field; this is done simultaneously as a separate out-
put. We take inspiration from previous works [4} 17, |18] and
regress two distinct Gaussian heatmaps for the start and end
points respectively. Each Gaussian has a maximum value of
1 and a variance proportional to the area of the task-relevant
object. In our case, we use the sacrum, i.e. the area which lies
in between two SIJs. In the case where the contour is with-
out a defined area of interest, we suggest scaling the Gaus-
sian heatmap proportional to the length of the overall con-
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Fig. 4. Example scans in the dataset with their marked-up an-
notated landmarks. (a), (b), and (c) are slices from the same
T1-weighted scan at differing slice positions (anterior, mid-
coronal, posterior) while (d), (e), and (f) are mid-coronal ex-
amples of different sequences in the dataset.

tour. The beginning of the contour is defined from the Gaus-
sian heatmap designated as the start point. We then iteratively
‘walk’ following the direction in the UVF, ¥; ;, and the con-
tour ends when approaching the second Gaussian heatmap
i.e. end point. Each step is 1 unit in magnitude, although
this could be adjusted to generate contours of varying fidelity.
Figure [3| gives an example of how a contour is defined with
the Gaussian heatmaps and the UVFE. Since the UVF can be
visualized, errors can be more easily interpreted. Though not
shown in this work, a closed contour solution would not re-
quire heatmaps and could be found by simply searching for a
loop in the UVE.

3. DATASET & TRAINING DETAILS

Dataset. The Oxford Sacroiliac Joint (OSIJ) dataset is a col-
lection of SIJ MRIs from 339 patients that have undergone
scanning for in the Oxford University Hospitals NHS trust.
For experiments conducted in this work, the dataset is split
into training (80%), validation (10%) and testing (10%) sets
on a per subject basis (271:34:34). Each subject possesses an
average of two sequences (typically T1, T2, STIR, and FS)
resulting in a total of 793 scans. Each scan roughly consists
of 20 2D slices, resulting in a total of 16,978 images.

For the annotations of the contour of the SIJs, an expert
was tasked with marking the landmarks (vertices) that best
define both left and right SIJs through every slice in a given
scan. The number of landmarks varies depending on the view
of the SIJ; typically, mid-coronal SIJs cover a bigger image
area demanding a larger number of landmarks and vice versa.
The number of landmarks per slice ranges from 2 to 21.

Training Details. The experiments in this work were con-
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Fig. 5. Cumulative test set error distribution (measured in
pixels). Baseline is in blue and contouring via UVF is in red.

ducted using a simple U-Net architecture [[19]. For each con-
tour, the network predicts 2 Gaussian heatmaps and 2 compo-
nents (x and y direction) of the unit vector field; separate con-
tours were predicted for each of the two SIJ (left and right).
The SIJs are not guaranteed to be inside the field-of-view of
the scans and as such these cases were kept in the training set
to suppress false positives. The scans were typically squares
in shape; thus, they are bi-cubically re-sampled to 224 x 224
pixels. Slices that were not square were padded with zeros
prior to re-sampling so as to not change the aspect ratio.

The network is trained using an Adam optimiser [20] with
B1 = 0.9, B = 0.999 and a learning rate of 10~ until con-
vergence. Several augmentations were applied during train-
ing, namely: (a) translation +20%, (b) scale +20%, (c) rota-
tion £15°, (d) left/right flips, (e) additive Gaussian noise, and
(f) Gaussian blur. A combination of L2-loss, for the UVE,
and weighted L2-loss (see [4])), for the Gaussian heatmaps, is
used to train the network.

4. PERFORMANCE EVALUATION & RESULTS

For comparison we compare against a baseline network
trained to predict 21 Gaussian heatmaps for each SIJ, 21
being the maximum number of landmarks in the dataset. We
find this to be the simplest naive solution to predict landmarks
using a similar U-Net architecture as our proposed UVF ap-
proach. Samples with a lower number of annotated points
were up-sampled via linear interpolation. At test time, each
prediction is compared against the ground truth landmarks
of the contour and the root mean square (RMS) error is cal-



(a) Example with GT annotations
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Fig. 6. Quantitative result of the baseline against the proposed
method on a test set example. Green contours highlight the
right SIJ and red contours highlight the left; GT in yellow.
(b) and (d) are from the baseline model while (c) and (e) are
contours using UVF. Baseline predictions are sparse, with 21
landmarks for each contour, resulting in more aliasing.

culated from the closest points between the prediction and
ground truth.

Results for both networks are shown in Figure [5] and Ta-
ble. [T} Contouring by UVF overall works slightly better than
the baseline ranging from 0.14 to 0.35 difference in RMS
pixel error up to 95% of the data in the test set. This might not
seem like a huge amount, but Figure [| highlights that there is
lower aliasing when looking at the contours using via UVF
compared to just predicting landmarks via heatmaps. In gen-
eral, 95% of the test set have a lower than 4.5 pixel error
which for our purposes is adequate for further downstream
tasks e.g. defining an ROI for SIJ oedema classification. Fig-
ure[7]shows results on several examples both from OSLJ’s test

(a) OSLJ Test Sample 1

(c) OSLJ Test Sample 2

(e) OSLJ Test Sample 3 (f) rID: 154033

Fig. 7. Example contours via UVF. (a), (c), and (e) are from
the OSLJ test with ground truth annotations in yellow (b), (d),
and (e) are real-world unseen samples taken from Radiopae-
dia (73884, 75292, 154033).

set and to images extracted from Radiopaedia.

Data Proportion ‘ 01 03 05 07 09 09

Baseline Error | 0.52 1.00 1.41 2.00 340 445
UVF Error 038 072 1.15 1.76 3.10 4.10

Table 1. Table of RMS per proportion of data in the test set.

5. CONCLUSION

In this paper, we presented a pipeline to contour, focusing
more on open contours but applicable to closed contours as
well, objects in images and demonstrated its use to delineate
SIJs in coronal spinal MRIs. Overall, the performance is bet-
ter than the naive baseline of predicting landmarks of contours
and is applicable to other contouring problems in medical im-
age analysis.
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