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ABSTRACT

We present the first automated pipeline to create an atlas of in
situ hybridization gene expression in the adult marmoset brain
in the same stereotaxic space. The pipeline consists of seg-
mentation of gene expression from microscopy images and
registration of images to a standard space. Automation of this
pipeline is necessary to analyze the large volume of data in
the genome-wide whole-brain dataset, and to process images
that have varying intensity profiles and expression patterns
with minimal human bias. To reduce the number of labelled
images required for training, we develop a semi-supervised
segmentation model. We further develop an iterative algo-
rithm to register images to a standard space, enabling com-
parative analysis between genes and concurrent visualization
with other datasets, thereby facilitating a more holistic under-
standing of primate brain structure and function.

Index Terms— contrastive learning, gene atlas, segmen-
tation, semi-supervised learning, registration

1. INTRODUCTION

Characterization of gene expression in the brain is necessary
to understand brain structure and function. Cellular diversity
in the brain points at the need to characterize gene expres-
sion at single-cell resolution. Gene expression brain atlases in
lower-order model organisms have led to better understanding
of anatomical structures and cell types based on spatial ex-
pression patterns of genes. However, interspecies differences
limits the extrapolation of findings to the human brain. The
common marmoset (Callithrix jacchus) exhibits human-like
social traits, a fast reproductive cycle, and has proven to be
amenable to genetic manipulation, characteristics that make
it a candidate model organism for primate research.

The Marmoset Gene Atlas, created by the Brain/MINDS
project in Japan, is an in situ hybridization (ISH) database
of gene expression in the neonate and adult marmoset brain
[1, 2]. Characterization of neonate marmoset ISH gene ex-
pression images led to the discovery of regional- and species-
specific patterns of gene expression in the developing mar-
moset brain [3]. However, like other existing atlases [4], seg-
mentation of ISH gene expression was conducted manually
[3]. Manual methods are susceptible to human bias and er-
ror and not feasible for characterizing gene expression on a
whole-brain, genome-wide, multi-age level. Furthermore, ex-
isting marmoset brain atlases lack transcriptomic data such as
the ISH dataset (e.g. [5, 6, 7]).

Our goal is to develop an automated pipeline to create
a gene expression atlas from ISH images, consisting of bi-
nary segmentations of gene expression from ISH images,
registered to a standard space. We describe the image pre-
processing, segmentation, and registration steps to achieve
this for the adult marmoset brain (Figure 1). Segmentation
of gene expression is necessary to clearly define areas of
expression; true positive pixels are often difficult to discern
in ISH images due to great variability in image contrast be-
tween images and in expression patterns between genes. We
develop a semi-supervised deep learning segmentation model
due to their superior performance over fully-supervised mod-
els in biomedical segmentation tasks despite fewer training
labels [8]. Registration of ISH images is difficult to achieve
because each gene has a unique expression pattern. Thus,
we additionally develop an automated iterative algorithm that
utilizes the Advanced Normalization Tools (ANTS) toolbox
[9] to register brain images to the Brain/MINDS Marmoset
Connectivity Atlas (BMCA) template [7], to which neuronal
tracer data, fiber tractography data, and anatomical labels
have already been registered. Integration of the ISH dataset



to the BMCA standard space will add transcriptomic data,
facilitating a more holistic understanding of the marmoset
brain. To our knowledge, this is the first report of automating
the integration of marmoset ISH data into a standard space.
Our code is publicly available: https://github.com/
BrainImageAnalysis/MarmosetGeneAtlas_adult/
MarmosetGeneAtlas_adult.

Pipeline.

= -

1. Image acquisition and 2. Gene segmentation.
image preprocessing.

3a. Registration within - 3b. Registration to

subject. standard space.

Fig. 1. Schematic overview of the project pipeline to auto-
mate the creation of a gene atlas. Following image acquisi-
tion described in [1], images were registered and ISH gene
expression was segmented from brain images.

2. METHODOLOGY

Data acquisition was conducted by the Laboratory for Molec-
ular Mechanisms of Brain Development at the RIKEN Cen-
ter for Brain Science [1, 3]. We describe the image analysis
pipeline.

2.1. Preprocessing

Data preprocessing consisted of downscaling, filtering, and
morphological operations to remove artifacts. Metadata and
data were reorganized to be in a machine-readable format.

2.2. Segmentation

To train the model, 3D image stacks of ISH gene expression
from 14 genes (2470 2D images), were used in a 7:3 split
for training and validation. To evaluate the model, 3D image
stacks of ISH gene expression from five genes (520 2D im-
ages), which were separate from the training and validation
datasets, were used. Ground truth segmentations were manu-
ally generated by an expert (CP).

The model was based on a 2D U-Net [10], consisting of
three levels (Figure 2). Each level in the encoder consisted of
2D convolution, batch normalization, and LeakyReLU lay-
ers. The number of features were doubled every step. In the
decoder, 2D convolutions were replaced with 2D transposed
convolutions. A sigmoid was applied to the output of the de-
coder. Input image patches were 400x400 pixels.

The model was trained using the Adam optimization
method and two losses, the supervised binary cross-entropy

1088 (Lgypervisea) and the unsupervised contrastive 10ss (Lconsrastive)-

The contrastive loss, previously described by Oord et al.
[11] and Chen et al. [12], shown in Equation 1, calculates
the loss between positive pairs of samples by maximizing
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Fig. 2. Segmentation model architecture. The semi-

supervised segmentation model was based on a 2D U-Net,
with supervised and contrastive losses.

agreement between features (z) of two augmented views of
the same image patch (positive pair: i,j). In Equation 1, 7 is a
temperature parameter and Iz is an indicator function. We
used augmentations that were optimized by Chen et al. [12]:
Colorlitter, RandomGrayscale, and GaussianBlur (Torchvi-
sion library). These augmentations vary the image contrast,
brightness, hue, and saturation; parameters which already dif-
fer between images, and one reason why segmentation of this
dataset difficult. The contrastive loss maximizes the agree-
ment of image patches on the basis of image content, regard-
less of differences in colour profile and contrast. The con-
trastive loss was applied on features from the bottleneck layer
of the model which were projected through a multilayer per-
ceptron with one hidden layer (see [12] for details).

To train the model with both losses, skip connections were
excluded to avoid leakage. We used a batch size of 16, which
produced 30 negative samples for every positive pair. Code
was written in PyTorch and PyTorch Lightning. Training was
conducted using one NVIDIA A100 GPU.

exp(sim(z;, 2j)/T)

SN Tnzreap(sim(z;, z)/7)
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We additionally trained a second version of the model,
which was pretrained using the unsupervised contrastive loss
only (model w/ pretraining in Evaluation). The dataset used
for pretraining contained 186 unlabelled images.

2.3. Registration

We created an iterative algorithm using the ANTs Toolbox
[9] that creates a 3D brain image by automatically aligning
and stacking the brain images to recover the original shape
of the subject’s brain, followed by registration to the BMCA
reference marmoset brain template (Figure 3).

To achieve the first stage of registration, blockface (BF)
and backlit (BL) images were obtained during image acqui-
sition (Figure 3). Blockface images are photos of the brain
tissue before sectioning, and therefore show the shape of the
brain with minimal spatial deformations. Backlit images are
microscopy images of brain slices mounted onto slides (i.e.
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Fig. 3. Tissue acquisition and image registration. During tis-
sue acquisition, blockface, backlit, and ISH images were col-
lected for image registration. ISH images were first registered
within each subject and then to the BMCA template.
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Fig. 4. Iterative backlit registration.

after sectioning), but prior to ISH or Nissl processing, and
therefore are less spatially deformed than ISH and Nissl im-
ages. A reconstruction of the entire brain was achieved by
concatenating the blockface images [13]. This blockface re-
construction was used as the first reference point to recon-
struct a 3D image stack of backlit images (Figure 4). In the
second step, we used the backlit image stack to align all ISH
gene expression images. In the third step, we mapped all ISH
gene expression image stacks to the BMCA template.

For the reconstruction, we used an iterative algorithm that
optimized the following objective function.
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Let BL' be the 3D backlit image stack after the i-th iteration,
and let BL; the j-th 2D image section. BF' and BF} are
the blockface image stack and its sections, respectively. Fig-
ure 4 shows an overview of the backlit registration process.
In the first step, ANTs’s affine registration was used to map
each 2D backlit section to its corresponding blockface sec-

tion. The objective function is 70 = amin L(BLYoT, BF}),

where T is the objective, an affine transformation, and L is the
normalized mutual information. After optimization, the pro-
cess generated BL! := BL' x G(0), a Gaussian smoothed
3D image of the aligned image stack, with 0 = 3 being the
filter width. The next iterations used BL! as the target im-
age instead of the blockface image. In addition, we aimed
for a smooth transition between neighbouring image sections.
Therefore, three additional terms were added to the objective
function; see Equation (2). The terms favor similarity with
the previous iteration of the same section, but also with its
predecessor and successor. We heuristically found that a=1,
b=0.5, and ¢=0.5 worked best. T* is the transformation from
a previous iteration. Until iteration three, Tk is the previous
affine registration 7% = T°~!. From iteration 3, we used de-
formable registration (SyN) instead of the affine registration,
and set a=0, b=1, and ¢=0.25. T* = T2 was kept constant
between iteration 3 and 6 to suppress high frequency artifacts
from large non-linear deformations in the first SyN iterations.

The next step was done separately for each gene. Each
gene’s images were registered to the newly created 3D backlit
image stack. This was achieved in three steps. Since for each
ISH section, there exists a corresponding backlit image, affine
image registration was used to pre-align each ISH section to
its corresponding backlit counterpart. Two additional SyN
iterations were used to reconstruct the ISH 3D image stacks.
The loss function in the last two iterations was similar to (2),

Whgre BLgi_l), BLE;:ll)) and BLg;:rll)) were replaced with
their ISH counterparts.

In the final step, a 3D affine and 3D SyN registration were
applied to map the 3D backlit image, and therefore the ISH

images, to the BMCA 3D marmoset brain reference space.

3. EVALUATION

To evaluate the segmentation model, model outputs with
and without pretraining (model w/ pretraining and model)
were compared to ground truth segmentations (gf), two other
human-generated sources (thresholded, manual), and one
other machine-generated source (unet), summarized below:
* gt: ground-truth, manually generated by CP
* thresholded: thresholded images, thresholds were manu-
ally set for each image by CP
* manual: manually generated by five other annotators
(MFR, MB, MS, BX, HS) to evaluate the consistency
among human annotators
* model: our model without pretraining
* model w/ pretrain: our model with pretraining
* unet: fully-supervised vanilla 2D three-level UNet
Quantitatively, segmentations were evaluated using the
Dice score; we report the mean and standard deviation in
Table 1. Our model outperformed all other methods by a
wide margin. High standard deviations observed in human-
generated segmentations (thresholded* and manual*), and
overall low Dice scores (<0.5) show the difficulty in seg-



menting gene expression from ISH images due to variations
in expression patterns between genes and differences in image
contrast even for images obtained from the same marmoset.
High standard deviation observed in model w/ pretraining
segmentations can likely be improved with longer pretraining
and optimization of augmentations.

Dice (mean) Dice (SD)
thresholded* vs gt* 0.3629 0.2981
manual* vs gt* 0.1815 0.2965
model vs gt* 0.4948 0.2512
model w/ pretraining vs gt* 0.4050 0.2996
unet vs gt* 0.2581 0.2124

Table 1. Quantitative evaluation of segmentations. Human-
generated segmentations are marked by a *.

A sample of segmentations are shown in Figure 5. Quali-
tatively, it can be seen manual* segmentations performed the
worst (see row 4, where all methods segmented the correct
structure except for manual*).

model

model  w/ iretram unet

thresholded* manual*

Fig. 5. Qualitative comparison of segmentations. Human-
generated segmentations are marked by *. The challenge of
gene expression segmentation is exemplified in row 5, where
all methods segmented the wrong structure (see gf for the cor-
rect structure).

3.1. Automated stack alignment

To assess the quality of 3D stack alignment, we defined seven
landmarks in the reference template of the marmoset brain:
(single points unless indicated otherwise): anterior commis-
sure, anterior thalamus, midline, dorsal tip of the anterior
cingulate cortex (CC), posterior commissure of the midbrain
(MB, two points), subthalamic nucleus (STN, two points), and
the intersection of the anterior limb of the internal capsule and
the anterior commissure (infersection ALIC/AC, two points).
For each ISH image stack, three experts manually placed the
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Fig. 6. Automated stack alignment could maintain the ac-
curacy of manually placed landmarks in the adult marmoset
brain.

landmarks. For comparison, landmarks were automatically
mapped based on the transformation fields generated by the
image registration pipeline. The smaller the displacement
between a pair of landmarks manually placed by two differ-
ent annotators, the better the agreement. The same compar-
ison was done between manual landmarks and automatically
mapped landmarks. The median match between manual an-
notations and automation was compared to the best match
between two human annotations, which gave an advantage
to human annotations. Figure 6 shows the scores sorted by
displacement, shown in units of 100 pm. In this scenario,
automation could maintain the performance of manual meth-
ods. Of note, if we took the median displacement between
manually placed landmarks as well, automation outperformed
manual methods for all landmarks.

4. CONCLUSION

We describe the novel development of an automated pipeline
to integrate adult marmoset gene expression data into a stan-
dard space. Quantitative and qualitative evaluations showed
that the unsupervised contrastive loss improved segmentation
of ISH gene expression. We expect that pretraining with a
greater number of unlabelled images and optimizing augmen-
tation parameters for the ISH dataset will improve perfor-
mance. High standard deviation in human-generated segmen-
tations show the unreliability of manual labelling. Compari-
son of registration annotations between automation and man-
ual methods revealed that automation also performed on par
with humans. We plan to explore deep learning registration
methods to improve registration [14, 15], as well as other seg-
mentation models. This automated pipeline can be used to
process and integrate data from different imaging modalities
for co-visualization and comparative analyses.



5.

COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using
marmoset imaging data made available in open access at
https://gene-atlas.brainminds.riken.jp/. The use of marmosets
followed the guidelines of and were approved by the RIKEN
Institutional Animal Care Committee, described in [1, 3].
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