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ABSTRACT

The structure and variability of the brain’s connections can
be investigated via prediction of non-imaging phenotypes
using neural networks. However, known neuroanatomical
relationships between input features are generally ignored in
network design. We propose TractGraphCNN, a novel,
anatomically informed graph CNN framework for machine
learning tasks using diffusion MRI tractography. An
EdgeConv module aggregates features from anatomically
similar white matter connections indicated by graph edges,
and an attention module enables interpretation of predictive
white matter tracts. Results in a sex prediction testbed task
demonstrate strong performance of TractGraphCNN in two
large datasets (HCP and ABCD). Graphs informed by white
matter geometry demonstrate higher performance than
graphs informed by gray matter connectivity. Overall, the
bilateral cingulum and left middle longitudinal fasciculus
are consistently highly predictive of sex. This work shows
the potential of incorporating anatomical information,
especially known anatomical similarities between input
features, to guide convolutions in neural networks.

Index Terms— Sex classification, white matter tracts,
graph CNN, neuroanatomy, tractography

1. INTRODUCTION

The human brain’s white matter (WM) fiber tract
connections have important inter-individual variability, with
implications for understanding neurodevelopment and
disease [1]. Recently, brain variability is studied by
predicting non-imaging phenotypes from high-dimensional
neuroimaging data using machine learning [2]. Many
aspects of such machine learning methods are active areas
of research (e.g. multiple modalities [3], comparison of
methodology [4], and interpretation [2], [4]). However, we
find relatively fewer studies of tailored network design that
can leverage neuroanatomical knowledge. Here we
investigate deep neural networks informed by the anatomy
and geometry of the brain’s WM structure.

A few studies have aimed to develop dedicated neural
networks for analyses of the brain’s structural connections.
The BrainNETCNN [5] includes novel convolutional filters
that improve performance [6] by handling the topology of
connectivity matrices (where each row or column
corresponds to a gray matter (GM) region or node, and
entries or edges in the matrix indicate connectivity strengths
between GM regions). Other approaches apply graph
convolutional neural networks to connectivity matrices, e.g.
[7]. However, the above classes of methods are restricted to
the anatomical information contained in the row and column
structure of the connectivity matrix, and they cannot
leverage any additional anatomical information to inform
network convolutions.

We hypothesize that the performance of deep learning
can be enhanced by incorporating information about
anatomical neighborhoods of WM connections with similar
geometry and connectivity. To encode neighborhood
relationships, we adopt the popular EdgeConv neural
network module originally designed for the Dynamic Graph
CNN (DGCNN) [8], and we use it to construct static graphs
informed by brain anatomy. Following two major
approaches to study the brain’s structural connectivity [9],
we investigate 1) white-matter-centric graphs (WMG) that
define neighborhoods according to fiber tract geometry, and
2) gray-matter-centric graphs (GMG) that define
neighborhoods according to connected gray matter regions.

To focus our project, we choose a testbed problem of
sex prediction. While this problem is not straightforward
[10], [11], sex is known to be an important source of WM
variability [12]. Many studies have investigated sex
prediction [6], [13]–[16] using microstructure and/or
connectivity features from quantitative diffusion MRI
(dMRI) tractography [9]. Both microstructure (e.g.
fractional anisotropy, FA [6]) and connectivity (e.g. number
of streamlines, NoS [14]) features provide good prediction
performance. However, NoS is affected by intracranial
volume, a common confound in sex prediction [10]. In this
work we therefore utilize FA and a percentage of
streamlines that is normalized to reduce the effect of brain
size. We quantify these features using an anatomically
curated, atlas-based WM fiber cluster parcellation that is
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consistent across datasets, acquisitions, and the human
lifespan [17]. Importantly for this study, a description of the
WM geometry and GM connectivity of each fiber cluster is
provided in the ORG atlas [17].

In this study, we propose an anatomically-informed
graph CNN framework, called TractGraphCNN, to leverage
neuroanatomical knowledge for sex prediction based on
cluster-wise WM features from dMRI tractography. The
main contributions of this study are as follows. First, for the
first time, we model the anatomical relationship between
clusters as a graph, informed by WM geometry and GM
connectivity information. Second, we integrate EdgeConv
modules into our framework to extract features from
anatomically similar clusters to improve performance of sex
prediction. Finally, our framework is able to identify
important WM tracts for sex classification by leveraging an
attention module. We evaluate our method on two
large-scale datasets of children and healthy young adults.

2. METHODS

Fig. 1 gives an overview of our proposed TractGraphCNN
method. First, WM features are extracted from dMRI
tractography data (Sec. 2.1), resulting in two features for
each cluster. Second, we build a graph to model the
relationship between clusters, indicated by WM geometry or
GM connectivity information (Sec. 2.2). Third, the built
graph is input to the proposed TractGraphCNN framework
(Sec. 2.3) for sex classification. The framework aggregates
information from connecting clusters in the graph via
EdgeConv modules. An attention module is adopted to
enable interpretation of important tracts that are predictive
for sex classification.

Fig. 1. (a) Overall pipeline of TractGraphCNN. (b) Network
structure of the attention module.

2.1 dMRI datasets and feature extraction

2.1.1 Adolescent Brain Cognitive Development (ABCD)
This study utilized dMRI data of 9342 young children (age
9-11) from the large-scale, multi-site ABCD dataset [18].
We harmonized the dMRI data across 21 acquisition sites to
remove scanner-specific biases while preserving
inter-subject biological variability [19], [20]. Of all subjects,
4879 (52.2%) are males and 4463 (47.8%) are females.
7473 subjects (80%) are used for training the neural
network, while 1869 (20%) are used for testing.

2.1.2 Human Connectome Project (HCP)
We also conducted experiments on a dataset of 964 subjects
(age 22-37) from the Human Connectome Project, a large
multimodal dataset composed of healthy young adults [21].
Of all subjects, 443 are male (45.6%) and 521 are female
(54.4%). 772 subjects (80%) are used for training and 192
(20%) subjects are used for testing.

2.1.3 White matter fiber cluster features
Two-tensor unscented Kalman filter tractography (UKFt)
[22] via SlicerDMRI [23], [24] was applied to obtain whole
brain tractography from the dMRI data. Tractography was
parcellated with an anatomically curated cluster atlas and a
machine learning approach that has been shown to
consistently identify WM tracts across the human lifespan
[17]. For each subject, 953 expert-curated clusters
categorized into 75 WM tracts were obtained. Importantly,
cluster IDs are assigned according to the atlas and
correspond across subjects (e.g. cluster #1 corresponds
across all subjects and datasets studied). Statistical
microstructure measurements were then computed for each
cluster. We adopted two measurements for the task:
fractional anisotropy (FA) and percentage of streamlines
(PoS). FA of the cluster is computed as the mean FA across
all streamline points within the cluster. The PoS of a cluster
is calculated as the number of streamlines of the cluster
divided by the total number of streamlines across all clusters
of the subject, to reduce the effect of brain size. For each
subject, this resulted in an input feature matrix of size
2x953. For absent clusters due to individual anatomical
variation, we set features to zero. Finally, a min-max
normalization was performed on the input feature matrix for
FA and PoS individually.

2.2 Anatomically informed graph construction

We propose to build graphs such that edges connect
neighboring fiber clusters with similar anatomy. Each
cluster is represented as a node in the graph with
cluster-wise WM features as node features.

2.2.1 Fiber tract geometry informed graph
The first type of   graph (WMG) proposed in our study is
based on WM tractography fiber geometric similarity, a
well-established concept in the field of fiber clustering [9].
Specifically, we first compute the geometric distance
between each pair of fiber clusters in the ORG atlas, which
is measured as the mean of the pairwise fiber distances (the
popular mean closest point fiber distance is used [25])
between the two fiber clusters. A low distance between two
clusters represents a high similarity in terms of WM
anatomy. Then, for each cluster, we choose the top k (k =20
is used in our study following the default setting in
DGCNN) clusters with the lowest geometric distances as
neighbors, and edges are placed in between for graph
construction.
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2.2.2 Cortical and subcortical connectivity informed graph
The second type of   graph (GMG) proposed in our study is
based on GM regions to which the fiber clusters connect.
Specifically, for each cluster, we first identify its connected
Freesurfer GM regions. The ORG atlas provides the
percentage of streamlines from each cluster that intersect
each Freesurfer region [26]. We leverage this information to
identify the top two FreeSurfer regions most commonly
intersected by the streamlines of each cluster. The
neighborhood of a cluster is then defined as the set of
clusters with at least one top Freesurfer region in common,
and edges are placed in between for graph construction.

2.3 Network architecture

The overall architecture of our TractGraphCNN framework
is shown in Fig. 1. TractGraphCNN extends the 1D CNN
model [15] for group classification using fiber cluster
features with two innovative improvements. First, we
replace the 1D convolutional layers in the original model
with EdgeConv layers [8] to utilize the information of
anatomically neighboring clusters (Sec. 2.3.1). Second, we
add a gated attention module [27] in the network that can
assess the importance of each cluster to enable result
interpretation (Sec. 2.3.2).

Fig. 2. Graphic illustration of the usage of EdgeConv to
leverage fiber cluster neighborhood information, with
comparison to the standard 1D convolutional layer.

2.3.1 1D CNN with EdgeConv
Fig. 2 illustrates the use of EdgeConv in TractGraphCNN to
aggregate information from neighboring graph nodes
representing fiber clusters. EdgeConv was proposed in the
popular DGCNN method to capture the local geometric
structure of point clouds [8]. The basic idea of EdgeConv is
to use a learnable fully-connected layer to compute an edge
feature of two neighboring nodes xi and xj based on their
input features. Then, the output of EdgeConv is calculated
by aggregating the edge features with max-pooling. This
learning process enables dynamic update of graph structure
by recomputing distances of points in the feature space. In
our application, because the anatomical relationships
between fiber clusters do not change, we maintain a static
graph structure across layers by using the same graph
structure across all EdgeConv layers without recomputing
distances between node features. In addition, after feature

extraction, we do not use the max pooling operation as in
traditional Graph CNNs, but instead we retain the flatten
operation in the 1D CNN model [15] to preserve the
information about  cluster correspondence across subjects.

2.3.2 Interpretation of important tracts
For the purpose of interpretation, it is important to identify
important WM connections for the task of sex classification.
To achieve this, we improve our neural network by adding
an attention mechanism using the popular gated attention
module from [27]. The attention module (Fig. 1(b)) is
composed of two parallel fully-connected layers followed
by a sigmoid and tanh activation functions, a concatenation
operation, and another fully-connected layer followed by a
sigmoid function. The output is a 1-D attention map of size
973 with values between 0 and 1, indicating the importance
of the corresponding cluster to the classification task. Next,
we identify the most predictive anatomical WM tracts. We
first compute the mean importance of each cluster across all
testing subjects. Then we find the top T (T = 50 in our
experiment) clusters with the highest mean importance
values. Finally, we identify all tracts to which the top 50
clusters belong, according to the ORG atlas [17].

2.4 Implementation details

All experiments are performed on a NVIDIA RTX A4000
GPU using Pytorch (v1.12.1) [28]. For the overall
architecture, we use two EdgeConv layers and one 1-D
convolutional layer to extract features. The two EdgeConv
layers compute edge features with two fully-connected
layers (64 , 64). Shortcut connections are included to extract
multi-scale features and one 1-D convolutional layer (kernel
size=1, output channel=64) to aggregate multi-scale
features, where we concatenate features from previous
layers to get a 64+64=128 dimension feature. After that, a
flatten operation and two fully-connected layers follow to
obtain the final classification results. Our overall network is
trained for 200 epochs with a learning rate of 1e-5. The
batchsize of training is 32 and Admax [29] is used for
optimization. Source code will be made available.

3. RESULTS AND DISCUSSION

Four metrics are adopted in our study to evaluate sex
classification performance: accuracy, precision, recall and
F1 score. For precision, recall and F1 score, the averaged
values of the two classes are calculated for evaluation.

3.1 Sex prediction performance

We compared the performance of our proposed method with
two methods: SVM and 1D CNN [15]. In addition, an
ablation study was performed to investigate the performance
of our model without the attention module (TractGraph
CNN w/o Att. Mod.). The sex classification results of all
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testing subjects from the ABCD and HCP datasets are
shown in Tables 1 and 2.

Table 1. Comparison of sex classification performance
across different methods in the ABCD dataset.

Methods SVM 1-D
CNN

TractGraph CNN
w/o Att. Mod.

TractGraph
CNN

WMG GMG WMG GMG
Acc 73.46 82.77 85.13 84.59 85.50 84.80

Precision 73.21 82.83 85.09 84.58 85.46 84.77
Recall 73.23 82.88 85.11 84.52 85.49 84.79

F1 73.22 82.77 85.10 84.55 85.48 84.78

Table 2. Comparison of sex classification performance
across different methods in the HCP dataset.

Methods SVM 1-D
CNN

TractGraph CNN
w/o Att. Mod.

TractGraph
CNN

WMG GMG WMG GMG
Acc 90.673 93.229 93.750 94.271 94.792 93.229

Precision 90.506 93.229 93.760 94.326 94.791 93.245
Recall 91.414 93.234 93.760 94.254 94.791 93.259

F1 90.601 93.228 93.750 94.269 94.791 93.229

Generally speaking, our TractGraphCNN model with
WMG shows the best performance across all compared
methods. This indicates the strong potential of anatomically
informed graphs to improve performance in deep learning
tasks related to the brain’s WM connections. Furthermore,
we note that in general the WMG outperformed the GMG.
This is likely because the neighborhoods constructed using
fiber distances were able to capture more localized
information. In comparison, many larger neighborhoods
were induced when considering FS parcels. This could be
seen in the neighborhood size, where in WMG each node
(cluster) had 20 edges, while the number of edges per node
in GMG ranged from 3 to 180. Overall, both
TractGraphCNN approaches had good performance, in
comparison with typical sex prediction accuracies across
different MRI modalities and datasets ranging from 80-90%
[10]. Note that a comparable recent study of sex prediction
from HCP structural connectivity data achieved 92.75%
accuracy [30]. Finally, despite the larger size of the ABCD
dataset, all methods had much higher accuracy in the HCP
dataset, likely related to the different neurodevelopmental
stages of the subjects in the two datasets [31].

3.2 Interpretation of important tracts

Fig. 3 shows important tracts for the sex prediction task that
were consistently identified across both ABCD and HCP
experiments, for each graph type. We can observe that
widespread regions in the WM are predictive of the sex of
an individual. Three tracts (the bilateral cingulum and the
left middle longitudinal fasciculus) were consistently
predictive of sex across both graph types (WMG and GMG)
and across both large datasets. Other interpretation results

varied across graph types, indicating that the different graph
structures helped the network focus on different informative
brain connections. This further suggests the potentially
complementary nature of the two investigated graphs, and
the potential for future investigations into simultaneously
leveraging multiple sources of anatomical information in
network construction.

Fig. 3. Interpretation results of important tracts common
across both ABCD and HCP datasets.

4. CONCLUSION

In this study, we proposed a novel anatomically informed
graph CNN framework, TractGraphCNN, for machine
learning using diffusion MRI tractography. The framework
incorporates EdgeConv modules to aggregate features from
white matter connections that are anatomically related, and
an attention module that enables the interpretation of white
matter tracts that are important for prediction. The results in
a sex prediction testbed task demonstrated strong
performance of TractGraphCNN in two large datasets. We
found that white-matter-centric graphs were most successful
overall. Across both datasets and both graph types, the
bilateral cingulum and left middle longitudinal fasciculus
were most predictive of the sex of an individual. Overall,
this work shows the potential of incorporating sources of
anatomical information, especially known anatomical
similarities between input features, to guide convolutions in
neural networks.
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