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ABSTRACT

Acute ischaemic stroke, caused by an interruption in blood
flow to brain tissue, is a leading cause of disability and mor-
tality worldwide. The selection of patients for the most op-
timal ischaemic stroke treatment is a crucial step for a suc-
cessful outcome, as the effect of treatment highly depends
on the time to treatment. We propose a transformer-based
multimodal network (TranSOP) for a classification approach
that employs clinical metadata and imaging information, ac-
quired on hospital admission, to predict the functional out-
come of stroke treatment based on the modified Rankin Scale
(mRS). This includes a fusion module to efficiently combine
3D non-contrast computed tomography (NCCT) features and
clinical information. In comparative experiments using uni-
modal and multimodal data on the MRCLEAN dataset, we
achieve a state-of-the-art AUC score of 0.85.

Index Terms— Transformer, Multimodal, Stroke, Is-
chaemic, NCCT, Outcome.

1. INTRODUCTION

Acute ischaemic stroke is the most common type of stroke
and a leading cause of disability and mortality worldwide [1].
It is a condition caused by the formation of clots, following in-
terruption of blood flow to the brain. If the blockage is not re-
solved, the extent of dead tissue increases and the irreversible
ischaemic core expands over time. As Saver [2] stated, ”Time
is brain” for stroke diagnosis and treatment, and it is essen-
tial to carry out the appropriate treatment in a timely manner.
Although thrombectomy is the most effective treatment for
ischaemic stroke cases, there is a risk of brain haemorrhage
and death. Therefore, determining if a patient just admit-
ted can benefit from mechanical thrombectomy leading to a
good functional outcome, is an important step towards reduc-
ing risk and improving the quality of life for stroke patients.

Methods for automatic outcome prediction of stroke treat-
ment have been proposed using logistic regression [3, 4],
random forests [5, 6], support vector machines [4, 7], and
recently, convolutional neural networks (CNNs) [8, 9, 10].
Some use clinical records [3, 5, 4], imaging information

Fig. 1: TranSOP predicts functional outcome of ischaemic
stroke treatment leveraging only the baseline NCCT scan and
clinical records available on hospital admission.

[8, 7, 6], or a combination of both [9, 11, 12]. The CNN-
based models have been applied to various imaging modal-
ities, e.g. magnetic resonance imaging (MRI), NCCT and
CT angiography (CTA). While such deep learning models
perform well in medical image analysis, 3D CNN models
that exploit 3D brain volumes require numerous parame-
ters and computational resources. Furthermore, they cannot
learn long-range relationships due to their limited receptive
field. In contrast, more recently, transformers have achieved
outstanding results in various applications thanks to their
big data and model size scalability and better longer-range
attention-based modelling capability [13, 14]. However, pure
transformer-based methods have not been widely applied in
medical image classification due to their limited performance
on small datasets [15].

In this paper, we introduce TranSOP, a transformer-based
multimodal architecture to predict functional outcomes of is-
chaemic stroke patients 90 days after treatment (see Fig 1).
We combine clinical metadata (e.g. gender, age, hyperten-
sion, glucose level) and 3D NCCT obtained at the point of
hospital admission for 500 ischaemic stroke patients. We
also explore different strategies for this multimodal fusion and
conduct extensive experiments on various architectures, in-
cluding ViT, ViT with CNN, pre-trained ViT (from DeiT [16])
and Swin transformer (SwinT) [17] in our TranSOP model.

2. RELATED WORKS

There are only a few studies that have employed CNN-based

ar
X

iv
:2

30
1.

10
82

9v
1 

 [
ee

ss
.I

V
] 

 2
5 

Ja
n 

20
23



Fig. 2: Overview of our proposed transformer-based multimodal architecture, TranSOP. PE: positional encoding, CLS: a to-
ken/vector that represents the input volume for classification, MHSA: Multi-head self-attention, MLP: multi-layer perceptron,
FC: fully connected layer.

multimodal networks to predict the functional outcome of
stroke treatments, e.g. for thrombolysis [9] and for thrombec-
tomy [11, 10]. Bacchi et al. [9] applied a CNN model to 3D
NCCT images and clinical records of patients who underwent
thrombolysis treatment. Samak et al. [11] also proposed a
multimodal CNN architecture with channel-wise and spatial
attentional blocks to predict dichotomised mRS scores from
baseline 3D NCCT scans and clinical records of MR CLEAN
[18] dataset. Further, in [10], Samak et al. additionally in-
corporate 1-week follow-up scans during their model training
to encode stroke changes over time for better mRS score
prediction.

Transformers have shown significant success in natural
language processing, e.g. machine translation [19], and com-
puter vision, e.g. medical imaging tasks [20, 21]. They facil-
itate a mechanism of self-attention that can model the long-
range dependency of sequences and focus on important fea-
tures. Dosovitskiy et al. [13] proposed the first pure vi-
sion transformer (ViT), applied directly to sequences of image
patches for image classification. ViTs have obtained compa-
rable and even better results in some tasks than CNNs, e.g.
for object detection [22, 23].

Since its introduction ViT has been deployed in medical
image segmentation using different imaging modalities. UN-
ETR [24] adapts the commonly deployed and successful U-
Net architecture [25], by replacing its convolutional encoder
with a transformer encoder and modifying its convolutional
decoder based on the output of the transformer encoder for
image segmentation. Similarly, other studies [26, 21, 27] also
replace the convolutional encoder with a transformer encoder,
while some integrate the transformer encoder into the bottle-
neck of a U-Net-like model [28, 29, 30, 31] or use hybrid
blocks that combine the convolutional and transformer lay-
ers [32, 33]. Such works have been applied to NCCT [28],
MRI [29, 32, 21, 33] and microscope [30] images. In an-
other recent work, Amador et al. [34] propose a hybrid model
that performs segmentation of the final lesion outcome of is-
chaemic stroke from baseline spatio-temporal CT perfusion

(CTP) images using a transformer encoder embedded in the
U-Net bottleneck.

Although most transformer-based models in medical im-
age analysis are in the segmentation domain, there are some
studies that have employed them on medical image classi-
fication, e.g. for COVID-19 [35, 36], retinal disease [37],
cell analysis [38, 39], brain tumour [20, 40], Alzheimer’s dis-
ease [41, 15] classification and age estimation [40, 42]. These
methods are based on a pure transformer [35, 43, 44, 45, 46]
or a hybrid model that uses ResNet [20, 41, 37], DenseNet
[36] or a CNN module [38, 47, 39, 42, 15] followed by a
transformer encoder on 2D imaging modalities like X-Rays
[46, 48], microscope images [38, 39] and 3D MRI volumes
[20, 41, 15, 40]. To the best of our knowledge, there are no
studies using the transformer in 3D NCCT classification and
prediction of functional stroke outcomes from unimodal or
multimodal data.

3. PROPOSED METHOD

An overview of the proposed architecture, TranSOP, is shown
in Fig. 2, which includes a transformer encoder and a mul-
timodal fusion module to predict mRS scores. Transform-
ers can process 1D input sequences, as originally used in the
NLP domain where each word is embedded in a 1D vector
as a token. Similarly, we split a 3D NCCT volume, Xncct

i ∈
R1×D×W×H , into 1D vectors via patch embedding where D,
W , and H are depth, width and height, and a volume is di-
vided into non-overlapping patches of size P 3, which gener-
ate a sequence of 1D patch vectors of length L = [DP ]×[WP ]×
[HP ].

We use a convolutional layer to project each patch into a
K dimensional embedding space [16, 21]. We add a learn-
able parameter [CLS] ∈ R1×K , to the patch embedding se-
quence to represent the entire volume for classification. In
addition, a learnable positional encoding, (PE ∈ R(L+1)×K)
is added to the sequences, so that the spatial information of



the patches can be preserved (see Fig. 2). Next, a series of
transformer blocks, each including a normalisation layer fol-
lowed by multi-head self-attention (MHSA), a normalisation
layer, and a multi-layer perceptron (MLP) head are utilised in
the transformer encoder. Then, an MLP head is applied to the
classification token to extract NCCT volume features zncct

for the fusion process. Clinical metadata features zclinic are
computed by a fully connected layer (FC) (orange box in Fig.
2).

In the multimodal fusion module, a stack of two FCs with
a dropout layer in-between prepare the input scan’s zncct and
zclinic for fusion (see right box in Fig. 2). We use two meth-
ods for the fusion of these image volume and clinical fea-
tures, (i) concatenation where both features are joined to make
a larger 1D vector and (ii) addition where both features are
added element-wise with each feature vector multiplied by a
learnable weight. Finally, another stack of FC, Dropout, and
FC layers is applied to the fused features before being passed
to a Softmax layer for final predictions. These predictions are
dichotomised mRS scores, where mRS ≤ 2 indicates a good
outcome and mRS > 2 expresses a bad outcome. Note that,
dropout layers are deactivated during inference.

4. EXPERIMENTS & RESULTS

Dataset – We used the MR CLEAN Trial dataset1, collected
from a multi-centre study, which is one of the most compre-
hensive datasets of patients who underwent ischaemic stroke
treatment. Five hundred patients (233 assigned to mechanical
thrombectomy and 267 to usual care) were treated in 16 med-
ical centres in the Netherlands. We refer the reader to the MR
CLEAN study protocol [49, 18] for more detailed information
on the dataset.

Through pre-processing, some of the apparent variations
due to various acquisition protocols at different clinical cen-
tres were reduced to allow our model to deal with more simi-
lar standard input. First, all scans were re-sampled to the same
voxel size of 3x1x1mm3, followed by clipping the intensity
range of 0-80HU. The skull structure was then removed in the
NCCT scans and the volumes were cropped to 32×192×128
from the centre.

Data augmentations, such as horizontal/vertical flips and
Gaussian noise, were applied to increase the variation and
number of input samples to help improve the robustness of
the network. Finally, the voxels of the NCCT scans were nor-
malised to zero mean and one standard deviation.

Implementation Details – We split the dataset into three
subsets, training (70%, 350 patients), validation (15%, 75 pa-
tients) and testing (15%, 75 patients). The proposed model
was trained for 500 epochs using an Adam optimiser with a
weight decay of 0.0001, a learning rate of 0.0003, and a batch
size of 24. A cosine learning rate scheduler was used. The

1https://www.mrclean-trial.org/home.html

experiments were implemented in PyTorch and MONAI [50]
on a single NVIDIA P100 16GB GPU.

Details of Experiments – We evaluated the performance
of our proposed approach against two existing methods and
various transformer architectures that also operate on 3D
NCCT volumes and predict the functional outcome of stroke
treatment. The methods of Bacchi et al. [9] and Samak et al.
[11] which both use imaging and clinical information, were
re-trained on the registered MR CLEAN dataset and our data
split from scratch. Although, the FeMA [10] model performs
a similar task, it additionally uses 1-week follow-up scans that
contain information on stroke changes after treatment during
model training. Hence, in the interest of direct comparability,
we do not include that work in the present evaluation.

We also evaluated our TranSOP approach using differ-
ent transformer architectures for its encoder part. These are
referred to as TranSOPV iT , TranSOPDeiT , TranSOPConV iT

and TranSOPSwinT . TranSOPV iT uses the ViT network and
is trained from scratch, TranSOPDeiT utilises the ImageNet
pre-trained DeiT model to demonstrate the effect of trans-
fer learning, and TranSOPConV iT uses the first three layers
of convolutional blocks before the input is fed into the ViT
model to explore the performance of a hybrid model. These
three models have the same ViT network which consist of 12
layers of transformer blocks, 12 heads, a hidden MLP feature
size of 768 and 3072. In TranSOPSwinT , four stages each
consisting of two Swin transformer blocks and N MHSA
heads, where N = {3, 6, 12, 24} for each stage respectively,
were used. The ClinicDNN model only consumed clinical
information to show the expected benefit from imaging infor-
mation. Note, the multimodal fusion step is the same for all
the models.

We evaluated the classification performance of the mod-
els with three commonly used metrics, Accuracy, F1-score
and Area Under ROC Curve (AUC). Table 1 reports the eval-
uations of the transformer-based and convolution-based net-
works, along with confidence intervals, for two fusion meth-
ods. Broadly, the CNN-based state of the art works [9, 11]
outperformed the transformer methods when only imaging
information was used, for example, [9] and [11] performed
best and second best in accuracy at 0.75 and 0.72 respectively.
On the other hand, transformer-based methods exceeded Bac-
chi et al. [9] and Samak et al. [11] when clinical records
were included for multimodal analysis, with the best result
obtained by TranSOPSwinT at 0.85 AUC. These variations in
performance by the transformer could be attributed to both
the transformer’s appetite for larger datasets (see [14]), and
its already established superiority in handling 1D natural lan-
guage data. As TranSOPSwinT achieved the best AUC score,
and it is more efficient thanks to its hierarchical architecture
and shifted windowing, it can be a more preferable approach.

The results on the use of fusion methods (concat and ad-
dition) are inconclusive and further investigation on more ef-
ficient fusion methods is necessary.



Table 1: Results of the models with and without clinical records. The best and second best results are shown in bold and
underlined respectively. The second and third rows are convolutional-based models. CI is confidence interval.

w/o Clinical Records Fusion with Clinical Records

Method ACC (95% CI) F1-score (95% CI) AUC (95% CI) ACC (95% CI) F1-score (95% CI) AUC (95% CI)

ClinicDNN* - - - - 0.75 (0.65-0.85) 0.44 (0.19-0.64) 0.73 (0.57-0.86)

Samak et al. [11] 0.72 (0.62-0.82) 0.33 (0.09-0.53) 0.63 (0.44-0.81)
concat 0.77 (0.66-0.87) 0.47 (0.18-0.67) 0.78 (0.63-0.91)

add 0.79 (0.69-0.89) 0.44 (0.17-0.67) 0.71 (0.51-0.88)

Bacchi et al. [9] 0.75 (0.65-0.85) 0.40 (0.16-0.60) 0.66 (0.48-0.80)
concat 0.73 (0.62-0.83) 0.51 (0.29-0.68) 0.78 (0.62-0.90)

add 0.73 (0.62-0.83) 0.51 (0.29-0.68) 0.78 (0.62-0.90)

TranSOPConV iT 0.58 (0.46-0.69) 0.40 (0.21-0.56) 0.67 (0.46-0.85)
concat 0.77 (0.68-0.87) 0.58 (0.36-0.74) 0.83 (0.72-0.93)

add 0.77 (0.68-0.87) 0.58 (0.36-0.74) 0.82 (0.71-0.92)

TranSOPDeiT 0.58 (0.46-0.69) 0.40 (0.21-0.56) 0.63 (0.44-0.80)
concat 0.77 (0.68-0.86) 0.53 0.30-0.71) 0.82 (0.68-0.93)

add 0.79 (0.69-0.89) 0.52 (0.27-0.71) 0.84 (0.71-0.94)

TranSOPV iT 0.58 (0.46-0.69) 0.40 (0.21-0.56) 0.60 (0.40-0.78)
concat 0.80 (0.70-0.89) 0.53 (0.28-0.74) 0.84 (0.72-0.94)

add 0.80 (0.70-0.89) 0.59 (0.35-0.76) 0.83 (0.71-0.93)

TranSOPSwinT 0.58 (0.46-0.69) 0.40 (0.21-0.56) 0.64 (0.44-0.82)
concat 0.76 (0.66-0.86) 0.54 (0.32-0.71) 0.83 (0.71-0.93)

add 0.79 (0.69-0.89) 0.55 (0.31-0.73) 0.85 (0.75-0.94)

* A method that uses only clinical metadata information.

5. CONCLUSION

In this work, we investigated the performance of various
networks in predicting the functional outcome of ischaemic
stroke treatment based on 3D NCCT scans and clinical in-
formation, such as age, sex, and demographic data from
the patient’s medical history records. Transformer models
outperformed convolutional architectures in multimodal set-
tings. This suggests that transformer models, although not
performing as well on only imaging data, can learn better
complementary imaging information when combined with
clinical metadata. In future work, we plan to investigate and
explore a data-efficient transformer model for small image
datasets. In addition, we would like to extend the proposed
architecture to use follow-up scans, such as used in the FeMA
[10] method during model training.
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