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ABSTRACT

Differentiating tumor progression (TP) from treatment-related
necrosis (TN) is critical for clinical management decisions
in glioblastoma (GBM). Dynamic FDG PET (dPET), an
advance from traditional static FDG PET, may prove advan-
tageous in clinical staging. dPET includes novel methods of
a model-corrected blood input function that accounts for par-
tial volume averaging to compute parametric maps that reveal
kinetic information. In a preliminary study, a convolution
neural network (CNN) was trained to predict classification
accuracy between TP and TN for 35 brain tumors from 26
subjects in the PET-MR image space. 3D parametric PET
Ki (from dPET), traditional static PET standardized uptake
values (SUV), and also the brain tumor MR voxels formed
the input for the CNN. The average test accuracy across all
leave-one-out cross-validation iterations adjusting for class
weights was 0.56 using only the MR, 0.65 using only the
SUV, and 0.71 using only the Ki voxels. Combining SUV
and MR voxels increased the test accuracy to 0.62. On the
other hand, MR and Ki voxels increased the test accuracy
to 0.74. Thus, dPET features alone or with MR features in
deep learning models would enhance prediction accuracy in
differentiating TP vs TN in GBM.

Index Terms— Dynamic FDG Brain PET, Model Blood
Input, MRI, 3D CNN, Tumor Classification

1. INTRODUCTION

Glioblastoma (GBM) is a highly aggressive brain neoplasm
with a median survival of 15 months. Surgical resection
and adjuvant chemo-radio therapy are palliative treatments
alone [1]. The latter induces changes to brain tissue which
in-turn produces similar neuroimaging changes to tumor re-
currence [2], hence making it critical for clinical management
decisions to differentiate between recurring tumor (TP) and
treatment effect (TN). Positron emission tomography (PET)
with Fluorine-18 fluorodeoxyglucose (18F-FDG) as a surro-
gate marker for glucose metabolism, represents an imaging

* Equal contributing authors.

technique that can provide pathophysiologic and diagnostic
data in this clinical setting. The current standard of care
regarding clinical FDG PET is a qualitative and visual anal-
ysis by performing comparisons to the contra-lateral and
other brain regions. Static standardized PET uptake values
(SUV) measured at a specific time point post-FDG injection
have been widely used as a semi-quantitative measure [3].
However, SUV does not reliably differentiate tumor from
therapy effect, as it can depend on several factors such as
body weight and blood glucose level. Dynamic FDG PET
(dPET), an advance from traditional static FDG PET, may
prove advantageous in clinical staging. dPET includes novel
methods of a model-corrected blood input function that ac-
counts for partial volume averaging to compute a parametric
rate of uptake, or Ki, maps that reveal kinetic information.

In this work, we propose a multi-modal tumor classifica-
tion framework consisting of a dual-encoder 3D convolutional
neural network (CNN) and found that the metabolic informa-
tion from dPET assists MRI in classification and the CNN
combined with multiple image modalities performs better in
differentiating tumor progression from treatment effect in hu-
man GBM.

2. PROPOSED MULTI-MODAL CLASSIFICATION

In this section, we present our proposed multi-modal classi-
fication framework and its components. Our model consists
of two modules – (I) Ki Map Generation & Tumor Extraction
and (II) Tumor Classification shown in Fig. 1. Details of our
proposed methodology are introduced as follows.

2.1. Ki Map Generation

PET Motion Correction and MR-PET Registration. To
correct patient head motion during the dynamic PET scan, we
perform motion correction and co-registration to MR space as
described [4]. Since static PET is the standard of care for clin-
ical diagnosis, we also compute Standardized Uptake Value
(SUV) maps for evaluation.

ICA segmentation and IDIF derivation. To com-
pute parametric glucose rate-of-uptake or Ki maps from
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Fig. 1. Proposed multi-modal classification network and data processing pipeline.

co-registered dynamic PET scans representing kinetic infor-
mation, we compute an image-derived blood input function
(IDIF) from the ICA as the region of interest. An early
reference frame is selected for semi-automated volumetric
annotation of the ICA using thresholding and islanding in
3D Slicer. The resultant ICA segmentation is convolved to
compute the average blood time-activity curve across all time
frames to produce the tracer time-activity curve serving as
the IDIF.

IDIF correction and graphical Patlak for parametric
Ki computation. To generate the parametric brain PET maps,
a model-corrected blood input function (MCIF) is computed
by optimizing the image-derived input function (IDIF) de-
rived from the ICA as described [4], to account for partial
volume recovery of the blood input.

Finally, the computed MCIF and whole-brain PET data
are fed into a graphical Patlak model [5]. The model performs
a voxel-wise linear regression on the data to derive the rate
of FDG uptake, Ki, as the slope. By analyzing millions of
voxels across the entire PET volume, a parametric 3D Ki map
is computed.

2.2. Tumor Extraction

To specifically ensure that the model only focuses on tumor
voxels instead of brain background voxels, we perform a
semi-automated segmentation of tumor volumes using the
seed-based region growing segmentation tool in 3D Slicer.
This is followed by Gaussian smoothing to get a conservative
mask of the abnormality and then verification from clinical
experts. These masks are dropped onto co-registered PET Ki,
SUV, and T1-weighted MRI images to mask out the tumor.

3D parametric PET Ki, static PET standardized uptake
value (SUV), and MR tumor voxels are extracted in the same

image space. To perform the extraction of 3D tumor vox-
els while consistently preserving positional information, as a
pre-processing step, the images and tumor mask for each sub-
ject are co-registered to the SRI24 atlas [6] with dimensions
(240, 240, 155) and re-oriented into Left Posterior Superior
(LPS) orientation. This is done by registering the MR to
the atlas after performing temporary N4 bias field correction
and mutual information for rigid registration using the Cancer
Imaging Phenomics Toolkit (CaPTk) [7], then using the com-
puted transformation to bring the other modalities to the same
space after which the mask is applied. The masked images
were further center cropped to the brain to (170, 170, 120)
dimensions by computing a minimum viable bounding box
across all datasets to remove unnecessary background voxels
and bring focus to the tumors. In Fig. 2, we visualize the ex-
tracted tumor voxels for each modality. We observe a higher
signal-to-noise ratio showcasing distinct tumor metabolic fea-
tures within the Ki maps compared to SUVs.

Fig. 2. Examples processed tumor images from each modality
(MR, SUV, Ki) used as network inputs.

2.3. Multi-modal Architecture

After extracting tumor voxels from different image modali-
ties, we develop a dual-encoder CNN architecture for multi-



Table 1. Classification performance metrics for different
image modalities and network architectures.

Model Modality Accuracy Precision Recall

Single-
encoder

MR 0.56 0.71 0.68
SUV 0.65 0.78 0.72
Ki 0.71 0.80 0.80

Dual-
channel

MR+SUV 0.53 0.72 0.60
Ki+SUV 0.71 0.78 0.84
MR+Ki 0.71 0.80 0.65

Dual-
encoder

MR+SUV 0.62 0.75 0.72
Ki+SUV 0.65 0.76 0.76
MR+Ki 0.74 0.80 0.84

modal classification. The average dimensions of the tumors
are relatively much smaller than the bounding brain region.
For these low-dimensional tumor volumes and due to the low
number of samples, there is a high probability that employing
any SOTA classification network (has more than 30M param-
eters e.g. ResNet18: ∼ 34M, VGGNet16: ∼ 138M) will
overfit. Hence, we develop a custom convolutional neural
network with a limited number of encoder layers. For each
modality, we utilize a shallow 3D convolutional encoder ar-
chitecture with 3 convolutional layers (kernel size 3, and a
number of filters B × 2, B × 4 and B × 4 where the number
of base filters B is empirically set to 8). The output latent fea-
ture vectors from the encoder of each modality are flattened
and fused by concatenation before being fed into the fully
connected layers. Additionally, a drop-out layer is added af-
ter the first dense layer with a rate of 0.2 for regularization.

3. EXPERIMENTAL EVALUATION

3.1. Dataset

Our dataset consists of dynamic 18F-FDG PET scans for 26
subjects with GBM obtained using the whole-body time of
flight (TOF) Siemens Biograph mCT scanner with attenua-
tion correction over time. Dynamic acquisition consisted of
an intravenous ∼ 10 mCi tracer injection over 10 seconds
with the initiation of a 60-minute scan in list-mode format.
T1-weighted MPRAGE MRI scans are also obtained for each
subject using the Siemens 3T MR. The scans comprise a total
of 35 tumor abnormalities across all subjects along with sur-
gical pathology as the ground truth for each of them. By con-
sidering multiple disjoint tumor regions present among sub-
jects as distinct inputs, we can increase the number of training
samples.

3.2. Training setup

Training experiments are performed with both single and
multi-modal image input combinations consecutively to per-
form a comparative evaluation of their classification perfor-

mance. Adjustments for class imbalance are done by using
weighted categorical cross-entropy based on the training
distribution of labels (TN:TP balanced class weight ratios
1.95 : 0.65). For our cross-validation approach, we se-
lect Leave-one-out cross-validation (LOOCV), given the low
sample size to perform a less biased and thorough measure of
test metrics while utilizing most of the training data. Training
is performed with the Adam optimizer and learning rate 1e−5

with a batch size of 2, consistently across all iterations for
each experiment on a single P100 GPU with 16GB VRAM.
For evaluation, we compute the accuracy, recall, and preci-
sion over the entire set of test predictions (35 test samples)
across all leave-one-out iterations.

3.3. Results Analysis and Discussion

Table 1 showcases classification metrics of our model, com-
pared with the baseline experiments. Our metrics clearly
show that the combination of anatomical differences in-
grained in conventional MRI and metabolic differences cap-
tured by parametric PET Ki maps yields fairly high classifi-
cation performance (best accuracy of 0.74) compared to other
modalities. Moreover, this also shows that the dual-encoder
architecture, which encodes image modalities independently
before fusing features outperforms compared to the simulta-
neous dual-channel and single-encoder architectures across
all test metrics. Comparing image modalities independently
trained with single encoder CNNs, we also observe that Ki
alone performs better than MR and SUV with accuracies
0.71, 0.65, and 0.56, respectively. Although we do not see
drastic improvements, there is an incremental increase in the
accuracy and recall between 4-5%. Single and dual encoder’s
similar accuracies can, however, be attributed to the lower
sample size.

Prior works have explored radiomics feature extraction
from multi-modal MRI [8] and diffusion MRI [9] along with
feature selection and oversampling methods for this task but
yield limited accuracy and have not evaluated the combina-
tion of metabolic image modalities such as PET with these
structural ones. Another work follows the same input func-
tion derivation methodologies to compute average tumor Ki
and other kinetic rate constants for classification using linear
regression models [10]. However, in comparison, not only do
we utilize image features directly and develop more complex
deep learning-based CNN approach, which can scale better
with more data, but also utilize multi-modal combinations in-
volving MRI and perform evaluation against static PET SUV
maps for classification.

4. CONCLUSION

Prediction accuracy may still be limited due to the low sam-
ple size and the resulting class imbalance. Moreover, the
application of data augmentation e.g. through affine image



transformations is not possible because of the high hetero-
geneity in structure among these tumors, and applying ran-
dom transformations without a better understanding of dif-
ferentiating tumor features, could alter the associated class.
To overcome these problems and train robust image-based
classification models that could be deployed in clinical space,
future improvements could include better pre-processing and
feature extraction pipelines and machine learning techniques
developed for small-scale datasets. Despite the low sample
size while accounting for class imbalance, the current evalu-
ation metrics elucidate that parametric PET Ki which models
underlying glucose transport into the tumors performs better
than static PET SUV for the classification of progressing ver-
sus necrotic tumor volumes and hence, serves as a useful ad-
dition comprising metabolic information to structural differ-
ences incorporated within MRI. For future work, we will con-
sider incorporating deep learning-based automatic segmenta-
tion, for an end-to-end classification model.
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