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ABSTRACT

Deep learning models have been widely applied for fast MRI.
The majority of existing deep learning models, e.g., convolu-
tional neural networks, work on data with Euclidean or regu-
lar grids structures. However, high-dimensional features ex-
tracted from MR data could be encapsulated in non-Euclidean
manifolds. This disparity between the go-to assumption of
existing models and data requirements limits the flexibil-
ity to capture irregular anatomical features in MR data. In
this work, we introduce a novel Vision GNN type network
for fast MRI called Vision GNN U-Net (ViGU). More pre-
cisely, the pixel array is first embedded into patches and then
converted into a graph. Secondly, a U-shape network is de-
veloped using several graph blocks in symmetrical encoder
and decoder paths. Moreover, we show that the proposed
ViGU can also benefit from Generative Adversarial Networks
yielding to its variant ViGU-GAN. We demonstrate, through
numerical and visual experiments, that the proposed ViGU
and GAN variant outperform existing CNN and GAN-based
methods. Moreover, we show that the proposed network
readily competes with approaches based on Transformers
while requiring a fraction of the computational cost. More
importantly, the graph structure of the network reveals how
the network extracts features from MR images, providing
intuitive explainability.

Index Terms— Fast MRI, Graph Neural Network (GNN)

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is one of the most im-
portant clinical tools. It provides high-resolution and non-
invasive imaging for diagnosis and prognosis in a harmless
manner. However, MRI has an inherently slow scanning time,
since the raw data is acquired in k-space, and the minimum
scanning time is decided by the selection of temporal and
spatial resolution as well as the field of view, constraining
by the Nyquist theorem. The prolonged scanning time leads
to artefacts from the voluntary and involuntary physiological
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Fig. 1. Data Structures of Convolutional Neural Networks,
Vision Transformers and Vision GNN U-Net.

movements of the patients [1].
With the thriving development of artificial intelligence

technologies, deep learning-based models have been promptly
developed for fast MRI [2, 3]. Convolutional neural networks
(CNNs) have dominated research studies in computer vision
(CV) and medical image analysis, including MRI reconstruc-
tion [3, 4, 5], taking advantage of the inductive biases of
locality and weight sharing, and their hierarchical structures.
Recently, Transformers [6] have shown superiority for CV
tasks bolstered by their global sensitivity and long-range
dependency. Transformer-based MRI reconstruction meth-
ods [7, 8, 9, 10] have been proposed and achieved promising
results, even though their increased computational cost is still
a challenge for a wider application.

General CNNs and Transformers backbones treat image
data differently (Figure 1). The 2D convolution (Conv2D)
in CNNs applies sliding operation kernel on pixels in a reg-
ular grid, exploiting the shift-invariance and local prior. The
multi-head self-attention (MSA) in Transformers (specifically
ViT [6]), embeds different ranges of pixels into patches, then
converts them into sequences, introducing global sensitivity
and long-range dependency. However, both Conv2D and
MSA operations are usually based on the regular pixel grid in
the Euclidean space [11].

Recently, Han et al. in [11] proposed the Vision GNN
(ViG) backbone. ViG combines, combining the patch em-

ar
X

iv
:2

30
2.

10
27

3v
1 

 [
ee

ss
.I

V
] 

 2
3 

Ja
n 

20
23



bedding from ViT [6] and the idea of Graph Convolutional
Networks (GCNs) [12], treating images with more flexibil-
ity from the graph perspective. GCNs are originally designed
for tackling specific tasks for non-Euclidean data, e.g., point
cloud, social network, and biochemical graphs. Vision GNN
fills the technological gap between GNNs and image data for
computer vision tasks, and achieves state-of-the-art results in
high-level tasks like classification and detection tasks.

For MR images, the shape of anatomical structures are
irregular, leading to redundancy and inflexibility when using
the conventional grid or sequence data structure. We hypoth-
esise that treat MR images as graphs (Figure 1) can provide
a comprehensive understanding of the anatomical structures
in MR images. Specifically, the image is first converted into
patches by a shallow CNN and then regarded as nodes in
a graph. Nodes with similar features can be gathered and
connected using the K-nearest neighbours (KNN) algorithm,
where information exchange can be conducted. Different
anatomical structures can be recognised as sub-graphs of the
whole graph (for an image). The edge connections within
and between sub-graphs can be learnt to reflect the intra- and
inter-relationship of anatomical structures.

In this paper, we exploit how ViG works for a specific
low-level image restoration task, i.e., MR reconstruction,
by introducing a ViG-based U-Net, namely ViGU, and its
variants based on Generative Adversarial Network (GAN),
namely ViGU-GAN. Experiments have shown that our pro-
posed ViGU and ViGU-GAN can outperform CNN-based and
GAN-based MRI reconstruction methods and can achieve
comparable results with Transformer-based methods with
much a lower computational cost. The edge connection of
ViGU shows that the proposed ViGU can learn the intra- and
inter-relationship of different anatomical structures, provid-
ing model explainability.

2. METHODS

This section describes in detail the key parts of the proposed
ViGU network and variant.

2.1. U-Net Based Architecture

The architecture of the proposed ViGU is displayed in Fig. 2
(A). CNN-based input and output modules are applied at the
beginning and end of our ViGU converting between images
Rh×w×1 and patch vectors RN×C . We denote r and C as
the patch size and embedding channel number respectively.
We then define the number of patches as N = H × W =
h/r × w/r. Relative position embedding is applied for each
patch, which is omitted for brevity.

Three encoder blocks (EncB) and three decoder blocks
(DecB) are symmetrically arranged in the encoder and de-
coder path correspondingly, between which a bottleneck
block (BnB) is placed. The EncB, DecB and BnB are com-
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Fig. 2. (A) The network architecture of our ViGU; (B) The
structure of the ViG Blocks.

posed of one or multiple ViG Blocks, which are the basic
computation blocks for ViGU. The resolution of feature maps
is gradually decreased and increased along the encoder and
decoder paths. Information is passed, via the skip connection
and concatenation operation, from the encoder to the de-
coder paths between feature maps with the same resolution.
Residual connection is applied to convert the ViGU into a
refinement function: x̂u = HViGU(xu) + xu.

2.2. Graph-level Operation

A key step is how to transform an image as a graph G =
(V, E) composed of a set of of nodes V connected by a set of
edges E . For each feature map, we have a group of patches
X = {x1, x2, ..., xN}, which are viewed as a set of unordered
nodes V = {v1, v2, ..., vN}. For a single node vi, K edges
Ei = {e1i, e2i, ..., eKi} are acquired from itsK nearest neigh-
bours N (vi), where eji indicates the edge from node vj to
node vi.

The graph representation of feature map X can be ex-
pressed as G(X). A graph convolution operation HGConv is
expressed as:

G′ = HGConv(G(X),W )

= HUpdate(HAggregate(G(X),WAggregate),WUpdate), (1)

in which HAggregate and HUpdate refer to the Aggregate and Up-
date operations in graph convolution with learnable parame-
ters WAggregate and WUpdate [11].

2.3. ViG Block

As Figure 2 (B) shows, ViG Block adopted the structure from
ViT Block [6], which can be expressed as:

X ′ = FC(GraphConv(FC(X))) +X (2)
X ′′ = MLP(X) +X ′, (3)

where X and X ′′ are the input and output of ViG Block.
GraphConv(·) and MLP(·) denote the graph convolution and



the multi-layer perceptron. FC(·) denotes the full connected
layer, which is applied before and after the graph convolution;
with the purpose to keep the domain consistency between
node and image features and increase the feature diversity.
All the normalisation and activation functions are omitted for
brevity.

2.4. Optimisation Scheme

To train our proposed ViGU, Charbonnier loss is applied
to the image and frequency domains, which are denoted as
Limg(θ) and Lfreq(θ) respectively. They allow for constrain-
ing the ground truth MR images x and reconstructed MR im-
ages x̂u. Moreover, a l1 loss is applied for perceptual-based,
Lperc(θ), constraints using a pre-trained VGG fVGG(·). For-
mally, they read:

min
θ
Limg(θ) =

√
|| x− x̂u ||22 +ε2, (4)

min
θ
Lfreq(θ) =

√
|| Fx−F x̂u ||22 +ε2, (5)

min
θ
Lperc(θ) =|| fVGG(x)− fVGG(x̂u) ||1, (6)

where ε is empirically set to 10−9. We denote θ as the network
parameter of ViGU, and F refers to the Fourier transform.
The total loss of ViGU, LViGU(θ), using is computed as:

LViGU(θ) = αLimg(θ) + βLfreq(θ) + γLperc(θ), (7)

where α, β and γ are weighting parameters balancing the im-
portance of each term.

Our ViGU can also benefit from GAN principles yielding
to a new variant called ViGU-GAN. For the GAN-based vari-
ant, the proposed ViGU is the generator GθG parameterised
by θG (same with the θ in ViGU), and a U-Net based dis-
criminator [13], DθD , is applied for adversarial training. The
adversarial loss Ladv(θG, θD) is then given by:

min
θG

max
θD
L(θG, θD) (8)

= Ex∼pt(x)[logDθD (x)]− Exu∼pu(xu)[logDθD (x̂u)].

The total loss of ViGU-GAN, LViGU−GAN(θ), reads:

LViGU−GAN(θG, θD) = LViGU(θG) + L(θG, θD). (9)

3. EXPERIMENTAL SETTINGS AND RESULTS

This section describes in detail the set of experiments con-
ducted to validate the proposed ViGU and variant.

3.1. Implementation Details

We evaluate our approach using the Calgary-Campinas Pub-
lic Dataset [14]. It is composed of 67 cases of T1-weight
3D brains, and randomly divided into training, validation and
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Fig. 3. Visual comparison of our ViGU/ViGU-GAN vs exist-
ing techniques. Results display SSIM and PSNR results.

testing datasets following a ratio of 6:1:3. The multi-channel
data was converted into single-channel MR images using the
root sum square method. The top and bottom slices in each
case were discarded, and the rest of the 100 slices were cho-
sen for experiments.

The number of ViG Blocks and embedding channels was
set to [3, 3, 3, 1, 3, 3, 3] and [96, 192, 384, 768, 384, 192, 96]
respectively. ViGUx indicated the proposed ViGU with a
patch size of x. The initial learning rate was set to 6 × 10−4

and decays every 10,000 steps by 0.5 from the 50,000th step.
The weighting parameters in the loss function α, β and γ were
set to 15, 0.1 and 0.0025. For training the ViGU-GAN, the
parameter of the discriminator is updated every 5 steps, to
prevent training an “overly strong” discriminator and com-
promising the training of the generator.

We compared the proposed ViGU and ViGU-GAN against
MRI reconstruction methods of DAGAN [4], nPIDD-GAN [5]
and SwinMR [8] with Gaussian 1D 30% (G1D30%) and ra-
dial 10% (R10%) masks.

For quantitative results, we use Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity Index Measure (SSIM), and
Fréchet Inception Distance (FID) [15]. Multiply Accumulate
Operations (MACs) were utilised to estimate the computa-
tional complexity with an input size of 1× 256× 256.

3.2. Comparison Experiments

Table 1 and Figure 3 show the quantitative results and visu-
alised samples of the comparison experiments, respectively.
The proposed ViGU and ViGU-GAN outperformed other
CNN and GAN-based methods, and achieved comparable
results compared to the Transformer-based method SwinMR,
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Fig. 4. Visualised graphs of the proposed ViGU. (A): the original MR images; (B-C): Graph connection from EnvB2; (D-E):
Graph connection from EnvB3. A chosen node (red) and its first-order neighbours (green) are connected by edges (green line).
In (B-C), 2× 2 maximum pooling operation was applied for the neighbour nodes to reduce the computational cost.

Table 1. Quantitative results of the comparison experiments.

Method
MACs G1D30% R10%

(G) ↓ SSIM ↑ PSNR ↑ FID ↓ SSIM ↑ PSNR ↑ FID ↓
ZF - 0.883 (0.012) 27.81 (0.82) 156.38 0.706 (0.022) 23.53 (0.82) 319.45

DAGAN 33.97 0.924 (0.010) 30.41 (0.82) 56.04 0.822 (0.024) 25.95 (0.85) 132.58
nPIDD-GAN 56.44 0.943 (0.009) 31.81 (0.92) 26.15 0.864 (0.023) 27.17 (0.97) 82.86

SwinMR 800.73 0.955 (0.009) 33.05 (1.09) 21.03 0.876 (0.022) 27.86 (1.02) 59.01

ViGU4 15.07 0.954 (0.009) 32.85 (1.05) 26.06 0.868 (0.025) 27.60 (1.03) 63.43
ViGU4-GAN 15.07 0.949 (0.009) 32.41 (1.02) 22.44 0.841 (0.024) 26.86 (0.91) 87.03

ViGU2 73.02 0.955 (0.009) 32.95 (1.07) 22.73 0.872 (0.023) 27.72 (1.02) 58.61
ViGU2-GAN 73.02 0.954 (0.009) 32.88 (1.07) 16.62 0.873 (0.022) 27.75 (1.00) 50.19

with only 1.9% and 9.1% MACs depending on the patch size.
For the patch size setting, ViGU and ViGU-GAN with

small patch sizes (larger patch resolution) tend to have bet-
ter reconstructed results, whereas at the cost of larger MACs.

For the GAN-based variant ViGU-GAN, the utilisation of
adversarial training mainly improves the perceptual experi-
ments and reflects a better FID score. However, the proposed
ViGU-GAN leads to an unstable training process (abnormal
pool performance of ViGU4-GAN using R10% mask in Ta-
ble 1), prolonged convergence time and enlarged GPU mem-
ory requirements. Further research and optimisation of GAN-
based ViGU should be conducted.

3.3. Visualised Graph & Explainability

Figure 4 shows the visualised graph connection of the pro-
posed ViGU, including reference MR images (A), and graph
connection from EnvB2 (B-C) and EnvB3 (D-E). For better
visualisation, we only display a chosen node (red) and its first-
order neighbours (green) connected by an edge (green line).
In Figure 4 (B-C), 2 × 2 maximum pooling operation was
applied for the neighbour nodes to reduce the computational
cost, which led that the neighbour node area being bigger than
the chosen node area.

The graph connection of the proposed ViGU model can

provide an explainability of how the network recognises and
extracts the feature of MR images. Figures 4 (B) and (D)
show that a node of brain tissue tends to have more neighbour
nodes containing brain tissue, which proves that the network
can be trained to gather the node with similar features and
create the connection between them. However, since there is
no tag information added to the network, it is hard for the pro-
posed ViGU to learn the accurate border of different without
any supervision. Different anatomical structures with simi-
lar textures can also mislead the network. A node at the edge
(border of the anatomical structures, not the edge in the graph)
tends to have a neighbour node that is also at the edge, regard-
less of the anatomical structures (Figure 4 (C) and (E)).

4. DISCUSSION

This work has exploited how ViG works for MRI reconstruc-
tion, treating the MR images as graphs instead of conven-
tional grid or sequence structure data. Using graph-based op-
eration our proposed network can extract and process the fea-
ture more flexibly and efficiently since the irregular anatomi-
cal structures leads to redundancy and inflexibility using reg-
ular grid-based or sequence-based operations like CNN and
transformers. In addition, the proposed ViGU can learn a
comprehensive understanding of the feature of MR images
in latent non-Euclidean space, gathering and linking different
parts with similar features globally.

In conclusion, we can envisage that our proposed ViGU
and ViGU-GAN to be served as a UNet-based backbone for
the graph-based MRI reconstruction, super-resolution and
segmentation. For future work, segmentation information
would be incorporated into the ViGU, guiding the network to
build clinically-meaningful graphs, and improving the recon-
struction performance while providing better explainability.
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