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ABSTRACT 

 

Coronary CT angiography (CCTA) scans are widely used 

for diagnosis of coronary artery diseases. An accurate and 

automatic vessel labeling algorithm for CCTA analysis can 

significantly improve the diagnostic efficiency and reduce 

the clinicians’ manual efforts. In this paper, we propose a 

simple vessel labeling method based on the Point 

Transformer [7], which only needs the coronary artery 

segmentation. Specifically, firstly, the coronary 

segmentation is transformed to point cloud. Then, these 

points are fed into the hierarchical transformer blocks to 

obtain the multi-level features, including local and global 

features. Finally, the network output the semantic 

classification points and map them to centerline labeling. 

This method is only based on the structure of coronary 

segmentation and need not other features, so it is easy to 

generalize to other vessel labeling tasks, e.g., head and neck 

vessel labeling. To evaluate the performance of our 

proposed method, CCTA scans of 53 subjects are collected 

in our experiment. The experimental results demonstrate the 

efficacy of this approach. 

 

Index Terms— Coronary vessels, Anatomical labeling, 

Point Transformer, CCTA 

 

1. INTRODUCTION 

 

Cardiovascular diseases are the leading cause of death 

globally, taking an estimated 17.9 million lives each year [1]. 

CCTA as a front-line imaging for diagnosis of coronary 

artery diseases has been widely used by radiologists. In 

clinic standard workflow, three steps are usually performed: 

1) segmenting the coronary tree by semi-auto software; 2) 

labeling all vessels manually; 3) reconstructing the CPR 

(curved planar reformation) images and diagnosing the 

stenosis and plaque type of the main coronary arteries. As 

coronary tree structure is complicated (see Fig. 1), vessels 

labeling is a challenging task in diagnosis workflow. 

Therefore, an automatic and accurate coronary artery 

labeling technique can greatly improve the diagnostic 

efficiency and reduce clinicians’ manual efforts. 

Recently, many related studies have been presented to 

tackle the vessel labeling challenge. To the best of our 

knowledge, the published methods can be roughly divided 

into two categories: matching-based method and learning-

based method. 

The matching-based methods were developed to match 

the common structure of coronary tree. Yang, et al. [2] 

proposed a two-step matching algorithm based on the mean 

template of a statistical coronary tree model. Zhang, et al. [3] 

combined the geometry structure of the coronary tree and 

the heart to label the vessels. Although there are some 

expert consensus guidelines for labeling coronary vessels, it 

is difficult to find a standard matching template to handle 

some complex cases as the coronary tree of patients are 

complicated and varied. 

 

 

Fig. 1. An example of coronary CTA image. (a) A coronal 

slice of CTA; (b) annotated segments: LM、RCA、LAD、

LCX、OM、D1、D2、RPLB、RPDA. 

The learning-based methods were based on the deep 

learning or machine learning method to predict vessel 

labeling. Specifically, Wu, et al. [4] developed a bi-

directional tree structure LSTM algorithm to predict vessel 

labeling. Yang, et al. [5] designed a CPR-GCN algorithm. 

Each branch was abstracted as the higher-level features. 

Branch features were extracted along centerlines, and then 

were fed to the bi-directional LSTM network. In recent 

years, point cloud-based method has been becoming more 

and more popular. Li et al. [6] classified each voxel in the 

coronary segmentation. In this study, they combined the 

points cloud from the coronary tree and cardiac mask 

surfaces so as to provide more local and global information. 

Yao, et al. [12] labeled head and neck vessels based on point 

cloud network [8] and graph convolutional network [14]. 

However, these point cloud-based approaches were 

insufficient to employ the local relationship with the 

neighbor points, which is useful to distinguish the 

bifurcation branches labeling or lumen diameter. 



In this paper, we propose a simple and accurate vessel 

labeling method based on the Point Transformer [7] which 

only need the coronary segmentation as input. In clinic, 

radiologists can use the coronary tree alone to identify all 

the vessel labeling, so we imitate radiologist behavior by 

using the Point Transformer to extract not only the global 

features such as the coronary geometry structure but also the 

local features which represent the branch bifurcation or 

lumen diameter. 

Our contributions of the paper can be summarized as 

follows: 

(1) we propose a novel architecture inspired by point-

transformer [7]. As far as we know, it is the first 

application in coronary vessel labeling based on the Point 

Transformer method. 

(2) the advantage of Point Transformer method to 

utilize not only the local features between the neighbor 

points [10], but also the global feature such as coronary 

geometry structure. 
(3) our method achieved an outstanding performance on 

a dataset consisting of 53 CCTA images. 

 

2. METHOD 

 

Our method consists of two stages: 1) As shown in Fig. 2, 

we firstly transform the foreground voxel-level 

segmentation to point cloud and then feed it into the 

hierarchical Point Transformer blocks to get the semantic 

classification points; 2) we then map the labeling from 

voxel-level to centerline-level. 

 

2.1. Voxel-level Labeling by Point Transformer 

 

A vessel point cloud can be transformed from the binary 

coronary vessel segmentation S which is annotated by 

radiologists. Note that only the foreground points of the S 

are extracted with M points. We denote the point cloud P as 

P = [p1, p2, ..., pN] with N points sampled in M. The point is 

set as pi = (x, y, z, x’, y’, z’) where (x, y, z) is the point 

position and the (x’, y’, z’) is the point position after 

normalization, which avoids different origin of CCTA scans. 

Therefore, the constructed point cloud can be denoted as a 

matrix of size 6 × N. 

As shown in Fig. 2, the network is composed of 

encoder and decoder parts like U-Net [9], which is inspired 

by the Point Transformer [7] and Local relation network 

[10]. First, in the encoder part, we input the sampled point 

cloud to 2*(Conv+BN+ReLU) with convolution kernel size 

1 and output channel 32. Then we get the feature maps with 

size 32 × N and feed them into Transformer part which 

contains several the cascaded Point Transformer block 

modules and TransitionDown modules. Similarly, the 

decoder consists of several TransitionUp modules and the 

cascaded Point Transformer block modules. We use the 

structures and parameters as same as the Point Transformer 

[7] for the Point Transformer block, TransitionDown and T- 

 
Fig. 2. Framework of the vessel labeling transformer. Where 

N is the number of input points, [32, 64, 128, 256, 512] is 

the number of channels in each stage. 

 

ransitionUp modules. Finally, we use a convolution (with 

kernel size 1 and output channel K) to get the score map 

with size K×N and apply softmax+argmax to output the 

final classification. Besides, to keep the representation of 

small vessels, we use the skip connection between the 

encoder and decoder parts to integrate the shallow and the 

deep features as shown in Fig. 2. The Point Transformer 

block consists of a transformer layer and 2 linear layers. In 

order to precisely label the bifurcation of coronary tree, we 

use the transformer layer to learn the anatomical spatial 

relationship between the local point and its neighbor points 

[10]. The next layer feature of the point can be calculated by 

the set of points in the local neighborhood based on the self-

attention network: 

 

𝑦𝑖 = ∑ ρ(γ(𝑘(𝑥𝑖) − 𝑞(𝑥𝑗) + δ)

𝑥𝑗∈𝑥

)⨀(𝜈(𝑥𝑗) + δ )            (1) 

where 𝑥  is the feature map of neighbor 𝑖 , 𝜌  is a softmax 

operation. 𝑥𝑖 is input feature, 𝑦𝑖  is output feature and 𝛾,  𝑘, 𝑞, 

𝜈  is a linear transformation, δ  is the learnable relative 

encoding of position, and the positional relationship 

between 𝑖 and 𝑗. Specifically, we calculate the attention of 

the nearest h (set as 16 empirically) neighbors and sum these 

attention values. The local and global features can be 

learned in the shallow and deep layers, respectively. 

Benefiting from the point cloud construction, the transform- 



 

Table 1. Comparison of previous work with ours in branch-level centerline labeling. 

*(p/m/d) denote coronary artery proximal segment, middle segment and distal segment. 

 

er layer is suitable to get not only the anatomical geometry 

of the coronary tree, but also the local information of the 

bifurcations or lumen diameter. 

 

 
 

Fig. 3. Centerline-level labeling. 
 

2.2. Mapping voxel-level to centerline-level labeling 

 

As voxel-level labeling may come with noises or 

corruptions, we map the voxel-level labeling to centerline-

level labeling, which is useful to develop downstream 

processing, such as stenosis degree and plaque type analysis. 

We generate the centerline-level labeling based on the 

highest overlap rate between the voxel-level segmentation 

and the dilated centerline. Specifically, we first dilated the 

centerline which is extracted by radiologists to tubular voxel 

mask with radius 1mm. Then we compute each centerline’s 

overlap rate which is defined as: 

 

 𝑂𝑛 = argmax
𝑚

𝐿𝑚  ∩  𝑆𝑛

𝐿𝑚

                    (2) 

 

where 𝐿𝑚  is the unlabeled dilated centerline 𝑚 , 𝑆𝑛  is the 

voxel-level labeling segmentation of category 𝑛, and  𝑂𝑛 is 

the overlap rate of centerline 𝑚 . Finally, we label each 

centerline based on its highest overlap rate as presented in 

Fig. 3. 

 
3. EXPERIMENTS AND RESULTS 

 

3.1. Data and Implementation 

 

We collected 373 CCTA scan with or without Nitroglycerin, 

 

 

which were approved and consented by the ethics committee. 

The mean spacing of these CCTA scans was 0.35 * 0.35 * 

0.60 mm3. In addition, these scans were annotated by two 

experienced physicians. The ground truth consisted of the 

labeled centerlines, the coronary tree segmentation and its 

corresponding voxel-level label. Labeling of the centerline 

was including LM, LAD, LCX, RCA, D, OM, PLB and 

PDA. We used 320 scans for training and 53 for testing. In 

the training phase, we did the online data augmentation such 

as rotation and translation. We used a RTX 3090 GPU with 

4 batch size and implemented the algorithm with PyTorch 

[13] framework. Our model was trained with 120 epochs, 

using SGD optimizer with learning rate 0.001 and decay 10-

4. We sampled N=12288 points and fed them into the 

network. Our network had 5 levels and the downsampling 

rates were 2, 2, 4, 4 respectively. 

 

Table 2. Comparison between PointNet and our method in 

voxel-level coronary labeling. 

Method 
Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

PointNet [8] 73.8 71.7 69.9 

Ours 88.3 87.9 87.1 

 
3.2. Quantitative Result 

 
In Table 1, we compared our results with 4 other existing 

methods and the evaluation was based on the branch-level 

centerline. The metric is precision of the branch-level 

centerline labeling as proposed in [11]. As shown in Table 1, 

precision of the main 4 segments (LM, LAD, LCX and RCA) 

were all >94%, and precision of all other segments are 

all >85%. OM segment has the lowest precision 86.5%, due 

to that fact that in some patients OM2 vessels are longer and 

thicker than distal LCX and this confuses the algorithm.  

As coronary segmentation labeling is a significant step, 

we compared our method with PointNet that is a popular 

point-cloud method. As shown in Table 2, the performance 

of our method based on the Point Transformer is better than 

PointNet. 

Method (%) Yang [2] Cao [11] Wu [4] Li [6] Ours 

LM 99.3 100.0 99.1 95.7 100.0 

LAD(p/m/d) 93.4/86.8/93.4 93.6/85.8/95.4 96.9 99.1 99.03 

LCX(p/m/d) 84.6/80.3 87.3/83.2 93.5 95.1 94.2 

RCA(p/m/d) 97.8/94.1/92.7 85.1/82.3/92.5 96.0 97.6 98.2 

D(1/2) 100/86.8 93.5/82.2 91.0 86.5 93.4 

OM(1/2) 86.1/78.8 90.4/79.7 85.2 82.9 86.5 

PLB(R/L) 88.3/ - 89.8/85.7 82.7/65.9 95.5 98.6/- 

PDA(R/L) 94.1 96.6 79.8 89.6 97.6/- 



3.3. Ablation Experiments 

 

In the stage of converting sampling points to point cloud, 

the number of sampled points would affect the voxel-level 

labeling results. Therefore, we compared the mean accuracy 

of voxel classification for different point numbers in the 

testing data. As shown in Table 3, the accuracy increases 

from 92.64% (4096 points) to 93.12% (12288 points), then 

decreases to 93.04% (16384 points). Fig. 4 shows example 

results from different settings of sampling points. In Fig. 4(c) 

the result with 8192 points loses R-PLB branch information, 

and in Fig.4(e) result with 16384 points yields wrong 

classifications. Therefore, we used 12288 sampling points in 

our Point Transformer network. 

Table 3. Result with different sampling point number. 

Point 

Number 
4096 8192 12288 16384 

Accuracy 

(%) 
92.64 92.89 93.12 93.04 

 

 
 

Fig. 4. Results with different setting of sampling points. (a) 

The original coronary segmentation; (b) The corresponding 

voxel-level labeling; (c) (d) (e) Results with 8192, 12288 

and 16384 sampling points respectively. 

 

4. CONCLUSION 

 

In this paper, we present a novel vessel labeling method 

based on the Point Transformer. Our method only uses the 

segmentation of coronary tree to predict the vessels labeling, 

which is similar to radiologist behavior. As this method only 

based on the geometry structure of coronary tree, it is easy 

to generalize to other vessel labeling tasks. This method 

incorporates both the coronary tree structure and spatial 

information of all major and minor vessels. To evaluate the 

performance of our proposed method, 53 CCTA scans are 

used in our experiment. The experimental results 

demonstrate the efficacy of the present approach. In future 

work, we will combine our centerline labeling method based 

on transformer with automatic extraction of coronary 

segmentation and centerline, which will achieve full 

automation in inference process. 
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