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ABSTRACT

During orthopaedic surgery, the inserting of metallic implants
or screws are often performed under mobile C-arm systems.
Due to the high attenuation of metals, severe metal artifacts
occur in 3D reconstructions, which degrade the image quality
greatly. To reduce the artifacts, many metal artifact reduc-
tion algorithms have been developed and metal inpainting in
projection domain is an essential step. In this work, a score-
based generative model is trained on simulated knee projec-
tions and the inpainted image is obtained by removing the
noise in conditional resampling process. The result implies
that the inpainted images by score-based generative model
have more detailed information and achieve the lowest mean
absolute error and the highest peak-signal-to-noise-ratio com-
pared with interpolation and CNN based method. Besides,
the score-based model can also recover projections with big
circlar and rectangular masks, showing its generalization in
inpainting task.

Index Terms— Knee projection inpainting, score-based
generative model, unsupervised learning

1. INTRODUCTION

The mobile C-arm systems are frequently used in interven-
tional surgery currently, which supports the accurate place-
ment of metallic impalnts or screws. However, some phys-
ical effects like photon starvation and beam hardening occur
when x-rays pass through metals, resulting the bright and dark
streak artifacts, which reduce the quality of the reconstructed
image [1]. The conventional metal artifacts reduction (MAR)
algorithms tackle the problem by sinogram completion [2, 3]
and iterative reconstruction [4, 5]. Deep learning based meth-
ods are also applied in MAR [6, 7, 8, 9, 10] and the models are
trained on paired data in the supervised way. For the C-arm
system, since only the central slice in cone-beam geometry
can be represented as sinogram and other artifacts like trun-
cation artifacts also exist in reconstructions, image inpainting
in projection domain is the feasible way for MAR.

Score-based generative models are applied in computer
vision recently [11, 12] and with the mechanism of stepwise

noise perturbation and removal, they have shown superior-
ity over generative adversarial networks [13]. Such models
are successfully applied in image inpainting task [11, 14]. In
Ref. [14], a score-based generative model called RePaint is
trained and it can generate restored image with high fidelity
under different masks. Besides, score-based generative mod-
els are used in the field of medical imaging processing, such
as CT and MRI reconstruction [15, 16]. Inspired by the re-
search above, a score-based model is trained on knee projec-
tions and this is the first study to apply such model in metal
inpainting in CBCT projections.

2. MATERIALS AND METHOD

2.1. Score-based generative models

Score-based generative models through stochastic differential
equation (SDE) consist of three steps: perturbation process,
reverse process and resampling. In the perturbation process,
the original image x0 is perturbed with a stochastic process to
construct a continuous diffusion process xt, where t ∈ [0, 1].
The perturbation process by SDE has the following form

dxt = f(xt, t)dt+ g(t)dwt, t ∈ [0, 1] , (1)

where f(x, t) is the drift coefficient, g(t) is the diffusion co-
efficient and wt denotes a standard Wiener process. Depend-
ing on the change of variance during the perturbation process,
SDEs are clarified into variance exploding (VE), variance pre-
serving (VP) and sub VP SDE. In this paper, VE SDE is used,
which has the form of

f = 0, g =

√
d[σ2(t)]

dt
, (2)

σ(t) = σ(0)(
σ(1)

σ(0)
)t, t ∈ [0, 1] , (3)

where σ(t) > 0 is increasing with the increment of t. Then
the diffusion process xt at time point t can be obtained by

xt = x0 + [σ2(t)− σ2(0)]I, (4)
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Fig. 1. The illustration of the resampling process for projection inpainting.

where I is a normal distribution. The reverse process follows
the equation of reverse-time SDE

dxt = [f(xt, t)dt−g(t)2Oxt
log pt(xt)]+g(t)dw̄t, t ∈ [0, 1] ,

(5)
where Oxt log pt(xt) is the score function of pt(xt) and w̄t

denotes the reverse Wiener process. Following the reverse
process, the perturbed image will be restored gradually. In
the case of VE SDE which is used in this paper, the Eq. 6 can
be rewritten as

dxt = −
d[σ2(t)]

dt
Oxt

log pt(xt)+
d[σ2(t)]

dt
dw̄t, t ∈ [0, 1] .

(6)
Then xt in the reverse process has the form of

xt = xt+∆t − dxt+∆t. (7)

For projection inpainting, the missing pixels in the metal
area should be restored and the pixels in the background serve
as conditional information in the resampling process. The
pipeline for projection inpainting is shown in Fig. 1. We de-
note the projection to be inpainted as y and the binary metal
mask with ones in the background as m. x1

t is obtained by
forward SDE and has the form of

x1
t = y + [σ2(t)− σ2(0)]I, (8)

and it provides the background information. x2
t follows re-

verse SDE and is written as

x2
t = xt+1 − dxt+1, (9)

and it predicts the inpainted pixels. Then the restored projec-
tion xt at time point t can be obtained as

xt = x1
t �m+ x2

t � (1−m), (10)

where � means pixelwise multiplication.

2.2. Data generation

The knee CT volumes are selected from the whole body CT
volumes from the SICAS medical image repository [17]. In
total, there are 50 volumes with single leg for each of them
and all volumes are rescaled to a voxel side length of 0.5 mm.
All the volumes are forward projected to generate projections
by CONRAD [18]. The parameters for defining the C-arm
trajectory are listed in Tab. 1. 3000 projections are generated
and 2700 of them are used for model training and 300 pro-
jections are used for test. To generate metal masks, some im-
plants like K-wires, screws, plates with holes are drawn using
the software AutoCAD. Then these implants are randomly se-
lected and placed in different 3D volumes. The metal masks
are obtained by forward projecting these multi-metal volumes
under the same parameters shown in Tab. 1.

Table 1. Parameters for the mobile C-arm system.
Parameter Value

Scan angular range 360◦

Incremental Angular step 6◦

Source-to-detector distance 1164 mm

Source-to-isocentor distance 622 mm

Detector Size 256× 256

Detector pixel size 1.16 mm× 1.16 mm

2.3. Network Structures

Since the mask pyramid network (MPN) from Ref. [7] has
good performance in projection inpainting, its results are used
for comparison. The projection to be inpainted and the corre-
sponding metal mask are the inputs for MPN, both of which



Fig. 2. The network structure for the score-based generative
model.

have the size of 256 × 256. According to Ref. [11], the net-
work structure for the score-based generative model has high
flexibility. As shown in Fig. 2, the structure of MPN without
downsampling layers from metal mask serves as the backbone
for the score-based generative model in this work. Besides,
the Gaussian random features [19] are generated at time step
t and these features are summed up with the corresponding
blocks from the network, which are labeled in red in Fig. 2.
For the defined VE SDE in this work, the minimum and max-
imum variances are 0.01 and 128, respectively. During the re-
sampling process, the image of gaussion noise with variance
of σ(1) is the initializer and the inpainted projection is gen-
erated by predictor-corrector (PC) resampler for 1000 steps.
All experiments are conducted on Nvidia A100 GPU.

2.4. Hyperparameter optimization

Some hyperparameters in the sampling process are consid-
ered, including the signal-to-noise ratio (SNR) η for correc-
tor, and the number of discretization steps N for reverse-
time SDE. SNR determines the step size ε in Langevin dy-
namics, and N corresponds to the noise scales. The quan-
titative results for 300 projections with metal masks under
ancestral sampling predictor and Langevin corrector are
listed in Tab. 2. It demonstrates that η = 0.4 (with star re-
marked) can achieve better performance than others. Time
consumption is an important issue in clinical applications.
According to Tab. 2, N is proportional to time usage, and
it has limited performance improvement from 1000 to 2000
steps. Therefore, the parameters in our experiments are cho-
sen as η = 0.4, N=1000.

3. RESULTS AND DISCUSSION

In this work, result evaluation is compared among inpainted
projections generated by interpolation, MPN and the score-
based generative model. Three representative inpainted pro-
jections with different metal masks are shown in Fig. 3. From
Fig. 3 (a1) to (c1), more pixels are missing. The interpolation
method relies on the intensity of existing pixels outside the
metal area. Therefore, the inpainted projections by interpo-
lation method have no semantic connections to the bones or

Label Input Interpolation MPN Ours

(a0) (a1) (a2) (a3) (a4)

(b0) (b1) (b2) (b3) (b4)

(c0) (c1) (c2) (c3) (c4)

Fig. 3. The inpainting results under different metal masks.

soft tissue, as shown in Fig. 3 (a2)-(c2). For the perspective
of semantic performance, the inpainted projections by MPN
can restore more details in the metal area. However, when
the size of metal area increases, the prediction gets blurred,
which can be observed inside the red boxes in Fig. 3 (c3). In
the same region in Fig. 3(c4), the inpainted projections by
the score-based generative model have more detailed infor-
mation. The quantitative evaluation results for all 300 projec-
tions with metal masks are shown in Tab. 3. The score-based
generative model has the lowest mean absolute error (MAE)
of 0.015 in metal regions and the highest mean peak-signal-
to-noise-ratio (PSNR) of 43.00.

Except for the metal masks, some circular and rectangu-
lar masks are also generated to test the generalization of these
methods. As shown in Fig. 4 (a1)-(c1), a circle, horizontal and
vertical rectangles mask out the leg projections. The results
by interpolation method have more discontinuity. By giving
blurring predictions with distinct boundaries, MPN is not able
to recover the missing pixels properly in all three cases. Al-
though the score-based generative model also has degraded
performance with blurry area in Fig. 4(a4) and incorrect bone
in Fig. 4(c4), this model gives the best predictions among all
methods. The quantitative results for 300 projections with
circular or rectangular masks are listed in Tab. 3. The diam-
eter of circles during test vary from 20 pixels to 60 pixels.
The width of horizontal or vertical rectangle has the range of
20−50 pixels. In the case of rectangular masks, MPN has
the largest MAE as well as the lowest PSNR. According to
Tab. 3, the score-based generative model has the best results
in all cases.

MPN is trained by supervised learning, which needs the
paired data of inputs and labels. This is the reason that it fails



Table 2. Ablation study on SNR and sampling steps under same PC sampler.
N=500 N=1000 N=2000

Metric MAE PSNR MAE PSNR MAE PSNR
η=0.20 0.0197 40.85 0.0172 41.99 0.0154 42.74
η=0.40* 0.0161 42.39 0.0148 43.00 0.0146 43.07
η=0.60 0.0172 41.94 0.0178 41.67 0.0201 40.82
time per slice(s) 2.50 4.38 9.79

Table 3. Quantitative results comparison.
Interpolation MPN Score-based model

Metric MAE PSNR MAE PSNR MAE PSNR
Metal mask 0.031 35.92 0.025 39.22 0.015 43.00
Circle 0.070 31.50 0.039 37.89 0.026 41.31
Horizontal rectangle 0.014 41.11 0.019 40.10 0.009 45.51
Vertical rectangle 0.064 32.73 0.072 30.33 0.035 37.44

Label Input Interpolation MPN Ours

(a0) (a1) (a2) (a3) (a4)

(b0) (b1) (b2) (b3) (b4)

(b0) (c1) (c2) (c3) (c4)

Fig. 4. The inpainting results under circular and rectangular
masks.

to give the correct inpainting predictions when the projec-
tions are masked out by masks which differ a lot to the train-
ing data. The score-based generative model learns the score
function at different time point and it tackles the inpainting
task in an unsupervised way. The background of projections
guide the model to predict the missing pixels step by step in
the resampling process. The metal masks in clinic have more
combinations and the training data can never guarantee such
diversity. Therefore, considering the robustness and general-
ization ability of these methods, the score-based generative
model is more reliable for clinical use. However, the score-

based model takes longer time because of thousands steps of
resampling. The future work needs to solve this problem and
projections with higher resolution should be used for clinical
use.

4. CONCLUSION

This work applies the score-based generative model in metal
inpainting for knee CBCT projections. By predicting more
detailed information under metal masks, the proposed unsu-
pervised method has the best performance, which is supposed
to benefit MAR algorithms. What is more, the score-based
generative model is able to restore the knee projections when
faced with bigger circular and rectangular masks, showing its
robustness in CBCT projection inpainting task.
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