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ABSTRACT

Multi-contrast magnetic resonance imaging (MRI)-based au-
tomatic auxiliary glioma diagnosis plays an important role in
the clinic. Contrast-enhanced MRI sequences (e.g., contrast-
enhanced T1-weighted imaging) were utilized in most of the
existing relevant studies, in which remarkable diagnosis re-
sults have been reported. Nevertheless, acquiring contrast-
enhanced MRI data is sometimes not feasible due to the pa-
tient’s physiological limitations. Furthermore, it is more time-
consuming and costly to collect contrast-enhanced MRI data
in the clinic. In this paper, we propose an adaptive Prompt-
Net to address these issues. Specifically, a PromptNet for
glioma grading utilizing only non-enhanced MRI data has
been constructed. PromptNet receives constraints from fea-
tures of contrast-enhanced MR data during training through
a designed prompt loss. To further boost the performance,
an adaptive strategy is designed to dynamically weight the
prompt loss in a sample-based manner. As a result, Prompt-
Net is capable of dealing with more difficult samples. The
effectiveness of our method is evaluated on a widely-used
BraTS2020 dataset, and competitive glioma grading perfor-
mance on NE-MRI data is achieved.

Index Terms— Adaptive strategy, Glioma Grading, MRI

1. INTRODUCTION

Gliomas are the most common type of primary neuroepithe-
lial malignant tumors with high incidence and mortality rates,
accounting for nearly 30% of all primary brain tumors [1].
According to their histological appearance, gliomas can be di-
vided into high-grade gliomas (HGG, WHO grade III and IV)

and low-grade gliomas (LGG, WHO grade I and II). In clin-
ical practices, the treatment and prognosis of LGG patients
and HGG patients differ substantially [2} |3]. Hence, accurate
gliomas diagnosis is critical for the development of correct
therapeutic planning.

Multi-contrast magnetic resonance imaging (MRI), in-
cluding non-enhanced MRI and contrast-enhance MRI, is
a powerful imaging method that contributes significantly to
auxiliary glioma diagnosis in the clinic [4]]. Visually inspect-
ing the acquired MR images and distinguishing the grades of
gliomas are time-consuming, which can only be performed
by experienced physicians. Furthermore, with the widening
employment of MRI, it becomes increasingly infeasible to
manually analyze the rapidly accumulated volume of MRI
data. Therefore, there is an urgent need to develop auto-
matic MRI-based auxiliary diagnosis algorithms to assist
physicians in performing accurate and timely glioma grading
preoperatively.

In the past decade, deep learning, especially convolu-
tional neural networks (CNNs), has revolutionized the med-
ical imaging field [5, |6]. Existing studies have validated
the capability of deep learning to conduct accurate glioma
auxiliary diagnosis when contrast-enhanced MRI (CE-MRI)
data are provided [7, 8, 9]. Nevertheless, it is more difficult
to acquire CE-MRI data than NE-MRI data. Some patients
may feel uncomfortable or even be allergic to the contrast
agents. There are reports indicating that the most frequently
utilized contrast agents of MRI, gadolinium-based contrast
agents, may be linked to the occurrence of diseases, such
as nephrogenic systemic fibrosis [10]. Besides, the process
of acquiring CE-MRI data is relatively longer, and the cost
is also higher. To this end, some studies have developed
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Fig. 1: Schematic illustration of the proposed adaptive PromptNet.

algorithms to achieve MRI synthesis [[11]] and lesion segmen-
tation [[12] without CE-MRI data. However, to the best of our
knowledge, MRI-based automatic auxiliary glioma diagnosis
while CE-MRI data are missing is rarely reported.

In this paper, we proposed an adaptive PromptNet for
glioma grading, which requires only NE-MRI data for test-
ing. The training of PromptNet is accomplished in two
stages. In the first stage, a template model is trained on en-
hanced MRI data to extract enhanced features. In the second
stage, our proposed PromptNet on non-enhanced MRI (NE-
MRI) data is optimized with supervisory signals from both
the glioma grading and the template model. PromptNet em-
ploys a multi-branch encoder to extract both non-enhanced
features and complementary features. Through minimizing
a designed prompt loss between the enhanced and comple-
mentary features, prompts from the template model can be
transferred to PromptNet to help extract more useful infor-
mation in the complementary feature extraction branch. To
facilitate the optimization of PromptNet, a specific strategy is
designed to adaptively update the weights of the prompt loss
for each sample in each backward iteration. To summarize,
the contributions of this work are three-fold:

1. To avoid the reliance of current deep learning models on

the CE-MRI data for glioma grading, a PromptNet is pro-
posed along with a special designed loss. The model is
designed to explore the correlations between different MR
sequences and thus extracts inherent features of gliomas
for accurate classifications even with only NE-MRI data
during testing.

2. To balance the contributions from different samples, an
adaptive weight updating strategy is designed for the
prompt loss of each sample which can pay more attention
to difficult samples during training.

3. The effectiveness of the proposed PromptNet is evaluated
on a public dataset, BraTS2020, and PromptNet generates
better glioma grading results than the three state-of-the-art
methods when testing on NE-MRI data.

2. METHOD

2.1. Problem Statement

In this paper, we aim to construct a deep learning model for
automatic glioma grading on NE-MRI data. Let (z,y) be a
pair of sample of NE-MRI data, where z € X refers to the
image and y € Y is the corresponding glioma grade label. Y



represents the input data space, and Y = [0, 1]¥ is the label
space (k is the number of classes). The automatic diagnosis
model f : X — R, maps x to the probabilistic label y'. As
shown in Fig. 1, the model f can be divided into two phases.
In the first phase, the encoder fz : X — R% maps the input =
to the latent feature vector z := fg(x). In the second phase,
the classifier, which consists of several full connected layers
frc : R* — R, maps z to the probabilistic label 3/’. A loss
function [ : f(X) x Y — R, is proposed to measure the
glioma grading error according to the provided label y. The
objective function can be defined as:

fr(@) = argmin I(f(x),y) + AR(f) (1

where R presents the regularization item, and A is a constant
to balance the contributions of the two parts.

2.2. PromptNet

PromptNet is proposed to address the difficulties of CE-MRI
data acquisition. Particularly, PromptNet is trained with the
help of CE-MRI data, but during testing, it requires only
NE-MRI data. The optimization of PromptNet involves
two stages (Fig. 1). In the first stage, a template model
is trained using CE-MRI data to extract contract-enhanced
features zogr. In the second stage, these enhanced feature
are employed as prompts to help guide the feature extrac-
tion of PromptNet. To prevent the overwhelming effects of
enhanced features, a multi-branch encoder to extract non-
enhanced features and extra complementary features zop
is constructed for PromptNet. The enhanced features influ-
ence only the complementary feature extraction procedure
explicitly through a prompt 108S I prompt:

lprompt = |ZC’EF - ZC’F| (2)

Then, non-enhanced features and complementary features
are fused and inputted to a classifier to obtain the auxiliary
glioma diagnosis results. The total objective function for the
training of PromptNet can be defined as:

f*(x) = argmin l(f(l'), y) + lprompt 3)

2.3. Adaptive Prompt Loss Weight Updating Strategy

Since MRI data of different patients are heterogeneous, the
potential of each sample to serve as the prompt is different.
To this end, a sample-level performance gap-based adaptive
prompt loss weight updating strategy is designed for Prompt-
Net. Here, we define the template model as f7, which maps
the CE-MRI data zcp to the corresponding probabilistic
label. The CE-MRI data and NE-MRI data from the same
glioma patient sample are fed to the template model and
PromptNet, respectively. The PromptNet adjusts the weight
of the prompt loss dynamically during training according to
the discrepancy between the obtained probabilistic labels. In

this way, more attention can be paid to the difficult samples.
We adopt the L1 norm to calculate the performance gap:

Wadaptive = ‘fT(xCE) - f(fE)| (4)

The objective function of the adaptive PromptNet is defined
as follows:

f*(l‘) = argmin l(f(x); y) + Wadaptive X lprompt- (5

3. EXPERIMENT

3.1. Dataset

The Brain Tumor Segmentation Challenge (BraTS) 2020
dataset [[13] is utilized in this study to evaluate the automatic
auxiliary glioma diagnosis performance of different methods.
The dataset contains 369 glioma patient samples with two
glioma grades (LGG and HGG). We randomly divided these
samples into a training dataset and a test dataset with a ratio
of 4:1. MRI data from four sequences are provided for each
sample, including T1, TICE, T2, and FLAIR. All the brain
MRI data have been properly pre-processed by the challenge
organizers [[13]].

3.2. Implementation Details

The structure of the proposed adaptive PromptNet is shown
in Fig. 1. Two major components are involved, including a
multi-branch encoder and a classifier. The former includes
a stem cell and three 3D residual stages, extracting latent
feature vectors from 3D brain MRI data. In addition, we
adopt group normalization and GELU activation to adapt to
the small batch size. The classifier consists of three full con-
nected layers.

We train all of our models using Adam optimizer for 100
epochs. The initial learning rate is set tole-5, and it decays by
a factor of 10 at the 30th and 60th epochs. The batch size is
4. All models are trained on a NVIDIA TITAN V GPU with
12GB memory. All work related to deep learning is based
on the open-source platform TensorFlow v2.7.0. Each ex-
periment is repeated five times. The area under the receiver
operating characteristic curve (AUC) is utilized as the main
evaluation metric. Other metrics, including accuracy, preci-
sion, sensitivity, and the area under the precision-recall curve
(PRC), are also calculated.

3.3. Results

We evaluate the performance of the proposed adaptive Prompt-
Net utilizing the three NE-MRI sequences (T1, T2, and
FLAIR). Our method is compared to the following brain tu-
mor classification algorithms: 1) Transfer Learning (TL): An
ImageNet-pretrained ResNet-50 is finetuned with brain MRI
data. 2) Transfer Learning + Machine Learning (TL+ML): An
ImageNet-pretrained ResNet-50 is employed to extract deep



Type Data AUC PRC Accuracy Precision Sensitivity
3D CNN FS-MRI  0.9706+0.0141  0.9926+0.0036  0.9250+0.0153  0.9526+0.0206 0.9458+0.0076
2DCNN [7] NE-MRI 0.8330+0.0376  0.9550+0.0103  0.7922+0.0362 0.8622+0.0172  0.8802+0.0340
TL [8] NE-MRI  0.8457+0.0198  0.9560+0.0064 0.8208+0.0116 0.8363+0.0119 0.9651+0.0108
TL+ML [9] NE-MRI 0.8576+0.0019 0.9505+£0.0005 0.8216+£0.0060 0.8358+0.0054 0.9661+0.0001
Our Method NE-MRI 0.9451+0.0080 0.9872+0.0019  0.9000+0.0118  0.9448+0.0137  0.9254+0.0093

Table 1: Auxiliary glioma diagnosis results of different methods. FS-MRI represents full sequence MRI data.

Accuracy

Precision

Sensitivity

0.9118+0.0251

0.9162+0.0275  0.9085+0.0390
0.9390+0.0093
0.9448+0.0137  0.9254+0.0093

Table 2: Results of ablation studies of the proposed adoptive PromptNet.

lprmnpt Wadaptive AUC PRC
b 4 b 4 0.9203+£0.0166  0.9810+0.0040 0.8625+0.0153
v b 4 0.9379+0.0098 0.9850+0.0026  0.8763+0.0273
v 4 0.9451+£0.0080  0.9872+0.0019  0.9000+0.0118
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Fig. 2: Receiver operating characteristic curve of different
methods

features, and a SVM classifier is trained on these features
to conduct the classification. 3) 2D CNN: A custom CNN
model is trained on brain MRI data from scratch. Specifically,
we extract 20 2D slices from each 3D brain MRI data. 4) 3D
CNN: A 3D CNN model is trained on full sequence data (T1,
T1CE, T2, and FLAIR), and the model has the same network
structure as the template model in Fig. 1.

Table.1 lists the glioma grading results of the different
methods. Our proposed PromptNet generates better auxil-
iary glioma diagnosis results than other existing methods

when only NE-MRI data are provided. Although the 3D
CNN tested on all four sequence MRI data achieves the best
classification results, our method presents a high potential
for glioma grading on NE-MRI data, which can be very im-
portant for real-world clinical applications. Fig. 2 plots the
receiver operating characteristic curve of each method for
direct comparisons. Similar observations can be made that
our method is better than TL, TL+ML, and 2D CNN.

Table. 2 gives the results of the ablation studies related
to the proposed method. These experiments were conducted
to demonstrate the contributions of the prompt loss function
and the adaptive prompt loss weight updating strategy. The
results suggest that both the prompt loss and the adaptive
strategy can improve the grading performance of the proposed
PromptNet, and the best results are obtained by adopting both
mechanisms.

4. CONCLUSION

In this paper, we propose an adaptive PromptNet for aux-
iliary glioma diagnosis utilizing NE-MRI data. A prompt
loss is designed and minimized to help capture more repre-
sentative MRI information. Moreover, a performance gap-
based adaptive strategy is proposed to adjust the contribution
of the prompt loss to the network parameter optimization in
a sample-based manner, and thus, the model can focus more
on the difficult samples. Our proposed adaptive PromptNet
has a high potential to be employed in real-world applications
when CE-MRI data are infeasible to collect.
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