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ABSTRACT

Transfer learning has remarkably improved computer vision.
These advances also promise improvements in neuroimaging,
where training set sizes are often small. However, various diffi-
culties arise in directly applying models pretrained on natural
images to radiologic images, such as MRIs. In particular, a
mismatch in the input space (2D images vs. 3D MRIs) restricts
the direct transfer of models, often forcing us to consider only
a few MRI slices as input. To this end, we leverage the 2D-
Slice-CNN architecture of Gupta et al. (2021), which embeds
all the MRI slices with 2D encoders (neural networks that
take 2D image input) and combines them via permutation-
invariant layers. With the insight that the pretrained model
can serve as the 2D encoder, we initialize the 2D encoder with
ImageNet pretrained weights that outperform those initialized
and trained from scratch on two neuroimaging tasks — brain
age prediction on the UK Biobank dataset and Alzheimer’s
disease detection on the ADNI dataset. Further, we improve
the modeling capabilities of 2D-Slice models by incorporating
spatial information through position embeddings, which can
improve the performance in some cases.

Index Terms— MRI, deep learning, machine learning,
neuroimaging, transfer learning

1. INTRODUCTION

Even though tremendous advances have been made in pretrain-
ing computer vision models that work well for natural images
such as photographs, it is unclear how easily these pretrained
models can be adapted to perform tasks on radiologic images
such as MRIs due to domain differences. Moreover, natural
images are 2-dimensional (2D), whereas brain MRIs are typi-
cally 3-dimensional (3D), making the direct finetuning of the
model pretrained on 2D images challenging. This has led to
an active debate in the radiology field on how to pretrain deep
learning methods for MRI-based tasks, such as disease clas-
sification and staging, identifying pathology, and anatomical

segmentation (e.g., [1, 2, 3]). Many workarounds have been
proposed, such as deriving specialized pretraining datasets
such as YouTube videos [4] or making predictions from only
a few MRI slices [5, 6, 7, 8]. Using fewer slices severely lim-
its the information available for a machine learning model to
make predictions, leading to suboptimal performance.

To this end, we consider recently proposed 2D-Slice-CNN
models that can consider full 3D MRI scans as the input. These
models process each 2D slice via a slice encoder (usually a
2D CNN) and aggregate the resulting slice embeddings via
permutation invariant operations, such as by computing the
mean of the embeddings or using self-attention over the em-
beddings [9], max-pooling [10], or RNNs [11]. These models
can access information from all the slices during training, thus
exploiting a richer feature set than models that work with a
single slice, and the neural networks pretrained on 2D natural
images are excellent candidates to use as the slice encoder.
Our first contribution is to study the effect of replacing the
slice encoder with a model pretrained on ImageNet.

Our second contribution is incorporating positional encod-
ing in the 2D-Slice model before slice embedding aggregation
to preserve spatial information. The permutation-invariant
operations can remove information about the ordering of the
slices, thus limiting learning capabilities. Adding positional
encoding, i.e., a unique vector corresponding to each position,
can help, especially if predictive features are reliably located
in specific parts of the images. Positional encoding allows the
model to learn spatial information if needed (e.g., [12]).

We extensively evaluate the above-discussed models and a
3D-CNN with comparable architecture for brain age prediction
(the common benchmarking task of predicting a person’s age
from their MRI scan) and an Alzheimer’s disease diagnosis
(binary classification) task. Incorporating positional encodings
improved test performance in some cases. Contrary to [9], we
find that 2D-Slice-CNNs perform comparably to 3D-CNN for
brain age prediction1. Further, 2D-Slice-CNN models initial-
ized randomly did not perform at par with 3D-CNNs for AD

13D-CNN results improved due to expanded hyperparameter search.

ar
X

iv
:2

30
3.

01
49

1v
1 

 [
ee

ss
.I

V
] 

 2
 M

ar
 2

02
3



2D 
Encoder

Feedforward 
& Layer Norm

Aggregation via 
Attention/Mean

Output 
Layers

MRI slices 
(2D)

Slice 
embeddings

Positional 
encoding

Fig. 1. Positional encoding in the 2D-Slice-CNN architecture. Newer components (compared to [9]) are shown in red font.

detection. However, the 2D-Slice-CNN models with ImageNet
pretrained ResNet-18 encoder outperformed all the models for
both tasks, showing that it is possible to transfer inductive
biases from natural images to 3D neuroimaging tasks.

2. 2D-SLICE CNN WITH POSITIONAL ENCODINGS

The go-to approach to train models that take raw 3D MRIs
as input is to use 3D convolutional layers (e.g., [13, 14, 15]).
Instead, [9] used 2D-CNNs to encode individual slices and
combined the slice representations with permutation-invariant
operations such as mean or attention. Compared to 3D-CNNs,
these 2D-Slice-based models tend to be less accurate as they
may lose spatial information due to permutation invariance. To
this end, we encode positional information in the model by in-
troducing positional encodings similar to transformers [16, 17].
In particular, these are added to the slices’ representations and
trained end-to-end with other model parameters (see Fig. 1).
Suppose the MRI consists of K 2D slices (xk, k ∈ {1 . . .K})
that are each embedded to a d-dimensional representation,
r(xk) with the 2D slice encoder. The model will compute
r(xk) + pk, where pk ∈ Rd is a trainable vector and depends
only on k. Fixed positional encodings can also be used. How-
ever, this work considers positional encodings as trainable.

Further, motivated by the transformer architecture, we also
added a feed-forward layer and layer norm after the attention
(i.e., for attention-based aggregation) as that improved the
performance on brain age prediction slightly (2.86 reported
in [9] vs. 2.83 MAE in our case).

3. EXPERIMENT SETUP

3.1. Datasets

We consider two tasks — Brain age prediction and Alzheimer’s
disease (AD) detection from brain MRIs. Our setup for brain
age prediction is the same as [9]. We used MRI scans from a
subset of healthy subjects from the UK Biobank dataset [18]
with no psychiatric diagnosis. The training, test, and validation
set sizes were 7,312; 940; and 2,194; with a mean chronologi-
cal age and standard deviation of 62.6 and 7.4 years.

We used the same dataset as [19] for the AD task. In
particular, we use MRI scans from three phases of the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), known
as ADNI1, ADNI2/GO, and ADNI3. These datasets have
repeated scans of the same subject. However, the subjects in
train/test/validation sets do not overlap. We used 4,561 scans
(2,372/873/916 in train/validation/test). The test set contains
244 scans with AD and 672 with a healthy diagnosis.

All the scans were reoriented to a standard brain MRI
template, and the final dimensions of each scan in both datasets
were 91× 109× 91.

3.2. Model & Training

We evaluate the 2D-Slice-CNNs under different settings —
with and without positional encodings and with and without
pretrained encoders. We consider two encoder architectures.
We use a 5-layer 2D-CNN encoder (similar to [9, 11]) adapted
from the 3D-CNN baseline of [13] to benchmark the effect of
incorporating positional encodings.

We evaluate the effect of pretraining on natural images
(2D) with pretrained ResNets [20]. We use ResNets pretrained
on ImageNet-1K [21] from the PyTorch model hub2 as the 2D
slice encoder. To get the slice embeddings from ResNets, we
remove the final feed-forward layers and consider the output
from the last layer (i.e., the average pooling layer). There-
fore, the embedding sizes are 512 and 2048 for ResNet-18 and
ResNet-50 encoders. For the 5-layer 2D-CNN encoder, the
embedding size is 32. When using pretrained weights, we fine-
tune the entire model, including the encoder. Our implemen-
tation is available at https://github.com/umgupta/
2d-slice-set-networks.

For 2D-Slice models, we find that slicing MRI along the
sagittal axis works best for brain age prediction, as also ob-
served by [9]. However, this was not the case for the AD
task. Therefore we report the results of slicing along all three
axes for AD. We use the same hyperparameters as [9], except
for the optimizer and learning rate. We search in {(ADAM,
10-4), (SGD, 10-3/ 10-4/ 10-5)} for the brain age prediction task.
ADAM optimizer with a learning rate of 10-4 works best for all
the models except for the 3D-CNN. We report results for all
models on the AD task with a learning rate of 10-4 and ADAM
optimizer3. All the models are trained for 100 epochs, and the

2https://pytorch.org/hub/
3We evaluated 3D-CNN with SGD on the AD task, but ADAM worked best.

https://github.com/umgupta/2d-slice-set-networks
https://github.com/umgupta/2d-slice-set-networks
https://pytorch.org/hub/


Method Bal.
Accuracy

F1
Score

Avg.
PrecisionEncoder Pos. Enc. Pretrained Axis

3D-CNN - 7 - 88.40 ± 0.703 84.44 ± 1.028 92.33 ± 0.492

2D-CNN (Mean) 7 7 sagittal 87.53 ± 1.311 84.40 ± 1.707 94.86 ± 0.946
2D-CNN (Mean) 7 7 coronal 85.78 ± 2.811 81.38 ± 3.610 90.57 ± 2.976
2D-CNN (Mean) 7 7 axial 86.34 ± 1.445 82.21 ± 1.573 90.81 ± 0.677
2D-CNN (Mean) 3 7 sagittal 87.05 ± 1.115 83.40 ± 0.873 93.40 ± 0.956
2D-CNN (Mean) 3 7 coronal 85.41 ± 2.521 80.62 ± 2.521 89.86 ± 0.771
2D-CNN (Mean) 3 7 axial 86.61 ± 0.942 81.20 ± 1.971 91.44 ± 2.123

2D-ResNet-18 (Mean) 7 7 sagittal 85.71 ± 4.834 80.89 ± 6.111 91.12 ± 2.880
2D-ResNet-18 (Mean) 7 7 coronal 85.73 ± 1.433 81.30 ± 1.802 90.60 ± 2.544
2D-ResNet-18 (Mean) 7 7 axial 84.61 ± 2.099 79.21 ± 2.906 88.95 ± 1.741
2D-ResNet-18 (Mean) 3 7 sagittal 86.57 ± 2.871 81.69 ± 3.972 91.80 ± 2.150
2D-ResNet-18 (Mean) 3 7 coronal 84.34 ± 1.706 79.75 ± 2.258 90.29 ± 0.645
2D-ResNet-18 (Mean) 3 7 axial 86.55 ± 1.059 81.39 ± 1.752 90.82 ± 0.701

2D-ResNet-18 (Mean) 7 3 sagittal 87.09 ± 1.192 82.07 ± 1.167 90.80 ± 1.601
2D-ResNet-18 (Mean) 7 3 coronal 87.31 ± 0.971 83.19 ± 1.518 91.80 ± 1.626
2D-ResNet-18 (Mean) 7 3 axial 88.59 ± 1.187 85.10 ± 1.265 93.11 ± 0.482
2D-ResNet-18 (Mean) 3 3 sagittal 87.19 ± 2.037 83.16 ± 2.158 91.75 ± 1.291
2D-ResNet-18 (Mean) 3 3 coronal 86.95 ± 2.750 82.33 ± 2.811 90.96 ± 1.541
2D-ResNet-18 (Mean) 3 3 axial 88.60 ± 2.058 84.52 ± 2.389 92.56 ± 0.563

Table 1. Test set results for AD detection (binary labels) on the ADNI dataset. Higher is better for all metrics. Model selection
was performed based on balanced accuracy. Results (mean and standard deviations) are reported over 5 runs with different seeds.
The first column describes the neural network architecture or the encoder in the case of 2D-Slice models.

best model was chosen based on performance on the validation
set at the end of every epoch.

4. RESULTS

Tables 1 and 2 summarize the performance of different models
for AD and brain age prediction, respectively. We observed
that the 2D-Slice-CNN was better at predicting brain age when
using the same hyperparameters as [9]. However, our 3D-
CNN results are better than 2D-Slice-CNN (Table 2), and the
reported numbers in [9] (3.02 vs. 2.792 MAE) due to switch-
ing from PyTorch’s default initialization to explicitly using
He initialization [22] and using SGD optimizer. Similarly, 3D-
CNN outperforms the 2D-Slice-CNN for AD prediction (88.40
vs. 87.53 accuracy). We hypothesized that this might be due
to 2D-Slice-CNN combining slice embeddings with permuta-
tion invariant operation and consequently losing information
about the position of the slice in MRI. We, thus, incorporate
positional encodings in the 2D-Slice model.

4.1. Effect of Position Encodings on the 2D-Slice-CNN.

Introducing position encodings improved 2D-Slice models for
AD prediction in some cases. When using 2D-ResNet-18 en-
coder (not pretrained), we see improvements in AD prediction
when slices along sagittal and axial directions are used. How-

ever, in other cases, the performance on the AD prediction task
did not improve when incorporating position encodings. For
brain age prediction, the model performance stayed identical
(ResNet Encoders) or deteriorated (5-layer CNN) when using
position encodings. Brain MRIs are usually aligned to a stan-
dard template, so the position of specific patterns can provide
extra information. However, it may also make the model more
sensitive to minor changes in the alignment template and cause
overfitting. This could be a potential reason why the perfor-
mance did not improve on incorporating position encoding.
Here, we incorporate position encodings in the higher layers.
Thus the model may not be able to exploit the spatial infor-
mation best. Placement of position encodings is crucial [23]
and left for future work. Overall, position encodings helped in
limited cases, and the gains may be task and model dependent.

4.2. Can Encoders Pretrained on ImageNet improve 3D
Deep Neuroimaging?

We answer this in the affirmative. We finetune 2D-Slice models
with ResNet encoders initialized with ImageNet-1K pretrained
weights. Initializing with pretrained weights consistently out-
performs random initialization (i.e., training from scratch) in
all cases (See Tables 1 and 2). These results validate our hy-
pothesis that a) models trained on natural images (2D) can be
helpful for neuroimaging tasks and b) 2D-Slice-CNNs can be



Method Mean Absolute Err.
(MAE)

Root Mean Square Err.
(RMSE) # Params

Encoder Pos. Enc. Pretrained

3D-CNN - 7 2.792 ± 0.032 3.521 ± 0.023 ∼ 3M

2D-CNN (Mean) 7 7 2.826 ± 0.021 3.582 ± 0.027 ∼ 1M
2D-CNN (Mean) 3 7 2.847 ± 0.051 3.617 ± 0.067 ∼ 1M
2D-CNN (Attention) 7 7 2.839 ± 0.009 3.590 ± 0.014 ∼ 1M
2D-CNN (Attention) 3 7 2.888 ± 0.067 3.655 ± 0.075 ∼ 1M

2D-ResNet-18 (Mean) 7 7 2.911 ± 0.039 3.684 ± 0.043 ∼ 12M
2D-ResNet-18 (Mean) 7 3 2.715 ± 0.029 3.426 ± 0.044 ∼ 12M
2D-ResNet-18 (Mean) 3 3 2.721 ± 0.045 3.439 ± 0.053 ∼ 12M

2D-ResNet-50 (Mean) 7 3 2.743 ± 0.018 3.468 ± 0.029 ∼ 26M

Table 2. Test set results for the brain age prediction task. Lower MAE and RMSE are better. Model selection was performed
based on MAE metric. The first column describes the neural network architecture or the encoder in the case of the 2D-Slice
models. All experiments used sagittal slices. Results (mean and standard deviations) are reported over 5 runs with different seeds.

used to transfer 2D models to 3D data directly.
Our main goal with these experiments is to demonstrate

improvement in performance due to natural image pretrain-
ing. Nevertheless, another interesting outcome is that 2D-Slice
models with pretrained encoders are the best for both tasks,
outperforming the 3D-CNN as well. For the AD task, we
observe that 3D-CNN has a balanced accuracy of 88.40. In
contrast, models with pretrained ResNet-18 encoder model
have a balanced accuracy of 88.6 when using slices along
the axial direction (both with and without position encod-
ings). Similarly, the best MAE with the pretrained model for
brain age prediction is 2.715 compared to 2.792 MAE with
3D-CNN. Finally, We also evaluated if increasing the size of
the pretrained encoder may lead to more gain by employing
ResNet-50 as the encoder for brain age prediction. We did not
see significant improvements over ResNet-18, and we leave
further exploration for future work.

5. DISCUSSION

In this paper, we extended the 2D-Slice-based architecture
of [9] by incorporating positional embeddings.we demon-
strated improved brain age prediction and AD detection perfor-
mance by employing slice encoders pretrained on ImageNet-
1K, a large dataset of natural 2D images.

Our work contributes to the growing literature on using
pretraining for machine learning on radiologic images, for
which training datasets are often small. Since most large
image datasets are 2D natural images, it is natural to pretrain
on natural images. However, there are two main challenges
with this — a) Domain mismatch, i.e., radiologic images vs.
natural images; b) Input dimension mismatch, i.e., 2D vs. 3D
images. Most prior works using off-the-shelf vision models
(i.e., pretrained with natural image datasets such as ImageNet)
consider a single or a few 2D slices of the MRI scan as the
input to avoid the problem of input mismatch [5, 6, 7, 8].

These may then aggregate the results from different slices
during inference only. Such approaches are limiting and lead
to suboptimal performance.

In contrast, our approach only substitutes encoders with
pretrained counterparts. The model is trained end-to-end and
considers the whole MRI as input. It addresses the input di-
mension mismatch problem without limiting or compromising
the information available to the model to make predictions.
Despite domain mismatch, pretraining outperforms the models
trained from scratch.

Very few datasets exist for pretraining with raw 3D MRI
images directly [24]. Only recently very large radiologic 2D
image datasets become have publicly available for pretraining
models [25, 26]. It would be interesting to pretrain 2D en-
coders with such datasets in the future to alleviate the domain
mismatch problem. In this work, we used models pretrained
on the supervised classification task. In future, it would be
interesting to evaluate self-supervised pretraining with in- and
out-domain images (e.g., [10]).
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