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ABSTRACT

In this study, we introduce a generative model that can syn-
thesize a large number of radiographical image/label pairs,
and thus is asymptotically favorable to downstream activities
such as segmentation in bio-medical image analysis. Denois-
ing Diffusion Medical Model (DDMM), the proposed tech-
nique, can create realistic X-ray images and associated seg-
mentations on a small number of annotated datasets as well as
other massive unlabeled datasets with no supervision. Radio-
graph/segmentation pairs are generated jointly by the DDMM
sampling process in probabilistic mode. As a result, a vanilla
UNet that uses this data augmentation for segmentation task
outperforms other similarly data-centric approaches.

Index Terms— Image Synthesis, Generative Models, De-
noising Diffusion, NeRP, ChestXR

1. INTRODUCTION

X-Ray (XR) images play a critical role in medical diagnosis,
especially in the early stage of detecting many diseases [1,
2]. Deep learning applications for XR image processing have
evolved in the era of artificial intelligence and achieved some
remarkable feats, such as automated segmentation, lesion cat-
egorization, quantification, diagnosis and treatment. [3]. To
gather such high-quality labels in the biomedical area, how-
ever, calls for a significant amount of annotated data, which
can be expensive and difficult to obtain. When training a deep
learning model on limited data, a variety of data augmentation
approaches are used to avoid overfitting [4, 5]. For instance,
simple image alterations like morphological geometry adjust-
ments can successfully regularize the training process and aid
deep learning techniques in yielding meaningful results. Re-
cently, diffusion-based models emerged as a promising deep
learning method for image generation and have demonstrated
their advantages in terms of image quality and training stabil-
ity.

In this paper, we propose a multi-branch model based on
the Denoising Diffusion Probabilistic Model (DDPM)[6] and
its improved method, the Denoising Diffusion Implicit Model
(DDIM)[7], to synthesize more image/label tuples for use in
training models for other biomedical imaging tasks such as
segmentation. The generated samples not only improve di-

versity and photo-realism in several common metrics, but also
generalize dataset distributions with minimal supervisions. In
addition, the pairs of image/label sampled by DDMM also
improve the results of downstream tasks compared to other
state-of-the-art generative models.

Our contributions for the proposed method, namely
Denoising Diffusion Medical Models (DDMM), are two-
fold: First, (1) the DDMM model is built from one or more
branches of DDPM (radiographs and segmentation branches)
that share the same noise scheduler and latent code, which
enforce semantic consistency. Second, (2) each branch in
DDMM can use other unlabeled large-scale datasets to in-
crease diversity and generalization. These settings make
DDMM useful for (a) generalizing the dataset distribution by
simultaneously generating high-quality XR-like images and
their annotations, and (b) leveraging the synthesized data to
improve other image analysis tasks (such as segmentation) or
broaden out-domain image-to-image translation.

2. RELATED WORK

2.1. Generative models for XR-like image generation

XR-like image generation methods were developed using
multiple approaches, both physics-based and otherwise.
The physics-based models, such as XRaySyn [8] or Deep-
DRR [9], produce high-quality images. However, their train-
ing procedures require knowledge from other modalities, and
they can not generate the corresponding segmentation. In
terms of non-physics-based methods, the GAN-based models
showed improvements in image synthesis [10], data augmen-
tation [11], and style augmentation [12]. However, the GAN
approaches often experience unstable training and mode col-
lapse, particularly when generating images from random
noise.

Recently, diffusion-based solutions (DDPM [6], DDIM [7],
etc.) have emerged as a new method for image synthesis by
gradually denoising a random noisy image in large timesteps,
during which a temporal encoding is attached to guide a
reconstruction UNet [13] model. These aforementioned
problems and innovations motivated us to develop a novel
approach of generating paired XR-like images from random
noises without facilitating other modality knowledge.
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Fig. 1: The upper branch is a DDPM model that attempts to denoise the random Gaussian noisy input and produce the XR-like
image, while the lower branch tries to generate the corresponding segmentation. To ensure semantical consistency, both use the
same initialized noises and noise scheduler.

2.2. Denoising diffusion probabilistic model

With an input data sample x0 ∼ q(x0), the forward process
q adds the Gaussian noise with variance βt ∈ (0, 1) at each
time-step to the given input xt−1 and produces T latents xt
where the subscription t ranges from 1 to T :

q(x1, ..., xT |x0) :=

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) := N
(
xt;
√

1− βtxt−1, βtI
)

(2)

Supposing that the time-steps T is long enough, and a
good beta scheduler is properly designed, the latent xt ap-
proximates a Gaussian distribution. Therefore, if the distribu-
tion q(xt−1|xt) is known, we can sample xT ∼ N(0, I) and
feed it to the forward process to get q(x0). On the other hand,
a reverse process can be defined as a routing that gradually
removes the noise in the inputs, begins at the point p(xT ) =
N (xt, 0, I). The join distribution pθ(x0:T ) is calculated from
the starting point by the following Markov chain:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (3)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

In this case, p could be considered an approximation of q
in each time step t. Therefore, q and p are components of a
variational auto-encoder. The loss can be defined as the varia-
tional lower bound on negative log-likelihood, and is formally
rewritten as the sum of loss at each step:

Lvlb := L0 + · · ·+ Lt−1 + · · ·+ LT (5)

where

L0 := − log pθ(x0|x1) (6)
Lt−1 := DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)) (7)
LT := DKL(q(xT |x0)||p(xT )) (8)

3. METHOD

3.1. Model overview and Training Procedure

As shown in Fig. 1, our DDMM method consisted of two sep-
arate DDPM models that shared the noise latent code. The
model pθ takes responsibility for generating the XR images
while the model pφ produces the corresponding segmentation.
The supervised datasets, which include both XR images and
labels, are introduced in each training step to compute the re-
construction loss. The pθ branch can be further trained with
other unlabeled datasets at the same stage, producing an unsu-
pervised loss. The total loss of the training step is the combi-
nation of the supervised loss and unsupervised loss. While the
former loss component drives the model to generate the corre-
sponding pairs of images and labels since both share the same
latent noise, the latter loss component supports in expanding
data distribution coverage with different sampling points.

3.2. Probabilistic Sampling Procedures

Our multi-branch DDMM method can be extended to multi-
modal image-to-image translation with a minimal number
of paired samples and extensive unpaired images. Equiv-
alently, the Gaussian-noise in the latent space plays as a
semantic-sharing code across the multiple domains that it can
span. Therefore, we can perform the sampling procedures
in a probabilistic way: we start at one side of both radio-
graph/segmentation branches, initialize and fetch the noise
into the processes, then gradually denoise them using pθ and
pφ networks. This approach results in both image/label tuples
generated simultaneously, with one of them satisfying the
XR image distribution, while the other one is tightly cou-
pled with its semantic segmentation. With this approach, we
can synthetically generate a massive amount of semantically-
consistent pairs of images, which is helpful to finetune other
downstream tasks.



Table 1: Dataset summary. Those which do not have segmen-
tation are used to train the unsupervised branches.

Datasets Images Annotation
ChinaSet [14] 566 Lung
Montgomery [14] 138 Lung
JSRT [15] 247 Lung
VinDr-CXR [16] 18,000 N/A

Table 2: Image quality metrics
Method FID ↓ KID ↓ SSIM ↑ UQI ↑ SCC ↑
GAN 279.869 0.3765 0.3724 0.0661 0.1291
XRaySyn 181.390 0.2256 0.3317 0.0318 0.0701
NeRP 174.294 0.1875 0.3268 0.0415 0.1077
DDMM (1) 155.772 0.1913 0.3592 0.0686 0.1325
DDMM (2) 93.998 0.0976 0.4258 0.1012 0.1750

DDMM (1) is trained with the supervised branch only, while DDMM (2) is
trained with both supervised and unsupervised branches.

3.3. Implementation Details

Our DDMM framework is implemented based on the avail-
able open source of DDPM [6] with the learning rate of Adam
optimizer set to 1e−4. The models pθ and pφ share the same
cosine-based noise scheduler βt but the supervised training
noise is initialized with a different seed than the unsupervised
scheme. We set the total time-steps T = 100 for all diffu-
sion branches and trained the DDMM for 100 epochs on a
workstation equipped with 64 GB of RAM and an NVIDIA
GTX 3090 GPU. The training took approximately three days
to complete.

4. DATA

We demonstrated the experiments on the ChestXR images.
The number of images available in each sub-dataset is shown
in Table 1. There are 951 accompanying images with their
lung region segmentations [14]. These labeled pairs are split
into the training and test sets at a ratio 80:20. In the ChestXR
experiment, we also leverage 15,000 out of 18,000 images
from a large-scale public VinDr-CXR dataset [16], which
does not have pixel-level segmentation for the lung regions,
to adapt on to our unsupervised training step.

5. RESULTS

5.1. Quality of generated XR images

Fig. 2 illustrates the generated samples from DDMM and
other methods compared to the actual images. The other two
approaches, GAN and XRaySyn, produce low-quality images
with much distortion and blur. The images from NeRP are
higher quality, as compared to GAN and XRaySyn, but still
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Fig. 2: Samples of XR images generated by our method
DDMM and others, compared to the real samples in VinDr-
CXR test sets (last row).

miss the bone details in ChestXR. These problems are not ob-
served in the DDMM-generated images. The image quality
is further evaluated quantitatively by collecting the numbers
of Frechet Inception Distance (FID) [17], Kernel Inception
Distance (KID) [18], the Structural Similarity Index Mea-
surement (SSIM) [19], the Universal Image Quality Index
(UQI) [20], the Spatial Correlation Coefficient (SCC) [21].
While the better methods have lower FID and KID scores, the
SSIM, UQI, and SCC should be as high as possible. These
metrics are calculated on 1,000 XR images drawn randomly
from 10,000 pre-generated images for each method. On the
ChestXR dataset, the results shown in Table 3 indicate that
DDPM produces the highest quality of synthesized images.
In general, without the unsupervised branch, we can not
enhance the images.

5.2. Image Segmentation

Table 4: Segmentation results

Anatomy Method Dice Score ↑ Rand Score ↑
Chest NeRP 0.6619 0.4057
Chest DDMM 0.7649 0.5763

In-domain segmentation: For each experiment on the
above Chest datasets, we pre-generate 10,000 pairs of im-
age/label using NeRP [22] and our method DDMM for
training vanilla UNets [13] without other augmentation tech-
niques. We do not reuse the previously split training sets for
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Fig. 3: Qualitative evaluations on ChestXR test set of NeRP
and DDMM methods against the ground truth.

this downstream task. The segmentation performances are as-
sessed directly on the test sets by Dice-score and Rand-score
metrics, which measure the semantic-aware and instance-
aware significance. As can be seen in Fig. 3 and Table 4,
our DDMM method extracts the lung areas qualitatively bet-
ter than the physics-based method NeRP, and also achieves
better segmentation metrics.

Out-of-domain segmentation: The segmentation mod-
els are tested on the out-of-domain samples. The model
trained on the DDMM images performed well on the chest
XR images even though the input sources are extreme out-
liers. For example, the pleural space with partially visible
dark textured lung regions, or even the severe cases of the
skeleton and t-shirt images (see Fig. 4), can be inferred more
appropriately with our method. Interestingly, the model based
on DDMM data still detects the lung area on the non-XR im-
ages, while the NeRP model cannot produce the proper seg-
mentation. These extreme out-of-domain samples showcase
the remarkable generalization capability.

6. CONCLUSION

We present DDMM, a diffusion-based multi-branch model
that can jointly produce realistic XR medical images and their
associated segmentation masks. The generated images out-
perform other similar work qualitatively and quantitatively.
Our method is also beneficial for downstream tasks, such as
improving the segmentation results in biomedical image anal-
ysis. In addition, DDMM is scalable and can be extended
to other cross- and intra-modality such as CT, MRI, or multi
spatial omics analysis. By leveraging the unlabeled datasets,
DDMM better generalizes the data distribution and helps to
capture more useful information, which in turn supports bet-
ter diagnosis, treatment and precision medicine.

Image NeRP DDMM

Fig. 4: Lung segmentation task on the out-of-domain samples
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