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Abstract. In this paper, we propose an efficient self-supervised arbitrary-
scale super-resolution (SR) framework to reconstruct isotropic magnetic
resonance (MR) images from anisotropic MRI inputs without involving
external training data. The proposed framework builds a training dataset
using ”in-the-wild” anisotropic MR volumes with arbitrary image reso-
lution. We then formulate the 3D volume SR task as a SR problem for
2D image slices. The anisotropic volume’s high-resolution (HR) plane
is used to build the HR-LR image pairs for model training. We further
adapt the implicit neural representation (INR) network to implement
the 2D arbitrary-scale image SR model. Finally, we leverage the well-
trained proposed model to up-sample the 2D LR plane extracted from
the anisotropic MR volumes to their HR views. The isotropic MR vol-
umes thus can be reconstructed by stacking and averaging the generated
HR slices. Our proposed framework has two major advantages: (1) It
only involves the arbitrary-resolution anisotropic MR volumes, which
greatly improves the model practicality in real MR imaging scenarios
(e.g., clinical brain image acquisition); (2) The INR-based SR model en-
ables arbitrary-scale image SR from the arbitrary-resolution input image,
which significantly improves model training efficiency. We perform exper-
iments on a simulated public adult brain dataset and a real collected 7T
brain dataset. The results indicate that our current framework greatly
outperforms two well-known self-supervised models for anisotropic MR
image SR tasks.

1 Introduction

Magnetic Resonance Imaging (MRI) is an essential medical imaging technology.
However, isotropic 3D High-Resolution (HR) MR images are difficult to ac-
quire due to the trade-off problem among image resolution, Signal-Noise-Ratio
(SNR), and scanning time [1]. A common compromise is to scan anisotropic MR
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Fig. 1. Pipelines of building SR dataset from in-the-wild multiple anisotropic MR
images. The conventional pipeline [2, 3] is to resize the raw slices into a fixed size and
simulate the paired HR-LR slices of a fixed scale. While we aim to keep the slices at
their raw resolutions and build the paired HR-LR slices of arbitrary scales.

images to improve SNR and shorten the scanning time. Unfortunately, the mea-
sured anisotropic MR volumes have high in-plane resolutions but low through-
plane resolutions, which results in the loss of high-frequency image details in the
through-plane view and may hinder the following works (e.g., lesion detection
and segmentation). Thus improving the through-plane resolution to reconstruct
the isotropic MR images is an urgent need for clinical medical diagnosis and
research.

Currently, Convolutional Neural Networks (CNNs) are mainstream solutions
for isotropic MR image Super-Resolution (SR) reconstruction. Most CNNs-based
SR methods [4–7] learn inverse mappings from anisotropic inputs to isotropic
outputs by training CNNs over external datasets. They produce robust and
excellent SR performance benefiting from the data-driven priors. However, the
fixed inverse mappings learned by CNNs suffer from severe performance drops
when the up-sampling scale changes [8–10]. Therefore, an independent CNN
needs to be trained in practice for each up-sampling scale. This scale-specific
learning paradigm is thus extremely resource-intensive.

Recently, several arbitrary-scale MR image SR methods [11–13] based on
Implicit Neural Representation (INR) have emerged. INR is a signal represen-
tation based on neural networks. The signal is formulated as a continuous func-
tion of spatial coordinates and is approximated by a Multi-Layer Perceptron
(MLP). Due to the continuous representation provided by INR, the single well-
trained INR-based model theoretically can handle the SR tasks of arbitrary
scales and thus significantly reduce resource consumption. However, the INR-
based SR methods [11–13] are almost supervised; thus, a large-scale external
dataset is required for training. Moreover, scanning the isotropic 3D HR MR
volumes is often time-consuming and expensive due to the trade-off problem,
which significantly limits model performance and practicality.
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Fig. 2. Pipeline of our arbitrary-scale SR model.

In this work, we propose a self-supervised arbitrary-scale SR framework, in
which an arbitrary-scale SR model is trained based on the multiple anisotropic
MR images (Note the multiple images refer to ”in-the-wild“ MR volumes with
arbitrary image resolution, instead of forcibly requiring anisotropic images ac-
quired from orthogonal views.). Our single well-trained SR model can reconstruct
the corresponding isotropic HR MR volumes from the multiple anisotropic inputs
without involving any external training data.

To sum up, there are two major contributions in our proposed framework:
(1) We propose a universal pipeline for constructing an arbitrary-resolution and
arbitrary-scale SR dataset from the anisotropic MR volumes, which releases the
need for external isotropic 3D HR MR images (Sec. 2.1); (2) We propose an
arbitrary-scale SR model based on INR for 2D MR slices and train it on the
built SR dataset (Sec. 2.2). After model training, we utilize the SR model to up-
sample the 2D LR slices extracted from the anisotropic MR images along their
HR views. The final isotropic volumes thus can be reconstructed by stacking and
averaging the generated HR slices (Sec. 2.3).

To evaluate the proposed framework, we conduct comparison experiments
on two MR image datasets (including a simulation adult dataset and a real
collection fetus dataset). The results demonstrate that the proposed framework
outperforms the two self-supervised methods for isotropic 3D HR MR image SR
tasks while using a single-trained model to handle SR tasks of arbitrary scales.

2 Proposed Framework

2.1 Arbitrary-Resolution and -Scale SR Dataset Construction

In 2017, [2, 3] proposed a pipeline for building an SR training dataset from in-
the-wild multiple anisotropic MR images. The main idea is to consider the 2D
HR slices along the LR view as GT images and then perform down-sampling on
the HR slices to simulate the paired 2D HR-LR slices training data. As shown in
Figure 1 (Left), the conventional pipeline proposed by [2,3] first resizes the raw
HR slices into a fixed size. Then, down-sampling the HR slices by a fixed scale
to simulate the corresponding LR slices. However, there are two limitations: (1)
Resizing operator will cause a loss of the multi-scale information provided by
the raw arbitrary-resolution HR slices; (2) The paired HR-LR slices of a fixed
scale only can be used to train scale-specific SR models.
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Fig. 3. Pipeline of an isotropic 3D HR volume reconstruction by our arbitrary-scale
SR model.

Dataset Image Spacing (mm) Image Size

HCP-1200 [14]

Sub #1 1.40 × 0.70 × 0.70 130 × 260 × 260
Sub #2 0.70 × 1.75 × 0.70 260 × 104 × 260
Sub #3 0.70 × 0.70 × 2.10 260 × 260 × 87
Sub #4 2.45 × 0.70 × 0.70 74 × 260 × 260
Sub #5 0.70 × 2.80 × 0.70 260 × 65 × 260

7T Adult Brain
Adult #1 2.00 × 0.41 × 0.41 80 × 544 × 544
Adult #2 3.00 × 0.73 × 0.73 49 × 288 × 288

Table 1. Details of the two datasets used in our experiments.

To this end, we propose constructing an arbitrary-resolution and scale SR
dataset. The pipeline is demonstrated in Figure 1 (Right). Given the measured
multiple anisotropic MR volumes, we directly extract raw 2D slices along their
LR views as the GT HR slices without using any resizing operator, benefiting the
preserving of the original multi-resolution image information. For example, 35
slices of 200×200 size will be extracted for an anisotropic volume of 35×200×200
size. Then, we down-sample the HR slices to simulate the corresponding 2D LR
slices. Instead of the fixed scale in the conventional pipeline [2, 3], the down-
sampling scales are set as the ratios between in-plane spacing and through-plan
spacing in the original 3D anisotropic volumes. Finally, the generated paired HR-
LR slices have arbitrary scales due to the anisotropic inputs of various spacings
(i.e., voxel sizes). Therefore, our build dataset can be used for training arbitrary-
scale SR models.

2.2 Arbitrary-Scale SR Model for 2D MR Slices

Inspired by [11], we propose an arbitrary-scale SR model for 2D MR slices.
Given any pair of LR-HR images {XLR ∈ Rhi/ki×wi ,XHR ∈ Rhi×wi} from our
arbitrary-resolution and -scale dataset, where ki represents their up-sampling
scale, we leverage a continuous function to represent them as below:

fθ : (p,v (p))→ X(p), (1)

where p = (x, y) ∈ R2 is any spatial coordinate in a normalized 2D Cartesian
coordinates [−1, 1]× [−1, 1]. X(p) ∈ R and v(p) ∈ Rd denote the intensity value
and semantic representation at the position p in the image X respectively. The
vector v(p) is used for a conditional input such that the function fθ can be shared
for different MR slices. Therefore, the paired HR-LR image {XLR,XHR} can be
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Fig. 4. Qualitative results of all compared methods on Sub #5 of the simulated HCP-
1200 data [14] for 4× SR at coronal view.

Scale & View Cubic IREM [15] SMORE [2] Ours

2× & sagittal 39.616/0.9760/0.0297 37.632/0.9570/0.0783 41.514/0.9857/0.0259 38.928/0.9734/0.0269
2.5× & coronal 32.254/0.9499/0.0781 31.345/0.9345/0.1019 27.903/0.9061/0.0778 31.038/0.9510/0.0518

3× & axial 36.764/0.9702/0.0718 34.889/0.9523/0.0632 32.749/0.9470/0.0757 32.255/0.9719/0.0286
3.5× & sagittal 25.568/0.8904/0.1398 25.370/0.8813/0.1004 21.320/0.8541/0.1436 25.064/0.8857/0.0781
4× & coronal 32.527/0.9244/0.1244 32.131/0.9181/0.0726 26.305/0.8619/0.1217 25.575/0.9144/0.0710

Mean 33.346/0.9422/0.0888 32.273/0.9286/0.0833 29.958/0.9110/0.0889 30.572/0.9393/0.0513

Table 2. Quantitative results (PSNR/SSIM/LPIPS) of all compared methods on the
simulated HCP-1200 data [14].

considered as the discrete explicit representation of the continuous function fθ
at different sampling spacing.

Based on the definition above, the arbitrary-scale SR task is converted to
learn the continuous function fθ. Figure 2 shows the pipeline. We first employ a
CNN encoder Cφ to map the LR image XLR to a feature map V ∈ Rhi/ki×wi×d,
where an element v is the local semantic representation of the input image XLR.
Then, for a query coordinate p in HR grid P ∈ Rhi×wi×2 built on the HR image
XHR, we generate the corresponding feature vector v(p) by performing linear in-
terpolation on the feature map V. Then, the vector v(p) as a conditional input
that concatenated with the coordinate p is feed into a Multi-Layer Perceptron
(MLP) decoder Mφ to predict the HR intensity value X̂HR(p). Finally, we si-
multaneously optimize the CNN encoder and MLP decoder to learn the function
by minimizing the objective as below:

φ∗, ψ∗ = arg min
φ,ψ

L(XHR(p), X̂HR(p)), (2)

X̂HR(p) =Mψ(p,v(p)), (3)

v(p) = Linear Inter.(V), (4)

V = Cφ(XLR), (5)

where the loss function L is implemented by `1 norm. We use Adam optimizer to
train the model, and its hyper-parameters are default. The initial learning rate
is 1e-4, and the training epoch is 800. The best model is saved by checkpoints
during the training process.
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Fig. 5. Qualitative results of all compared methods on the two samples of the real 7T
adult brain data for 4.86× and 4.11× SR at sagittal view.

2.3 Isotropic 3D HR Volumes Reconstruction

Figure 3 illustrates the pipeline of an isotropic 3D HR volume reconstruction by
our well-trained model. Let Yaniso ∈ Rhi×wi×ci of a spacing si× si× ki (si < ki)
denote any one of the anisotropic input volumes, our purpose is to recover the
corresponding isotropic image Yiso of a spacing si × si × si by using the well-
trained ArSSR2D model. To this end, we first extract hi LR slices Xx

LR ∈ Rwi×ci

and wi LR slices Xy
LR ∈ Rhi×ci from Yaniso along two HR views, respectively.

Then, these LR slices are fed our SR model to generate their HR versions, i.e., hi
Xx

HR ∈ Rwi×ci∗(ki/si) and wi X
y
HR ∈ Rhi×ci∗(ki/si). Finally, we can reconstruct

the isotropic volume Yiso ∈ Rhi×wi×ci∗(ki/si) by stacking and averaging the
generated HR slices.

3 Experiments

3.1 Experimental Setup

Simulated HCP-1200 Data: HCP-1200 dataset [14] is a large-scale public
adult brain MR image dataset consisting of 1113 3D isotropic HR multi-modal
brain MR images. In our experiments, we use five isotropic HR T1-weighted
MR images of the HCP-1200 dataset [14] as Ground Truth (GT) images. To
simulate anisotropic LR input images, we then respectively downsample the five
GT images by the scales {2, 2.5, 3, 3.5, 4} along the {x, y, z, x, y} views, where x,
y, and z denote respectively sagittal, coronal, and axial views. The GT images
are only used for final model evaluation, while all the compared models do not
see them during the model training.
Real 7T Adult Brain Data: We scan two T2-weighted anisotropic brain MR
images from two adults in vitro on a 7T Siemens MR scanner. The spacing of the
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raw images are 2×0.4118×0.4118 mm and 3×0.2431×0.2431 mm respectively.
The size of the raw images are 80×544×544 and 49×864×864 respectively. To
reduce computational consumption while maintaining image content as much as
possible, we decrease the latter size to 49× 288× 288 by cropping.

Compared Methods: We compare our model with three SR methods: (1)
Cubic interpolation, a mathematical method based on cubic polynomials; (2)
IREM, a self-supervised SR method based on INR. (3) SMORE [2], a deep
learning method based on self super-resolution (SRR) [16]. Here Cubic inter-
polation is based on the scikit-image library of Python, while IREM [15] and
SMORE [2] are reproduced following the original papers.

Evaluation Metrics: PSNR and SSIM [17], two widely-used image quality eval-
uation metrics, are computed. Moreover, we also calculate LPIPS [18], a popular
deep-learning-based similarity metric for a more comprehensive evaluation. The
slice-by-slice strategy is employed to calculate LPIPS [18] since it is designed
for 2D images. Specifically, we first extract the most central 30 2D slices from
SR volumes along three orthogonal views (i.e., ten images per view). Then, we
calculate LPIPS [18] based on the 2D slices and average them to obtain the final
scores.

3.2 Results on Simulated HCP-1200 Data

We compare our proposed method with the three baselines based on the five sim-
ulated anisotropic MR volumes (details in Table 1) of the HCP-1200 dataset [14].
Specifically, we apply the four methods to upsample the five anisotropic adult
brain images to generate the corresponding isotropic volumes. It is worth noting
that IREM [15] and SMORE [2] are independently trained for each input volume,
while our single well-trained model is shared for the five different volumes.

Figure 4 shows the qualitative results on Sub #5 for the 4× SR task at the
coronal view. Cubic interpolation produces a very blurry SR image. IREM [15]
yields an overly smooth image. The SR result from SMORE [2] is excellent in
image structure but unclear in image details. In comparison, the SR image of
our method is closest to GT in both image sharpness and consistency. Moreover,
Figure 4 shows an interesting result: although the SR result by cubic interpola-
tion is worst from the visualization, it obtains the highest PSNR (32.527 dB).
As claimed in [7,19], we hold that, the PSNR metric is defined on pixel-by-pixel
distance and thus is limited for evaluating SR tasks. Instead, LPIPS [18] is mea-
sured based on semantic representations extracted by a pre-trained deep learning
model. For Sub #5, our model obtains the best performance (0.071) in terms
of LPIPS, which is consistent with our visual observation. We also report the
quantitative results in Table 2. We observe that cubic interpolation yields the
highest PSNR and SSIM (33.346 dB and 0.9422), while our proposed method
obtains the best performance (0.0515) in LPIPS.
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3.3 Results on Real 7T Adult Brain Data

Although our proposed framework yields significant improvements on the sim-
ulated HCP-1200 data [14] compared with the three baselines, it is more im-
portant to show how well the models perform on the real acquired anisotropic
MR volumes. Therefore, we also conducted a comparison experiment on two
real measured anisotropic adult brain volumes (details in Table 1). Here we only
report the qualitative results since the isotropic GT HR images are not acquired.

As shown in Figure 5, the SR results of cubic interpolation suffer from severe
blocking artifacts due to its poor de-aliasing ability. While IREM [15] produces
sharp but overly smooth MR images, where many high-frequency details are lost.
In comparison, the SR results of SMORE [2] and our proposed model recover
more image details. Moreover, the SR results of our model are better in terms
of anatomical consistency.

4 Conclusion

This work presents a self-supervised deep-learning framework to reconstruct the
isotropic volumes from multiple anisotropic MR images when without any extra
data. In the proposed framework, we first construct an arbitrary-scale SR dataset
based on the anisotropic volumes, then train an arbitrary-scale SR model on our
built dataset. The well-trained single SR model can be used to reconstruct the
HR isotropic MR images. The experimental results on the simulated HCP-1200
[14] data and the real 7T adult brain data indicate that our proposed method
can recover excellent HR isotropic MR images. Our proposed self-supervised
framework has great application potential for improving MR image quality.
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