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ABSTRACT

Learning anatomical segmentation from heterogeneous labels
in multi-center datasets is a common situation encountered
in clinical scenarios, where certain anatomical structures are
only annotated in images coming from particular medical
centers, but not in the full database. Here we first show
how state-of-the-art pixel-level segmentation models fail
in naively learning this task due to domain memorization
issues and conflicting labels. We then propose to adopt
HybridGNet, a landmark-based segmentation model which
learns the available anatomical structures using graph-based
representations. By analyzing the latent space learned by
both models, we show that HybridGNet naturally learns
more domain-invariant feature representations, and provide
empirical evidence in the context of chest X-ray multiclass
segmentation. We hope these insights will shed light on the
training of deep learning models with heterogeneous labels
from public and multi-center datasets.

Index Terms— anatomical segmentation, landmark-
based models, missing annotations, graph neural networks

1. INTRODUCTION

Anatomical segmentation is one of the pillar problems in
medical image analysis, required by several downstream
tasks like radiotherapy planning [[1] or shape variability anal-
ysis in computational anatomy [2]. Fully convolutional neural
networks such as UNet [3]], and its self-configuring variant
nnUNet [4], have become the state-of-the-art for this task.
In this work, we are interested in addressing two common
situations encountered when training anatomical segmenta-
tion models in real clinical scenarios: multi-center image
databases and heterogeneous labels. On one hand, multi-
center databases may lead to domain shift problems [3S]] due
to changes in intensity distribution caused by differences in
acquisition device or protocol parameters. On the other hand,
heterogeneous or missing labels [6] make it difficult to train a
single segmentation model for all regions of interest (ROIs),
as missing labels in different images may send contradictory
training signals. Notably, when we face both issues at the
same time, the problem is far from trivial as it lies in the inter-

section of multi-task learning, domain adaptation and weakly
supervised learning [7]. As we will show in this work, when
different organs are annotated in images coming from various
centers, commonly used pixel-level segmentation methods
like UNet and nnUNet trained with standard procedures tend
to associate certain labels to specific domains.

Several methods have been proposed to independently
address the problems of domain shift [} 18, 9] and hetero-
geneous labels [10, |6 [11]] in medical image segmentation.
As for the joint problem, Dorent and coworkers [7]] pro-
posed a framework which combines a variational formulation
to cope with heterogeneous labels, with conventional tech-
niques based on data augmentation, adversarial learning, and
pseudo-healthy image generation to address domain shift.
In this work, we argue that landmark based segmentation
methods like the HybridGNet [12, |13] can naturally handle
these scenarios, as they incorporate prior knowledge about
the expected anatomy, without additional burden related to
data augmentation, adversarial training, or image generation.
We first provide empirical evidence showing how widely used
pixel-level approaches drastically fail to learn robust segmen-
tation models using heterogeneous labels from multicentric
datasets, while HybridGNet can naturally handle this prob-
lem, avoiding memorization issues. Further analysis of the
latent spaces learned by the different architectures, indicates
that generative landmark-based approaches like HybridGNet
tend to learn more invariant representations, which helps to
improve the robustness with respect to domain memorization.

2. METHODS AND EXPERIMENTS

Problem statement and experimental setup: We explore
anatomical segmentation of lung, heart and clavicles in
a multi-center database of chest X-ray images, with het-
erogeneous labels. The database is composed of 4 pub-
licly available datasets (JSRT [14]], Padchest [15], Mont-
gomery [16] and Shenzhen [17]), which originally provide
pixel level annotations. Since the proposed method em-
ploys landmark-based annotations, we adopted the publicly
available Chest X-ray landmark dataset, which provides
landmarks for 3 different organs from the aforementioned
databases (github.com/ngaggion/Chest-xray-landmark-dataset).


https://github.com/ngaggion/Chest-xray-landmark-dataset
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Fig. 1. Qualitative examples. Examples from 4 datasets (rows) segmented with different methods and annotation settings
(columns). Note how pixel UNet and nnUNet (in pink) fail completely to segment structures that are not presented in the
corresponding dataset when trained with heterogeneous labels (i.e. LHC (Full)). It is not the case for the HybridGNet, which
always provides segmentations of all structures. Note also that the UNet HT (trained using the same heterogeneous setup as
HybridGNet) produces heart segmentation for all datasets, as there are no conflicting labels. However, it only segments clavicles
for JSRT, due to the conflicting annotations in the overlapping area between lung and clavicles (see Section 3 for more details).

Images from JSRT (246 subjects) include annotations for
lungs, heart and clavicle (LHC); Padchest (137 subjects)
include lungs and heart (LH); while Montgomery (138 sub-
jects) and Shenzhen (390 subjects) include only lung (L). To
evaluate each domain separately, we divide the datasets into
80% train/val and 20% test partitions.

HybridGNet: HybridGNet is a landmark-based segmenta-
tion model, where the ROIs are encoded as anatomical graphs
representing the organ contour. It follows an encoder-decoder
architecture that combines standard convolutions for image
encodings, with graph generative models to extract anatom-
ically plausible representations directly from images. The
model is trained to minimize the mean squared error (MSE)
between the predicted node positions and the ground truth co-
ordinates. Pixel-level masks are then generated by filling in
the contours. See [12}[13]] for more details about HybridGNet.

Training landmark-based models with heterogeneous la-
bels: HybridGNet provides a natural way to learn with het-
erogeneous labels, which only relies on indexation. The
model outputs a D x 2 matrix, where the number of nodes
D is fixed and sequentially ordered: first lung nodes, ¢y,
then heart nodes, ¢y, and finally clavicles nodes, t¢, as in
the ground-truth target = [t,tm,tc]. The length of every
subset is Dy, Dy, D¢, respectively. For training, batches
composed of images from a single database at a time are
randomly chosen at every iteration, thus constraining the type
of annotation to those available for that dataset. For example,

if the input batch only includes lungs, the loss function for
that gradient descent iteration is only evaluated for the first
Dy, nodes, and errors are not back-propagated for heart and
clavicle. The same is done for the LH task, where the loss
is evaluated in the first D, + Dp nodes, ignoring the rest of
the output. This is implemented via slicing operations, and
constitutes the only modification made to HybridGNet.

Baselines and heterogeneous UNet training: We propose
to compare the HybridGNet with two pixel-level segmenta-
tion models: a UNet [3]] with residual convolutional blocks,
trained with a compound cross entropy and soft Dice loss
[18]; and a nnUNet [4] trained with its self-configuring
method. We also propose to train the UNet in the same
heterogeneous training (HT) setup as the HybridGNet for fair
comparison. In UNet HT, each training batch contains a spe-
cific set of labels, and we avoid back-propagating the gradient
loss for unseen labels in the batch. We implement this method
simply treating each anatomical structure as an independent
binary segmentation problem. The UNet HT model thus has
one independent output feature map per anatomical structure,
akin to a multi-label classification problem. We apply a sig-
moid non-linearity to each output segmentation map. We use
binary cross-entropy and a modified soft Dice loss function
to allow using a single feature map, instead of the standard
one-hot encoding used when classes are mutually exclusive.
At test time, the sigmoid outputs are just thresholded at 0.5,
obtaining an independent binary map for each structure.



M y St Padchest JSRT
Model Trained in Lungs Lungs Lungs Heart Lungs Heart Clavicles
MSE Dice HD | MSE Dice HD | MSE Dice HD MSE Dice HD | MSE Dicce HD MSE Dice HD MSE Dice HD
L (Both) 1284 097 274 | 1429 097 325 | 1521 096 36.6 - - - 1202 097 33.0 - - - - - -
LH (Strict)  295.6 095 385 | 2644 095 43.1 |201.8 095 410 3517 094 368 | 1557 097 363 3824 094 345
HybridGNet ~ LH (Full) 1044 097 278 | 1459 097 328 | 187.0 096 388 3420 094 360 | 1248 097 310 3758 094 338 - - -
LHC (Strict) 571.5 094 492 | 4860 093 51.1 | 4802 0.92 568 13170 0.87 709 | 1394 097 339 413.1 093 357 834 084 208
LHC (Ful) 1107 097 262 | 1487 096 332 | 1720 096 37.1 2350 094 305 | 1222 097 31.1 3908 094 342 1011 082 229
L (Both) - 098 533 - 098 533 - 0.96 852 - - - - 0.95 99.9 - - - - - -
LH (Strict) 0.96 734 0.96 1312 096 894 093 805 095 101.1 094 517
UNet LH (Full) 097 70.0 096 74.0 0.96 948 0.89 752 0.95 103.8 094 518 - -
LHC (Strict) 090 1824 091 217.6 0.89 227.1 0.87 2208 097 675 0.94 67.6 0.93 4438
LHC (Full) 097 725 097 727 0.96 106.1 091 76.7 0.98  63.0 0.94 545 091 49.2
L (Both) 0.98  26.1 0.97 323 096 402 - - 098 31.1 - - - -
LH (Strict) 0.97 451 0.96 533 096 405 095 329 098 263 095 29.0
nnUNet LH (Full) 098  34.0 097 352 0.96 37.4 0.94 345 098 28.6 0.95 309 - -
LHC (Strict) 093 120.5 092 121.0 093 836 0.89  80.4 0.98 35.0 095 295 0.95 14.1
LHC (Full) 098 253 097 352 096 393 095 333 0.98 35.6 0.95 31.1 0.93 38.1
L (Both) 097 469 097 78.7 0.96 70.0 - ° 0.95 106.1 = ° = =
LH (Strict) 096 74.8 096 131.6 0.96 749 0.94 80.2 0.95 105.6 0.94 584
UNet HT LH (Full) 098  60.5 097 57.8 096 87.9 0.93 1256 0.95 100.2 0.94 59.4 - -
LHC (Strict) 091 1685 091 2048 090 223.6 0.87 199.0 098 78.1 094 822 094 283
LHC (Full) 097 726 097 77.1 0.96 66.1 093 878 098 552 094 476 0.94 43.6

Table 1. Quantitative results for both landmark and pixel-based baselines: Results show an increase in performance when
combining heterogeneous labels (Full) compared to those cases where only images with all the required annotations (Strict) are
available. Blue: images from the target dataset are present at training time. Red: images from the target dataset are not present
during training. Green: heterogeneous setting, all datasets are present during training.

Training details: As not all labels are available for each
dataset, we took into account the label availability and de-
vised two different training settings: Strict and Full. While
Strict indicates that only datasets annotated with the particu-
lar listed labels were used, Full indicates that all datasets were
used for training (resulting in an heterogeneous label setting).
Thus, we trained models in the following settings:

e Strict training setting:

— LH: Models were trained to predict lung and heart, us-
ing only images that had both lung and heart annota-
tions (i.e. JSRT and Padchest datasets).

— LHC: Models were trained to predict lung, heart and
clavicles, using only images that had all annotations
available (thus, just JSRT dataset).

¢ Full training setting:

— L: Models were trained with all datasets to predict only
lungs. This case can also be considered Strict, since
all datasets have lung annotations available.

LH: Models were trained to predict lungs and heart us-
ing all datasets in an heterogeneous annotation setting,
i.e. some images had only lung annotations (Mont-
gomery and Shenzhen) and others had lung and heart
(JSRT and Padchest).

LHC: Models were trained to predict lungs, heart and
clavicles using all datasets in an heterogeneous setting,
i.e. some images had only lung annotations (Mont-
gomery and Shenzhen), some had lung and heart (Pad-
chest), while some had the 3 structures (JSRT).

Artificial removal of labels: As we will discuss in the next
section, our experiments show that naively trained pixel-level
approaches learn to map anatomical structures to datasets
where they were annotated, failing to segment them in
datasets where these structures are not labeled. However,

as we do not have ground-truth for these structures, we can-
not show this quantiatively. To overcome this limitation and
provide quantitative support for our claims, we took the two
datasets with more than one annotated structure (JSRT and
Padchest), and artificially removed one of the organs during
training. This resulted in 4 different experiments, where we
can compute quantiative results for labels that were not seen
during training: removing lungs from JSRT (Exp 1), remov-
ing heart from JSRT (Exp 2), removing lungs from Padchest
(Exp 3) and removing heart from Padchest (Exp 4).

3. RESULTS, DISCUSSION AND CONCLUSIONS

Figure 1| shows one of our main findings: when trained with
heterogeneous labels associated to different datasets (i.e. LH
(Full) and LHC (Full)), naive pixel-based methods segment
only those ROIs that were annotated in the corresponding
dataset (see first two cases highlighted in pink). Meanwhile,
the UNet HT model which is aware of the heterogeneous
labels by ignoring annotations not present in every specific
dataset, only segments classes that are not in conflict (i.e. we
say a pixel class is in conflict if it is considered to be part of
one class for a specific dataset, but also part of a different class
in other datasets, like clavicles). Instead, the HybridGNet al-
ways predicts the complete set of anatomically plausible seg-
mentations. This effect is present on all the samples for each
dataset. UNet and nnUNet clearly memorize which structure
was annotated in what dataset, and use the multi-centric dis-
tribution shift as a shortcut to decide what ROIs should be
segmented in every test dataset. UNet HT overcomes this is-
sue for the heart masks, as we make it aware of heterogeneous
labels by ignoring classes that are not annotated in specific
datasets, but still fails with the clavicles, as they conflict with
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Fig. 2. Latent space inspection via UMAP embeddings:
Different datasets are shown in colors, allowing to see how
both UNet and UNet HT models tend to clusterize images per
dataset, while HybridGNet doesn’t, explaining the improved
robustness to domain-label memorization.

lung labels. On the contrary, HybridGNet is forced to predict
all ROIs by construction, using the anatomical priors encoded
in the learned latent space to infer the organ position, even if
it was not present in that particular dataset.

To better understand the reasons behind domain memo-
rization, we performed dimensionality reduction on both the
latent space of the HybridGNet model and the bottleneck fea-
tures of the UNets. We analyzed the LHC (Full) models, and
used UMAP[19] for dimensionality reduction. Figure [2] (Left
column) shows the 2D projection of images from all datasets
for each model. UNet and UNet HT clearly clusterize sam-
ples per dataset. Since JSRT images tend to have much big-
ger lung area than the other datasets, we also experimented
scaling all images to have the same organ’s bounding box
area, discarding the potential clustering effect associated to
the lung size and not to the multi-center intensity shift. This
is shown in Figure [2] (Right column), where the clustering
was completely removed on the HybridGNet latent space, but
it did not affect the UNet and UNet HT. nnUNet results could
not be obtained due to the encapsulation of the training and
test framework, but are expected to behave similarly to the
naive UNet since both models share the same underlying ar-
chitecture. This clustering effect explains why memorization
issues happen in UNet and UNet HT, but not in HybridGNet.

JSRT Padchest
Model Trained in Lungs Heart Lungs Heart

Dice HD Dice HD Dice HD Dice HD
Exp 1 0.931 472 0941 312 | 0952 37.8 0942 314
. Exp 2 0970 340 0910 582 | 0953 405 0935 33.7
HybridGNet 03 10070 343 0941 323 | 0905 563 0946 314
Exp 4 0975 326 0939 319 | 0957 38.1 0.899 69.7
Exp 1 0.968 903 0.937 80.0 | 0.960 969 0.928 141.9
UNet HT Exp 2 0.980 57.3 0.860 340.6 | 0.960 69.6 0.923 116.6
Exp 3 0979 44.0 0941 46.7 | 0932 202.0 0.931 102.7
Exp 4 0979 534 0941 66.7 | 0960 633 0.872 1825
Exp 1 0.034 - 0937 565 | 0956 593 0935 823
UNet Exp 2 0979 658 0.027 - 0959 985 0936 1015
Exp 3 0977 56.1 0.938 714 | 0.035 - 0.921 153.7

Exp 4 0980 49.0 0.944 684 | 0961 950 0.039 -
Exp 1 0.000 - 0952 30.2 | 0963 434 0947 31.6
nUNet Exp 2 0.980 33.4 0.000 - 0.965 38.8 0.945 37.8
Exp 3 0.979 47.4 0.948 30.1 | 0.000 - 0.945 31.7

Exp 4 0981 32.1 0951 29.6 | 0964 382 0.000 -

Table 2. Artificially removed labels experiment. In red:
label was not present during training. In blue: label was
present during training.

Table [I] shows quantitative results for the different train-
ing scenarios, models and test sets. In general, we see that in-
corporating the Full dataset through heterogeneous labels im-
prove performance when compared to the Strict case, which
only employs images where all annotations are available. Per-
formance is only evaluated for ROIs available as ground-truth
in every dataset. As shown in Figure [I] for the heterogenous
settings (LHC (Full) and LH (Full)) UNet and nnUNet dras-
tically fail at segmenting structures that were not present dur-
ing training in the corresponding dataset. This is due to the
memorization issues and conflicting background/organ labels
in different domains. This would imply a Dice of 0 for UNet
and nnUNet if ground-truth were available for evaluation.

To quantify these results, we artificially removed labels
from datasets with more than one annotated structure (JSRT
and Padchest). Table [2| shows quantitative results for each
model, on the same test sets that Table E} While naive seg-
mentation models (UNet and nnUNet) drastically fail to seg-
ment missing structures in the corresponding datasets (show-
ing Dice of around 0), the methods that are aware of heteroge-
neous labels (HybridGNet and UNet HT) slightly reduce their
performance, but can still recover the anatomical structure.
More importantly, note that HybridGNet largely outperforms
UNet HT in terms of HD distance for the missing labels (in
red), while it is competitive in terms of Dice coefficient.

Conclusions. Here we show how HybridGNet can deal with
heterogeneous labels in multi-center scenarios, where state-
of-the-art UNet and nnUNet drastically fail. Moreover, the
UNet HT model trained to be aware of heterogeneous labels
by ignoring missing structures proved to be useful in avoid-
ing contradictory signals between missing annotations and the
background. However, this is not enough when there are con-
tradictory signals between organs. In these cases, landmark-
based models like HybridGNet offer a simple framework
which can easily handle overlapping structures, particularly
heterogeneous labels in multi-center scenarios.
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