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ABSTRACT

The success of deep learning relies heavily on large labeled
datasets, but we often only have access to several small datasets
associated with partial labels. To address this problem, we
propose a new initiative, “Label-Assemble”, that aims to un-
leash the full potential of partial labels from an assembly of
public datasets. We discovered that learning from negative
examples facilitates both computer-aided disease diagnosis and
detection. This discovery will be particularly crucial in novel
disease diagnosis, where positive examples are hard to collect,
yet negative examples are relatively easier to assemble. For
example, assembling existing labels from NIH ChestX-ray14
(available since 2017) significantly improves the accuracy of
COVID-19 diagnosis from 96.3% to 99.3%. In addition to
diagnosis, assembling labels can also improve disease detec-
tion, e.g., the detection of pancreatic ductal adenocarcinoma
(PDAC) can greatly benefit from leveraging the labels of Cysts
and PanNets (two other types of pancreatic abnormalities),
increasing sensitivity from 52.1% to 84.0% while maintaining
a high specificity of 98.0%. Code is available here.

Index Terms— Partial label, diagnosis, detection

1. INTRODUCTION

Recent years have witnessed an increasing number of datasets
becoming publicly available thanks to the collective efforts of
imaging data archives [1]] and international competitions [2, |3].
These datasets are collected, organized, annotated differently,
and often come with partial labels. Very few studies have been
done to unleash the full potential of an assembly of multiple
datasets with partial labels. The challenge is that labels in
those public datasets are often incomparable, heterogeneous,
or even conflicting [4}15]. In this paper, we ponder the question:
Can we integrate and exploit such a great number of publicly
available datasets with partial labels to achieve an improved
computer-aided diagnosis and detection of specific diseases?

To address this question, we start by probing a principal
hypothesis (see §2.1): a dataset that is labeled with various
classes can foster more powerful models than one that is only
labeled with the class of interest. Consequently, we propose
a new initiative of “Label-Assemble” for leveraging partial
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labels from an assembly of data on hand. Specifically, we
develop a new class query to encode different visual tasks,
which can dynamically integrate partial labels across different
datasets (detailed in §2.2). It is noteworthy that the conven-
tional classification must have a predefined and fixed number
of categories, but our class query trained with a question-
answer manner can handle arbitrary, varying categories, thus
becoming more suitable for multiple datasets with partial
labels. Furthermore, pseudo labels and consistency constraints
are introduced for the missing part of labels and for mitigating
the domain gap across different datasets (see Figure[IB).

We validate the effectiveness of Label-Assemble in both
computer-aided disease diagnosis and detection, supported by
two clinical applications. (I) Assembling existing labels from
ChestXray14 (available since 2017) significantly improves the
accuracy of COVID-19 diagnosis from 96.3% (previous state
of the art [6]]) to 99.3%. The experiments show that assem-
bling pathologically-related labels can improve the diagnosis
accuracy of the interested disease. (II) Assembling partial
labels can also help disease detection, e.g., the detection of
pancreatic ductal adenocarcinoma (PDAC) can greatly benefit
from leveraging the labels of Cysts and PanNets (two other
types of pancreatic abnormalities), increasing sensitivity from
52.1% (previous state of the art [[7]]) to 84.0% and maintaining
a high specificity of 98.0%. The experiments also verify
that assembling spatially-related labels can help detect the
interested disease more precisely.

In summary, the improved results from Label-Assemble
are attributable to our simple yet powerful observation: learn-
ing from the classes of “negative examples” can better delimit
the decision boundary of the class of interest. This observa-
tion agrees with the concept of “Near Misses™ [8, 9], which
proposed to construct negative examples near the decision
boundary to facilitate the learning of visual recognizers. These
results also suggest that rather than chasing for labels of the
interested class, assembling labels of alternative classes can
also lead to a substantial performance gain, especially for the
minority class, e.g., rare and novel diseases. To our best knowl-
edge, this study is among the first to systematically examine
the rationale of assembling multiple datasets and fully exploit
the potential of partial labels—the latest attempts [[10} |11} [12]
built models on the labeled part of the data only.


https://github.com/MrGiovanni/LabelAssemble
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Fig. 1: Overview. Our proposed framework is capable of harnessing partially labeled and unlabeled data from heterogeneous
sources (e.g., COVID-19 and non-COVID public datasets). A. With the same amount of data, learning from classes of “negative
examples” benefits the learning of the interested class (see §2.1). This observation is verified by six classification tasks and
two detection tasks, serving as the foundation of the Label-Assemble initiative. B. Labels in an assembly of public datasets are
incomparable and conflicting—negative examples in the COVID-19 dataset can include the positive class in other datasets. A
shared CNN extracts image features, and then a prediction head generates the predictions by inner producting features and class
queries. A supervised loss (Lpce) is used if the label is given; two unsupervised losses (Lpseudo & Lconsist) are used if the label is
absent. C. Assembling labels of other chest diseases improves lung nodule classification. The performance gain is positively
correlated to inter-class similarity between nodule and the assembled disease (see §3.1). The Pearson Coefficient is r = 0.83;
p = 4.93e-4. Assembling 1,000 labeled COVID-19 images with public data (available since 2017), we achieve significantly
higher performance than the previous state-of-the-art method, which required over 15,000 labeled COVID-19 images. Again,
pathologically similar diseases (i.e., Pneumonia) lead to greater improvement in computer-aided diagnosis of COVID-19.

2. LABEL-ASSEMBLE respectively. In the ChestXray and CheXpert datasets, five
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common chest diseases, i.e., “cardiomegaly”, “pneumonia”,
“atelectasis”, “edema”, “effusion”, are the interested classes.
FigureE]A shows that in all six datasets, the multi-class classi-
fier consistently outperforms the binary classifier in identifying
the interested classes. We attribute the deficient performance
of the binary classifier to the lack of fine-grained labels in
negative examples. Now, we have reached a conclusion that
learning from the classes of “negative examples” can better
delimit the decision boundary of the class of interest. This
conclusion has the potential to accelerate the development
circle of computer-aided diagnosis and detection of novel
diseases (e.g., COVID-19 in late 2019), whose positive label
is hard to collect, yet negative labels are usually available
and relatively easier to assemble. Normally, one would not
consider using extra labels that seem unrelated to the interested
class, but we find that those existing datasets, even if they were

2.1. Motivation

We hypothesize that a dataset that is labeled with various
classes can foster more powerful models than one that is only
labeled with the class of interest. To validate this point, we
use six multi-class datasets. For comparison, we train a multi-
class classifier and a binary classifier, wherein the interested
class is labeled as positive, and the rest classes are negatives.
The goal is to classify the interested class. Note that the
total numbers of images are the same for training the two
classifiers—the only variation is that the makeup of negatives
is unknown in the binary classifier, yet it is known in the
multi-class classifier. Let “melanoma”, “distal convoluted
tubule”, “zero”, and “cat” be the interested classes in the
DermaMNIST, TissueMNIST, MNIST, and CIFAR10 datasets,



not created for the novel disease, are helpful for improving the
performance and reducing annotation efforts (Figure[T[C). This
has motivated the initiative of Label-Assemble, underlining
the necessity of combining multiple datasets with diverse (yet
partial) labels.

2.2. Methodology

Dynamic adapter with learnable class queries. The strat-
egy of set prediction was initially proposed for question-and-
answer tasks in NLP and has recently demonstrated its power
in vision tasks, such as object detection (e.g., DETR [13]),
semantic segmentation (e.g., MaskFormer [14]), and medical
imaging (e.g., DoDNet [10]. In light of its flexibility and
effectiveness, we leverage this training strategy to address the
partial label problem for the tasks of disease diagnosis and
detection. Specifically, we introduce class queries, which are
initialized as one-hot vectors of each class and are learnable
during the training (differ from [10]). The class query is con-
verted into a tensor with the same dimension as image features
using a single fc layer. Then a prediction head, technically
a linear classification layer, can generate the predictions by
integrating features and class queries via inner product opera-
tions. As shown in Figure[TB, given class queries (¢) and input
image (z), our dynamic adapter can compute the output (a) as
a = w(q; 0y) * f(x), where * is the inner product operation,
w is the fully connected layer transforming class queries to
classification parameters, and f is the feature extractor (CNN).
Subsequently, binary cross entropy loss is used if the label (y)
is provided, i.e., Lpce = —(y - log(a) + (1 — y) - log(1 — a)).
Pseudo labels & consistency constraints. To unleash the full
potential of unannotated labels, we introduce a sharpening
operator to generate pseudo-labels, i.e.,
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where a is the pseudo-label of the answer, ¢ is the sharpen
temperature, and 7 is the threshold (7 = 0.5 in our experi-
ments). The prediction beyond (below) the threshold 7 can
be assigned to a higher (lower) score controlled by ¢. If
t = oo, there is no pseudo-labeling; if ¢ = 1, the model
converts a soft label to a completely hard label (either 1 or
0, equivalent to FixMatch [[15]). With the sharpening oper-
ator, the loss enables the model to operate self-training on
unlabeled data, i.e., Lpseudo = |@w — &w||§, where a,, and
ao denote the answer of weakly augmented images and its
sharpened pseudo-labels, respectively. To reduce the domain
gap across the heterogeneous data sources, we further em-
ploy consistency constraints on weakly augmented (a,,) and
strongly augmented (as) images. The consistency loss can be
formulated as Leonsist = ||as — C~LwH§.

Overall loss function. The overall loss function consists of
binary cross-entropy regularization for annotated labels as well

as pseudo labels & consistency constraints for unlabeled ones,
i~e~’ Etolal = Ebce + [fpseudo + £consist' Note that 'Cpseudo and
Leconsist are computed after a few warm-up epochs when the
model predictions become fairly stable.

3. EXPERIMENT, RESULT, AND DISCUSSION

Dataset & metric. 'We evaluate our method on two com-
puter vision datasets (i.e., MNIST, CIFAR10), seven public
medical datasets (i.e., COVIDx CXR-2 [6], CheXpert [16],
ChestX-ray14 [17]], DermaMNIST, TissueMNIST, OrganAM-
NIST, RetinaMNIST [[18]]), and two private medical datasets
(i.e., JHH and HMS) [7]. Following prior metrics for bench-
marking, we evaluate the performance using Area Under the
Curve (AUC) for disease diagnosis; sensitivity and specificity
for disease detection. All experiments are performed by a
statistical analysis based on an independent two-sample ¢-test.

Baseline & implementation. We compare our method with
three types of baselines: 1) the multi-network strategy [19]]
(one-model-one-task), 2) multi-source learning algorithms
[20,[10]], and 3) SOTA algorithm [21} 22, [23| 24} 25] on NIH
ChestX-ray14 and Standard CheXpert. For a fair comparison,
we choose DenseNet121 as the backbone. All experiments run
64 epochs and utilize Adam optimizer with an initial learning
rate of 2e-4. We reduce the learning rate by a factor of 2.0 on
the plateau with 5 steps of patience. Early stopping patience
is set to be 10 epochs. The pseudo-label threshold 7 and the
sharpen temperature ¢ are 0.5 and 4.0, respectively.

3.1. Assembling partial labels improves disease diagnosis

As shown in §2.1] learning with additional “negative exam-
ples” improves the performance of the interested class(es).
For example, assembling existing labels from ChestXray14
significantly improves the accuracy of COVID-19 diagnosis
from 96.3% to 99.3% and improves the AUC of nodule di-
agnosis from 0.69 to 0.78. However, how much different
classes of “negative examples” contribute to the performance
remains unknown. We further delve into this problem and
find that the performance gain is positively related to the
pathological similarity between the interested class and the
added classes. Figure illustrates the improvements of
classifying “Nodule” by assembling images of 13 different
diseases. The Pearson correlation coefficient between the
similarity[] and the performance gain is 0.83, which indicates a
significant positive correlation (p = 4.93e-4). This means that
assembling pathologically similar classes is more beneficial
than dissimilar classes for the interested class. A similar
observation is obtained in the example of COVID-19 diagnosis
(see gray bars in Figure[T[C). In practice, it is hard to obtain
enough labels for training since novel diseases have limited
positive examples. By assembling similar diseases from other

IThe similarity is quantified by the Cosine distance between the two
learned class queries (see Figure[TB and §27).



Table 1: Assembling 75,310 partial labels, our method outperforms other methods developed for partial labels, and performs on
par with the method learning from 105,434 full labels, eliminating the need for additional 40% annotation costs. The performance
is measured by AUC. No significant difference (p > 0.05) between ours (75K partial labels) and DenseNet (105K full labels).

CheXpert (val) ChestX-ray14 (val)
Method #labels | Card?  Pneul’  Atelf Edema Effusion Average | Cons’  Pneu2® Atelf Edema Effusion Average
DenseNet [19] 37,655 0.646 0461 0.431 0.791 0.800 0.626 0.693  0.640 0.688  0.737 0.783 0.708
Med3D [20] 75,310 0.751 0.629  0.663  0.839 0.836 0.744 0.700  0.758  0.718  0.732 0.788 0.739
DoDNet [10] 75,310 0.778 0598  0.646  0.859 0.845 0.745 0.706  0.756  0.721 0.745 0.769 0.740
Ours 75,310 0.832  0.675 0.702  0.867 0.886 0.792 0.744  0.805 0.813 0.710 0.778 0.770
DenseNet [19] 105,434 | 0.835 0.683 0.699  0.864 0.885 0.793 0.719  0.810 0.740  0.811 0.812 0.778

TCard, Pneul, Atel, Cons, Pneu2 denote Cardiomegaly, Pneumonia, Atelectasis, Consolidation Pneumothorax, respectively.

publicly available datasets, the model can better identify novel
diseases, thus relieving the long-tail problem in computer-
aided diagnosis. Interestingly, pseudo labels and consistency
constraints can largely eliminate the requirement of similar dis-
eases, suggesting that assembling any chest disease (regardless
of the specific classes) can achieve equally high performance
of COVID-19 diagnosis (see red bars in Figure [T[C). These
results are encouraging, but more investigation will be needed.

3.2. Assembling partial labels improves disease detection

JHH and HMS datasets are used to detect PDAC from CT
scans. The detection of PDACs can be influenced by other
types of pancreatic abnormalities, e.g., pancreatic cysts and
Pancreatic Neuroendocrine Tumors (PanNETs), regarding
their appearance, intensity, texture, and so on. With the
same number of training cases (1,195) from JHH, we train
two models: the first one only segments PDACs from the
background, and the second one is trained to segment all three
types of tumors from the background. These two models are
evaluated on the JHH test set and HMS on the performance of
detecting PDACs. As shown in Figure[TJA, the performance
of PDAC detection in JHH test set increases from 52.1% to
84.0% by exploiting labels of Cysts and PanNETSs, while
maintaining a high specificity of 98.0%; the performance of
PDAC detection in HMS test set increases from 81.5% to
93.5%, while maintaining a high specificity of 90.2%.

3.3. Combining partial labels vs. full labels

We also compare with the methods [20} [10] developed for
partial labels. Med3D [20] adopts the multi-network strategy
(one-model-one-task) and DoDNet [[10] learns multiple tasks
in one network with shared feature extractor. Our method
differs from them in two perspectives: (1) our adapter with
updated encodings enables the model to capture the relations
of classes and benefits multi-label learning, and (2) we use
pseudo-labeling and consistency loss to exploit unannotated
data. To adapt their method to our setting, we utilize 15,062
images from ChestX-ray14 and CheXpert with seven diseases
labeled and three out of the seven diseases are shared between
the two datasets. The results in Table[] indicate that (I) our

method with the adapter and semi-supervised learning frame-
work achieves a better performance of multi-task learning, and
(II) our method enables learning from partial labels to perform
on par with that from full labels while eliminating an additional
annotation cost of 40% (75,310 partial labels vs. 105,434 full
labels). The obtained results indicate that it is not necessary
to complete the missing labels in an assembly of multiple
partially labeled datasets.

3.4. Exceeding Prior Arts in NIH ChestX-ray14

Table 2: Label-Assemble achieves the best mean performance
over all 14 thorax diseases on ChestXray-14 (official split).

Ref. & Year Architecture mAUC
Ma et al. [23] MICCAI 2019 DenseNet (x2) 0.817
Hermoza et al. [22] MICCAI 2020 DenseNet121 0.821
Kim et al. [21] CVPR 2021 DenseNet121 0.822
Taslimi et al. [24] arXiv 2022 SwinT 0.810
Xiao et al. 23] WACYV 2022 ViT-S 0.823
Ours DenseNet121 0.832

Table [2] shows that assembling partial labels from publicly
available datasets sets a new state of the art on ChestX-ray14
(mAUC = 0.832), yielding the best performance on 13 out of
14 diseases. Similarly, Label-Assemble is also effective on the
CheXpert dataset with a 1.8% improvement over the baseline.

4. CONCLUSION

We propose a new initiative, Label-Assemble, to explore the
full potential of an assembly of publicly available datasets
with partial labels. The rationale of the initiative is validated
on a total of six medical datasets, showing that assembling
pathologically-related and spatially-related labels are preferred
for disease diagnosis and detection, respectively. This is partic-
ularly valuable for novel disease diagnosis, underlining the role
of an assembly of existing labels of related diseases, rather
than narrowly pursuing expensive labels for the interested
class. This work represents the foremost step towards creating
large-scale, multi-center, fully-labeled medical datasets—one
of the foundations of fostering future research in deep learning
applied to medical images.
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