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Learning Vector Quantized Shape Code for
Amodal Blastomere Instance Segmentation

Won-Dong Jang∗, Donglai Wei, Xingxuan Zhang, Brian Leahy, Helen Yang, James Tompkin, Dalit
Ben-Yosef, Daniel Needleman, and Hanspeter Pfister

Abstract— Blastomere instance segmentation is impor-
tant for analyzing embryos’ abnormality. To measure the
accurate shapes and sizes of blastomeres, their amodal
segmentation is necessary. Amodal instance segmentation
aims to recover the complete silhouette of an object even
when the object is not fully visible. For each detected
object, previous methods directly regress the target mask
from input features. However, images of an object under dif-
ferent amounts of occlusion should have the same amodal
mask output, which makes it harder to train the regression
model. To alleviate the problem, we propose to classify
input features into intermediate shape codes and recover
complete object shapes from them. First, we pre-train the
Vector Quantized Variational Autoencoder (VQ-VAE) model
to learn these discrete shape codes from ground truth
amodal masks. Then, we incorporate the VQ-VAE model
into the amodal instance segmentation pipeline with an
additional refinement module. We also detect an occlusion
map to integrate occlusion information with a backbone
feature. As such, our network faithfully detects bounding
boxes of amodal objects. On an internal embryo cell image
benchmark, the proposed method outperforms previous
state-of-the-art methods. To show generalizability, we show
segmentation results on the public KINS natural image
benchmark. To examine the learned shape codes and model
design choices, we perform ablation studies on a syn-
thetic dataset of simple overlaid shapes. Our method would
enable accurate measurement of blastomeres in in vitro
fertilization (IVF) clinics, which potentially can increase IVF
success rate.

Index Terms— Blastomere segmentation, Cell segmenta-
tion, Amodal segmentation, Shape prior, Vector Quantiza-
tion, Autoencoder.

I. INTRODUCTION

INFERTILE couples worldwide use In-Vitro Fertilization
(IVF) to treat their infertility. In a typical IVF treatment,

clinicians stimulate the woman to produce many eggs, fertilize
those eggs, and culture the resulting embryos for 3–5 days. The
clinicians then visually inspect the embryos, select the one that
appears most likely to form a viable pregnancy, and transfer it
back to the mother. To aid in embryo selection, many modern

W. Jang, D. Wei, B. Leahy, H. Yang, H. Pfister, D. Needleman
are with the School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA. corresponding author email: wd-
jang@g.harvard.edu

X. Zhang is with the School of Engineering, Jiaotong University,
China.

J. Tompkin is with the Department of Computer Science, Brown
University, Cambridge, MA, USA.

D. Ben-Yosef is with the Tel Aviv Sourasky Medical Center

Conv Layers

(c) Previous Approach (d) Our Approach

VQ CodeROIAlign Amodal Mask

2 … 2

… …

1 … 0

(b) Cars (Opaque)(a) Blastomeres (Translucent)

Fig. 1. Amodal instance segmentation. We show an image and
its amodal segmentation mask for two common cases: (a) translucent
objects overlapping with each other, and (b) opaque objects occluding
each other. (c) Previous approaches directly regress the amodal mask
from the region of interest (ROIAlign) features. (d) Instead, we first learn
a vector quantized (VQ) shape code from ground truth amodal masks,
and then classify ROIAlign features into these discrete codes.

clinics employ sophisticated time-lapse imaging systems [1]
that record three-dimensional videos of the embryos as they
develop.

One feature known to be predictive of an embryo’s viability
is the shape and symmetry among the cells in the early
developing embryo, which are known as blastomeres [2].
However, current clinical practice is to visually score the
symmetry at a few distinct points in time, which is time-
consuming, inaccurate, and omits much information about the
embryo, especially when time-lapse imaging is used. This
makes replacing visual symmetry scoring with automated
blastomere segmentation a prime candidate for improving
clinical IVF practice.

However, while clinics have collected a lot of embryo im-
ages from IVF cycles, most existing blastomere segmentation
algorithms [3]–[7] use hand-crafted features instead of data-
driven approaches. Since hand-crafted methods are tailored to
a certain dataset, they may not be robust on different datasets
that are collected in varying environments. In this work,
we propose a convolutional neural network, which performs
amodal visual reconstruction for blastomere segmentation.

Amodal visual reconstruction, predicting the complete shape
of partially-visible objects, is part of human ordinary per-
ception. Two common examples of this are: 1) translucent
objects visually overlap within the camera’s view, such as

ar
X

iv
:2

01
2.

00
98

5v
1 

 [
cs

.C
V

] 
 2

 D
ec

 2
02

0



2 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

when observing biomedical images of cells (Fig. 1a), and 2)
opaque objects occlude each other and only a portion of the
object is visible, such as when looking down a street at a
row of parked cars (Fig. 1b). Beyond its importance in cogni-
tive psychology, amodal visual perception can greatly benefit
computer vision applications in practice. With it, biologists
can examine new hypothesis through automatic large-scale cell
shape measurement from light microscopy images and robotic
agents can better navigate through complex environments with
partially visible objects.

Unlike the typical instance segmentation setting, which only
requires us to label the visible pixels [8]–[11], our wish
to predict the shape for invisible or partially-visible object
regions requires us to fit a model of shape to the image.
Classic solutions have tried known rigid templates of the
target object [12], statistical models which capture object
shape variation [13], or discriminative parts-based models
learned from a dataset [14] potentially with explicit occlusion
reasoning [15].

Many recent deep-learning-based models have been pro-
posed for amodal segmentation [16]–[21]. However, these ap-
proaches often do not have prior knowledge of the underlying
shape, which makes the shape difficult to predict from instance
observations under different amounts of occlusion. Further, un-
like normal instance segmentation, images of an object under
different amounts of occlusion should have the same amodal
mask output. Thus, it will be more robust to classify input
features into an intermediate robust representation instead of
working on the pixel-level.

To exploit this additional information, we propose to learn
discrete supervised learning amodal instance segmentation
algorithm for partially-visible objects. From binary masks of
our object class, we create a deep shape prior as an embedding
space with a vector quantized-variational autoencoder (VQ-
VAE; [22]). Then, we train our segmentation model to predict
the latent representation of an object mask in a bounding box.

Segmentation performance of proposal-based instance seg-
mentation methods [9], [10] highly depends on the bounding
box quality. In amodal segmentation, occlusion makes having
accurate bounding boxes even more difficult. To tackle this
occlusion problem, we add an occlusion detection module to
a backbone network. This allows our network to propose better
bounding boxes by integrating the occlusion information with
the backbone features.

We experiment with a real embryo cell biomedical dataset.
Furthermore, we conduct experiments on a synthetic dataset
and natural images of street scenes via the KINS dataset [23] to
show generalizability of our method. Our approach of encod-
ing objects outperforms state-of-the-art instance segmentation
algorithms [9], [21] on both the translucent and occluded types
of tested partial visibility.

In summary, our contribution is to propose a novel formu-
lation that incorporates a vector quantized shape code into
the amodal instance segmentation pipeline. Additionally, we
exploit occlusion information when detecting and segmenting
amodal objects via occlusion detection, which can be a new
direction for amodal segmentation. This method achieves state-
of-the-art performance on not only an internal biomedical

image dataset but also the KINS natural image dataset. Finally,
to the best of our knowledge, this is the first approach that
applies amodal instance segmentation method to blastomere
segmentation.

II. RELATED WORKS

Blastomere Segmentation: Traditional methods predict se-
mantic blastomere masks using hand-crafted features without
the instance-level segmentation. Khan et al. [7] set seeds
inside and outside of cells and optimize Markov random field
for segmentation. Rad et al. [3] and Kheradmand et al. [6]
generate blastomere candidates from extracted edges and select
the best candidate with in terms of edge coverage. Sidhu and
Mills [4] apply thresholding and morphological operations to
find the regions of blastomeres and find centers of each cell
by measuring distances from pixels to the closest boundary.

Cell-Net proposed by Rad et al. [5] is the closest method
to ours, training a convolutional neural network for cell local-
ization. However, Cell-Net only predicts blastomere centers,
while we perform amodal instance segmentation.
Amodal Instance Segmentation: Partially-visible object seg-
mentation is typically studied in biomedical image analysis
where cells are often translucent. For nuclei segmentation,
Molnar et al. [24] fit a circular active contour model [25]
using multiple layered distributions of the number of nuclei
per pixel. Plissiti and Nikou [26] segment overlapping nuclei
by combining nuclei boundary features with priori knowledge
of nuclei shape. However, the proposed method works only
when given two nuclei centers and requires parameter tuning.
Lee and Kim [27] approach translucent cell data as a problem
of superpixel segmentation for seed location, and of contour
attribution and refinement via graph cuts. Böhm et al. [28]
segment translucent cell data by learning to lift the image
into 3D via a UNet architecture. In both cases, the shape of
the object is not specifically represented (e.g., implicitly via a
prior), which makes handling occlusion-based partial visibility
difficult.

Some works exist on more natural images, e.g., Kihara et
al. [29] exploit occlusion as a signal to recover full masks for
object instances via a Shape Boltzmann machine [30], but not
for translucent objects. Li and Malik [16] introduce the first
amodal segmentation method. They predict bounding-boxes
of modal parts of objects using the object detector [31] and
extract segmentation masks using a neural network accepting
a pair of an image and a bounding-box as the input. The pro-
posed algorithm iteratively updates segmentation masks by re-
computing the bounding-boxes from the output of the network.
Zhu et al. [17] announce datasets for class-independent amodal
segmentation. Multiple subjects annotate the BSDS dataset
to analyze the consistency between them. For computational
model comparison, they evaluate modal and amodal object
proposal algorithms on the proposed amodal COCO dataset.
Ehsani et al. [18] first perform amodal segmentation and then
apply a generative adversarial network to have a complete
object image by synthesizing the amodal area. Follman et
al. [19] predict amodal masks as well as visible masks for
occlusion reasoning. Hu et al. [20] present a synthetic dataset
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Fig. 2. VQ-VAE architecture containing the mask encoder, embedding
quantizer, and mask decoder networks.

for amodal instance level video object segmentation. Qi et
al. [21] present an amodal segmentation dataset, KINS, by
annotating the KITTI detection dataset. They also propose an
amodal segmentation network by adding occlusion classifica-
tion and amodal segmentation branches to the Mask R-CNN
framework [9].

Recently, Isack et al. [32] introduce the notion of K-
convexity, and demonstrated its application in translucent
instance segmentation via an energy minimization on an MRF.
This allows enforcing a convexity prior on the shape of an
instance (such as star [33], geodesic-star [34], hedgehog [35],
or regular [36]). However, K-convexity optimization requires
seed annotation for each object instance. In contrast, our
method learns pixel-wise shape priors and does not require
seed annotations.
Deep Learning for Shape Prior: These approaches are com-
mon in 3D shape completion. Wu et al. [37] reconstruct 3D
shapes by training shape priors from 3D skeleton parameters;
they also later consider the naturalness of reconstructed shapes
when training shape priors [38]. Dai et al. [39] transform
incomplete 3D scans into complete 3D shapes by learning
from template shapes. Stutz and Geiger [40] adopt a variational
autoencoder [22]. For detection-based instance object segmen-
tation, Kuo et al. [41] construct a set of prior masks for each
object class and align one of the templates within a bounding
box to use it as a shape prior for mask generation. However,
deep shape priors are less common for amodal segmentation,
where objects overlap each other.
Deep Learning for Vector Quantization: Vector quantization
methods have been widely used for image compression [42],
[43]. Recently, van den Oord et al. [44] proposed a vector
quantized variational autoencoder for image generation. They
show that the proposed method generates more realistic im-
ages using learned template codewords. Based on the vector
quantized variational autoencoder, Razavi et al. [45] developed
a hierarchical autoencoder, which encodes an input image in
high and low levels. While the high-level codewords contain
global information, the low ones have local features. The hier-
archical method synthesizes high-quality images by utilizing
both global and local information.

III. VECTOR QUANTIZED SHAPE CODE

Our goal is to learn a discrete representation of amodal
shape masks. With it, we can re-formulate the amodal in-
stance segmentation as a classification problem in the low-
dimensional latent space. Comparing to previous dense pixel-
level mask prediction, the proposed approach can be robust to

occlusion changes and regularized in geometry. To this end,
we train a vector quantized variational autoencoder (VQ-VAE)
model on the amodal masks to learn the vector quantized (VQ)
shape code.

Comparing Latent Variable Models: To learn a compact
representation of the input, variational autoencoder models
(VAE) [22] are commonly used with the Gaussian prior distri-
bution of the latent variable. VAEs learn a global continuous
code of the input with the mask encoder model E , which can be
decoded back for input reconstruction with the mask decoder
model D. To discretize the learned code, VAE-based clustering
methods jointly learn a codebook of embedding vectors that
serve as clustering centers. However, as the learned embedding
is global, it takes a large codebook for the input to find a
similar quantized code. It requires an even larger codebook
for a larger number of object categories. VQ-VAEs [44]
predict embeddings with spatial resolution and jointly learn
a global codebook (Fig. 2). With it, we can use the quantized
embeddings to reconstruct input with a limited codebook size.

VQ-VAE Model: The key component of VQ-VAE models
is the embedding quantizer module. During inference, the
mask encoder first transforms the input binary mask x into
a set of latent vectors e. Then, the embedding quantizer
assigns each latent vector to the nearest code in the pre-trained
codebook {q1, . . . ,qK}. Lastly, the mask decoder transforms
the quantized embeddings ê back into a binary mask.

Learning: The loss function combines a reconstruction loss,
a codebook loss, and a commitment loss. The reconstruction
loss is defined as the cross-entropy loss between input mask x
and the reconstructed mask D(ê). The codebook loss, which
only applies to the codebook, makes the selected codes ê close
to the predicted latent vector e. The commitment loss, which
only applies to the mask encoder, forces the latent vectors
E(x) to stay close to the matched codes to prevent excessive
fluctuations of codes. The full VQ-VAE loss function Lv is

Lv = ‖x−D(ê)‖22 + ‖[e]− ê‖22 + β‖E(x)− [ê]‖22, (1)

where the operator [.] stands for a stop gradient operation that
blocks gradients from flowing into its argument, and β is a
hyper-parameter, which is set to 0.25.

Implementation Details: The mask encoder has three con-
volution layers, two residual modules, and one convolution
layer. The stride for each convolution layer is 2, which reduces
the spatial resolution by half at each layer. For the three
convolutional layers, we use 32, 64, and 128 4 × 4 sized
filters, respectively. Thus, the mask encoder changes the spatial
resolution from H×W to H/8×W/8. In the last convolution
layer, we set the embedding dimension to 16 empirically.
Hence, the mask encoder yields a H/8 ×W/8 × 16 tensor,
which is a set of 16-dimensional latent vectors in embedding
space.

For the embedding quantizer, we set the number of code-
words K to 4 empirically, as binary masks are much easier
to model than natural images. Also, K codewords have K ×
H/8×W/8 possible combinations, which is large enough to
model binary object masks.
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Fig. 3. Overview of amodal segmentation pipeline. We start from an
instance segmentation pipeline, e.g., Mask-RCNN. We add the occlu-
sion detection module and replace the original FCN with the proposed
VQ-VAE segmentation module. The proposed segmentation model has
two steps: initial mask generation through VQ shape code prediction
and mask refinement for better localization.

The mask decoder has one convolutional layer, two residual
modules, and three deconvolutional layers. Note that each axis
of the input image is reconstructed to its original size via the
deconvolutional layers. At the end of the decoder, we add a
sigmoid layer to constrain values in the reconstructed masks
ranging from 0 to 1. The VQ-VAE model is trained separately,
and its parameters are fixed after training.

IV. AMODAL INSTANCE SEGMENTATION PIPELINE

We propose the VQ-VAE segmentation module to improve
amodal instance segmentation. We take the proposal-based
instance segmentation approach that contains two modules:
object detection and mask prediction (Fig. 3). We attach an
occlusion detection branch to object detection (Sec. IV-A) and
replace previous fully convolutinal network (FCN) with the
proposed module for mask prediction (Sec. IV-B). The whole
pipeline is trained end-to-end (Sec. IV-C).

A. Object Detection Module

Backbone: To extract effective features from the input image,
we use ResNet50 [46] as a backbone network, which is trained
using the ImageNet dataset [47]. We drop the average pooling
layer from the ResNet50 to use spatial features.
Bounding Box Detection: The region proposal network
(RPN) [31] takes features from the backbone network and
measures object existence probabilities and regression pa-
rameters of bounding boxes. We employ feature pyramidal
networks to extract features across five scales, and minimize
the sum of the loss functions at all scales. For each region of
interests (ROI), we predict regression parameters and classify
its object category.
Occlusion Detection: Unlike Faster-RCNN [31], our detection
module predicts both bounding boxes and a binary occlusion
map. Detecting locations of occlusions allows our object
detection module to predict accurate bounding boxes for
partially visible objects. Using the backbone features, we
estimate probabilities of each pixel being occluded {di} via
four convolution layers. We adopt the binary cross entropy
loss:

Lo = −
∑

i∈H×W
{li log di + (1− li) log (1− di)}, (2)
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Fig. 4. VQ-VAE segmentation module. We have two segmentation
stages: mask generation and mask refinement. We simultaneously
minimize the two loss functions, Le and Lr.

where H×W is the spatial resolution of the backbone feature
map and li is the ground-truth occlusion label at pixel i. We
concatenate the output of the second-to-last convolution layer
and the backbone feature map to exploit occlusion information
in the detection and segmentation modules.

B. VQ-VAE Segmentation Module

As shown in Fig 4, the proposed VQ-VAE segmentation
module has two steps: initial mask generation and mask
refinement. It first generates an initial mask through decoding
the predicted VQ-VAE shape code. Then, the refinement step
learns to better align the initial mask with the visible object
boundaries.

Initial Mask Generation: Given the instance-level feature
from the object detection module, we first predict the vector
quantized shape code and use a pre-trained VQ-VAE decoder
model to decode it into object masks with complete shapes.

We first predict a vector quantized shape code instead of a
pixel-level binary mask to capture complete shapes using VQ-
VAE. We use three convolution layers and one fully connected
layer to predict codewords of vector quantized shape code
c. We formulate the problem of vector quantized shape code
prediction as a classification problem. For the classification
target, we use the pre-trained VQ-VAE mask encoder E to
encode the ground truth instance mask g as shown in the
right block in Fig 4. One hot encoding makes the encoded
mask E(g) as a binary representation b. For the codeword
classification at each spatial location, the binary cross entropy
loss is defined as

Le = −
∑

i∈M×M×K
{bi log ci + (1− bi) log (1− ci)}, (3)

where M ×M is a spatial resolution of a vector quantized
shape code and K is the number of codewords.

We then feed the predicted VQ shape code c into the VQ-
VAE mask decoder D to obtain an initial mask.

Mask Refinement: The vector quantized shape code can be
powerful for shape completion, but the initial mask may not be
well-aligned with the detailed object boundary.We add another
mask refinement step that combine the instance-level feature
and the initial mask feature. To train the refinement decoder,
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we set its loss function as

Lr = −
∑

i∈N×N×C
wi {gi log(mi) + (1− gi) log(1−mi)},

(4)
where mi is the probability of a target object occurring at
pixel i. N ×N is a spatial resolution of the output mask and
C indicates the number of object categories. The weight wi is
1 for the channel of the ground-truth object class, otherwise
0.

C. Learning Strategy

During training, parameters in the region proposal network,
detection, mask generation, and refinement modules are up-
dated together to minimize the sum of the loss functions:
L = Lp + αLd + βLo + γLe + δLr, where Lp and Ld
indicate the losses for the region proposal network and the
detection module, respectively. Hence, we train the proposed
network in an end-to-end manner. Empirically, we set the
hyper-parameters α = γ = δ = 1 and β = 0.01.

D. Implementation Details

We provide implementation details of the proposed algo-
rithm including architectures and learning strategies.

Architecture: We shrink the spatial resolution of the ini-
tial mask using two convolution layers with strides 2. The
refinement network consists of four convolution layers and
two deconvolution layers. It outputs class-wise masks at each
output channel to decouple segmentation and classification.

Learning: We initialize parameters in the proposed networks
with random values except for the backbone network, which
uses weights from the ResNet50 [46]. We train the network
via the stochastic gradient descent optimizer. We set the initial
learning rate to 0.04, and reduce it to 0.004 and 0.0004 after
10,000 and 11,000 iterations, respectively. We train networks
for 12,000 iterations. We use a minibatch size of 16. It takes
less than two days to train the proposed networks.

Running time: We measure the average computational time of
the proposed algorithm on a single Titan X GPU. For images
whose shorter axis is fixed to 800, the average running time
is 1.75 frames per second. Note that we set the number of
proposals to 1,000.

V. EXPERIMENTS

We compare the proposed method with state-of-the-art
methods on a microscopy image dataset and a natural image
dataset. Then, we perform ablation studies on the natural
dataset to better understand each component and to validate
our design choices.

A. Experiment Setup

Comparison methods: For amodal instance segmentation,
we can use different object detection pipelines, e.g., Mask-
RCNN [9]. With the same pipeline, the proposed VQ-VAE

Fig. 5. Examples of cells in the embryo dataset. Cells are delin-eated
by boundaries with different colors.

TABLE I
COMPARISON OF MAP METRIC ON THE EMBRYO CELL DATASET.

Detection FCN [9] VQ-VAE (ours)
Mask R-CNN 0.649 0.665

segmentation module is compared with the fully convolutional
network (FCN) on two datasets.
Metrics: We use mean average precision (mAP), which is
standard for object instance segmentation [48]. Let APk de-
notes a predicted segmentation as correct if its mask inter-
section over union (IoU) is higher than k. mAP score is the
average of {APk} where k ranges from 0.5 to 0.95 at 0.05
intervals.

B. Main Results on Embryo Cell Images
In vitro fertilization clinicians predict embryo transfer suc-

cess by visually observing cell properties like size, granularity,
and cleavage (cell split) timing. Cell segmentation of embryo
images would automate this property collection for more
efficient prediction. Note that our method is more interpretable
by clinicians compared to predicting a single number (cell
count) from the input image [49].
Data: From the IVF clinic in Tel Aviv Medical Center, Israel,
we collect 11,671 embryo images, each with a spatial resolu-
tion of 500×500 pixels. The numbers of cells in each embryo
image varies from 2 to 8. Note that we exclude one cell images
to evaluate amodal instance segmentation methods. To obtain
ground-truth segments, we annotate cells and then ask experts
to proofread the annotations. We use 7,054 images for training
and the remaining 4,617 for testing. Fig. 5 show examples
of embryos and their ground-truth annotations for blastomere
instances. We observe that cells are highly overlapping and
only partially visible. The size of cells varies as cells cleave
and shrink.
Results: Table I compares the results of our proposed al-
gorithm with Mask R-CNN [9]. We report mean average
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Fig. 6. Results on embryo cell dataset. From top to bottom rows, we visualize input images, ground-truth cell masks, and results of FCN and the
proposed VQ-VAE, respectively. The segmented object masks are highlighted in coloured regions.

TABLE II
COMPARISON OF MAP INDICES ON THE SYNTHESIZED DATASET.

Detection FCN [9] VAE VQ-VAE (ours)
Mask R-CNN 0.809 0.849 0.865

precision metrics for the evaluation of the cell segmentation
methods. The proposed algorithm outperforms the baseline
methods. Qualitatively, we observe that the proposed network
faithfully detect embryo cells (Fig. 6). Even though partial
boundaries of cells are missing, the proposed algorithm gen-
erates masks accurately by considering the shape prior of
embryo cells.

C. Additional Results on Synthetic Images
To examine the learned vector quantized shape code and the

model design choices, we conduct controlled experiments on
a synthetic shape dataset.
Data: We synthesize a database of images containing triangles,
rectangles, and ellipses. Each image is 224×224, has up to 9
objects in random positions and orientations, with each object
set to a random color, and with a random background color. We
generate 5,000 training images and 1,000 evaluation images.
Comparing with VAE: We use the Mask-RCNN pipeline and
compare different shape modeling from FCN (no latent code),
VAE (continuous latent code) and VQ-VAE (discrete latent
code) modules.

Fig. 7. Qualitative comparison of the proposed algorithm to other mask
generation methods on the synthesized dataset. Instances are shown
with different colors.

Table II compares mAP indices of the three methods on
the synthesized dataset. The proposed VQ-VAE method is
better able to delineate complete shapes versus the other two
methods. Especially, there is a considerable margin between
the proposed algorithm and FCN.

Fig. 7 shows segmentation results for partially-visible object
segmentation. The proposed algorithm discovers these objects;
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Fig. 8. Comparison of shape completion abilities of our algorithm and
FCN.

TABLE III
COMPARISON OF MAP METRIC ON THE KINS DATASET [21].

Detection FCN VQ-VAE (ours)
Mask R-CNN 0.293 [9] 0.303
Mask R-CNN + ASN 0.311 [21] 0.315

though sometimes the baseline methods fail to predict full
geometric shapes. We provide more segmentation results in
the supplementary materials.
Robustness to Occlusion: We assess the occlusion handling
abilities of FCN and VQ-VAE when the perfect bounding
boxes are given. To this end, we design the following in
silico psychophysics experiment. Given an input shape, we add
another shape in front with different degrees of occlusion. We
feed these test images into the trained amodal segmentation
models with FCN or VQ-VAE modules.

We quantitatively compare the shape completion perfor-
mance of the proposed algorithm and FCN. Our algorithm
(0.968) outperforms FCN (0.935) in terms of IoU. Moreover,
as shown in Fig. 8, the proposed algorithm reliably complete
the full shapes of occluded objects. However, FCN makes soft
predictions on unseen regions, thus restored regions are blurry.

D. Additional Results on Natural Images

To demonstrate the general applicability of our proposed
method, we test on an amodal instance segmentation dataset
for natural images with a greater diversity of shapes.
Data: The KINS dataset [21] is a benchmark for amodal
instance segmentation algorithms, which is originally from the
KITTI dataset [50]. It consists of 7,474 training and 7,517 test
images of driving scenes. The annotated objects belong to one
of 7 object classes: pedestrian, cyclist, car, van, tram, truck,
and misc-vehicle. The KINS dataset provides both amodal and
inmodal ground-truth annotations.
Results: Table III lists mean average precision metrics of the
results of the proposed algorithm with Mask R-CNN [9] and

TABLE IV
ABLATION STUDY ON THE KINS DATASET [21].

Setting mAP
VQ-VAE 0.281
VQ-VAE + Refinement 0.298
VQ-VAE + Refinement + Occlusion map 0.303

Mask R-CNN + ASN [21]. Our proposed algorithm performs
better than the conventional FCN method on the Mask R-CNN
pipeline and yields a slightly better result on Mask R-CNN +
ASN. Qualitatively, it finds complete masks of occluded cars
(Fig. 9). In the last two rows in Fig. 9, the proposed method
fails to segment out cars on the left. This is because the non-
maximum suppression removes highly overlapped bounding
boxes.

Ablation Study: We perform two ablation studies on the
KINS dataset. We chose KINS over the embryo dataset
for more general analysis, since the objects in KINS have
more diverse shapes. We use Mask R-CNN in these studies.
First, we remove the occlusion detection branch (VQ-VAE +
Refinement). To this end, we train the network without the
loss function for occlusion detection Lo. Second, we exclude
the refinement decoder in the segmentation module (VQ-
VAE). To train the network without the refinement decoder,
we minimized the embedding loss Le only. We compare these
two settings with the full architecture (VQ-VAE + Refinement
+ Occlusion map) on the KINS dataset. Table IV lists the
mAP scores for each ablation setting. Our full architecture
performs 0.303 mAP, which is better than the other settings.
It indicates that all our components are necessary for accurate
amodal segmentation. The inferior performance of the setting
without refinement comes from the lack of low-level features.

VI. CONCLUSION

We proposed an image segmentation method for blastomere
instances, which outputs complete masks of cells automati-
cally. The proposed algorithm predicts bounding boxes first
and then generates masks. We show that it is effective to learn
a mapping from the bounding box features to a shape prior
embedding space from a VQ-VAE. This allows us to cope
with translucent cells. We also show the benefits of occlusion
detection for amodal object detection and segmentation. Our
method is applicable for any partially visible objects, not
only cells but also geometric shapes, cars, or pedestrians.
Experimental results on the embryo, synthesized, and KINS
demonstrated that our proposed algorithm outperforms state-
of-the-art object instance segmentation methods [9], [21].

Our future works include application to other objects in
natural scenes and expanding to biomedical problems that
suffer occlusions, such as human blood cell segmentation.
We also suggest proposal-free amodal segmentation networks
with the center prediction to achieve real-time running speed.
Lastly, by adopting generative adversarial networks [51], we
might be able to learn shape priors better.
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Fig. 9. Results on KINS dataset [23]. The segments are depicted by coloured regions. The object masks are generated using the Mask R-CNN
pipeline. The last two rows display failure cases of the proposed method.
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