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ABSTRACT

Graph neural networks (GNNs) have been successfully ap-
plied to early mild cognitive impairment (EMCI) detection,
with the usage of elaborately designed features constructed
from blood oxygen level-dependent (BOLD) time series.
However, few works explored the feasibility of using BOLD
signals directly as features. Meanwhile, existing GNN-based
methods primarily rely on hand-crafted explicit brain topol-
ogy as the adjacency matrix, which is not optimal and ignores
the implicit topological organization of the brain. In this
paper, we propose a spatial temporal graph convolutional net-
work with a novel graph structure self-learning mechanism
for EMCI detection. The proposed spatial temporal graph
convolution block directly exploits BOLD time series as in-
put features, which provides an interesting view for rsfMRI-
based preclinical AD diagnosis. Moreover, our model can
adaptively learn the optimal topological structure and refine
edge weights with the graph structure self-learning mecha-
nism. Results on the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database show that our method outperforms
state-of-the-art approaches. Biomarkers consistent with pre-
vious studies can be extracted from the model, proving the
reliable interpretability of our method.

Index Terms— Alzheimer’s Disease, Spatial Temporal
Graph Convolution, Self-learned Graph Structure

1. INTRODUCTION

Alzheimer’s Disease (AD) is a cosmopolitan neurodegenera-
tive disease in the brain and accounts for an estimated 60%-
80% of dementia patients [1]. Progression of this irreversible
and incurable disease is concomitant with gradually impaired
cognitive skills, memory, and language abilities, leading to
the escalation of potential social burden. Early mild cognitive
impairment (EMCI) is a prodromal stage of AD with a high
conversion rate [2]. Therefore, screening of EMCI is crucial
for relieving the deterioration of AD.

EMCI detection is still a challenging task. In light of triv-
ial structural differences between EMCI and normal control
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(NC) brains [3], recent studies seek resting-state functional
MRI (rs-fMRI), a non-invasive imaging technique that mea-
sures blood oxygen level-dependent (BOLD) signals [4], to
identify EMCI. According to related works, a traditional
practice for EMCI screening with rs-fMRI is constructing
features from BOLD signals and then applying machine
learning methods to detect abnormal patterns. Commonly-
used features include the whole-brain functional connectivity
(FC) matrices, dynamic FC (dFC), and dynamic effective
connectivity (dEC) extracted by group-constrained Kalman
filter (gKF) algorithm [2, 3, 5]. However, existing works
overlooked the rich diagnostic information recorded in the
spatial temporal dependency of original BOLD signals and
have yet to explore the feasibility of building an end-to-end
model that uses BOLD time series as features directly.

In fact, in rs-fMRI, spatially segregated brain regions
are functionally connected with different weights and con-
currently fluctuate along the temporal dimension, making
it feasible to apply the graph neural networks (GNNs) to
these data for classification [6, 7]. For a GNN-based model,
it is essential to construct a prior graph topological struc-
ture. Most existing methods tend to design a hand-crafted
adjacency matrix that is consistent during training [8, 9].
However, these approaches only focus on learning with the
explicit prior brain structure, which may be nonoptimal and
neglect implicit inter-region connections that contribute to
EMCI detection. The ignorance of potential information
from the implicit graph structure tends to yield incomplete
brain structure modeling and limit the performance.

To overcome these limitations, we propose a novel spatial
temporal graph convolutional network with graph structure
self-learning mechanism for EMCI screening. Our contri-
butions are three folds: 1) Our spatial temporal model can
directly exploit BOLD time series as input features for EMCI
detection by excavating spatial temporal dependencies in sig-
nals, which provides a new perspective for rsfMRI-based pre-
clinical AD diagnosis. 2) To the best of our knowledge, our
model is the first end-to-end GNN-based framework that can
adaptively learn the optimal spatial dependency structure for
EMCI detection. 3) The interpretability analysis of the self-
learned graph topology could identify EMCI-contributory
biomarkers consistent with existing neuroscience literature.
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2. MATERIALS AND METHODOLOGY

2.1. Dataset and Preprocessing

The neuroimaging data used in our study are obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [10]. Totally 146 age-gender-matched subjects are
involved. All subjects have both rs-fMRI and T1 weighted
images, which are acquired by 3 Tesla scanners from vary-
ing manufacturers, including Philips, Siemens, and General
Electric (GE). Each subject has only one session. The demo-
graphic information of selected subjects is shown in Table.1.

Table 1: Demographic information of 146 subjects.

Group NC EMCI
Gender (Male/Female) 30/43 34/39

Age (Mean±SD) 72.26±6.96 72.64±6.70

We utilize a widely-adopted DPARSF toolbox for image
preprocessing. The procedures similar to [3] are as follows:
1) slice timing; 2) head motion correction; 3) coregister the
T1 image to the functional image; 4) regress out nuisance co-
variates, including mean white matter and cerebrospinal fluid
signals; 5) band-pass filtering (0.01 ≤ f ≤ 0.1Hz); 6) spatial
normalization.

Afterward, we parcellate brain volumes into N = 116
ROIs by the widely-used Automated Anatomical Labeling
(AAL) template and then extract average time series from
each ROI. As the neuroimages differ in volume numbers (140,
197, and 200 for Philips, Siemens, and GE scanners, respec-
tively), we select the first 140 time points to equalize their
size. All time series are transformed into z-scores to remove
amplitude effects. Finally, an ROI-wise average BOLD series
in size of 116× 140 is generated for each subject.
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Fig. 1: The overall architecture of our proposed network.

2.2. Spatial Temporal Graph Construction

For an ROI-wise average BOLD time series f ∈ RN×Z with
N ROIs and Z time points, it can be naturally represented by
an undirected spatial temporal graph G = (V, E) featuring
both intra-brain connections and time series fluctuations. In
the node set V = {vti|t = 1, ..., Z; i = 1, ..., N}, the i-th ROI
at the t-th time point define a vertex vti, whose feature F(vti)

is the magnitude of the BOLD signal at vti. Therefore, the
feature map of the spatial temporal graph is F ∈ RC×N×Z ,
where C = 1 denotes the dimension of node features. Mean-
while, the edge set E describes spatial and temporal connec-
tions between the nodes. For the spatial graph, we build edges
for brain regions by randomly initializing the adjacency ma-
trix, which is described in Sec.2.4. The optimal spatial graph
structure will be learned by the graph structure self-learning
mechanism afterward. For the temporal graph, each ROI is
linked to the same ROI in the next time point.

However, the spatial temporal dependencies are not sta-
tionary during the entire scan, and the pattern reveals consid-
erable fluctuations. Inspired by sliding window-based dFC
[3], our model is trained on short sequences temporally sam-
pled with window size T to model such dynamics. Specifi-
cally, at each training iteration, we randomly sample a sub-
sequence of length T from the full BOLD time series of each
subject in the mini-batch. At the testing stage, we apply the
trained model to slices of each testing subject. We then aver-
age the sigmoid values to produce the final prediction.

2.3. Spatial Temporal Feature Extraction

We define a spatial temporal graph convolution (ST-GC)
block consisting of a graph convolution (GC) layer followed
by a designed temporal inception module to generate discrim-
inative spatial temporal representations of graph-structured
BOLD signals. The GC layer aggregates spatial information
at each time point according to the graph topology. Then the
temporal inception module learns temporal features for each
brain region independently. We concatenate several ST-GC
blocks to extract spatial temporal features.

Spatial Graph Convolution. Noting that the spatial de-
pendency is graph-structured, we employ the graph convo-
lution operation in [11] to fuse information between nodes
and their neighbors at each time point. Given the adjacency
matrix A ∈ RN×N and the H1-channel input feature map
X

(l)
1:N,1:T ∈ RH1×N×T , the spatial convolution at the t-th

time point in the l-th ST-GC block is defined as

X̃
(l)

1:N,t = D− 1
2AD− 1

2X
(l)
1:N,tW

(l), (1)

where X̃
(l)

1:N,t ∈ RH2×N denotes the H2-channel output fea-
ture map at time point t after the spatial graph convolution, D
is the degree matrix of A, and W (l) ∈ RH1×H2 is a trainable
weight matrix. The spatial graph convolution is performed at
every independent time point, through which information of
brain regions is spatially communicated.

Temporal Inception Module. Different from the spatial
graph, the temporal graph possesses a grid structure. There-
fore, it is feasible to adopt a standard 1D convolution for the
temporal graph convolution. However, the kernel size could
be too large or too small to excavate long-term and short-term



patterns simultaneously. To further improve the temporal rep-
resentation ability, we design a 1D temporal inception mod-
ule inspired by [12]. The architecture is shown in Fig.2. We
perform such temporal convolution on each brain region inde-
pendently. Formally, let the features after spatial graph con-

volution in the l-th ST-GC block X̃
(l)

1:N,1:T ∈ RH2×N×T be
the input feature map, our temporal graph convolution for the
i-th ROI can be represented as

X
(l+1)
i,1:T = ReLU(TIMΩ(X̃

(l)

i,1:T )), (2)

where X
(l+1)
i,1:T ∈ RH2×T denotes the H2-channel output of

the i-th ROI after the temporal graph convolution, TIM is our
temporal inception module with Ω representing its trainable
parameters.
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Fig. 2: Architecture of our temporal inception module.

2.4. Self-learned Graph Structure for EMCI Detection

The graph structure self-learning mechanism learns the task-
aware adjacency matrix adaptively to capture the optimal spa-
tial dependencies and adjusts aggregation weights indepen-
dently for each layer.

Self-learned Graph Structure. Existing GNN-based
models for EMCI screening usually exploit a constant adja-
cency matrix and disregard the fact that the graph topology
may be nonoptimal. Therefore, we design a dynamic ad-
jacency matrix that is updated during training along with
the model. Since the interactions between brain regions are
mutual, the binary adjacency matrix is supposed to be sym-
metric. To reduce the computational complexity, we leverage
a trainable vector Θ ∈ RN×(N+1)/2 to describe a lower
triangular matrix, which is a compressed representation of a
learnable symmetric matrix Ã ∈ RN×N . Specifically, we
have Ãij = Ãji = Θi×(i−1)/2+j , where i, j ∈ [1, N ]. Θ
is randomly initialized before training. It can be easily seen
that Ã is a complete graph that lacks interpretability and is
computationally expensive. Therefore, we generate a sparse
adjacency matrixA by a soft-threshold operator

Aij = ReLU(Sigmoid(Ãij)− Sigmoid(α)), (3)

where Sigmoid(α) ∈ (0, 1) is a threshold for sparsification.
To eschew arbitrary thresholding, we also make α a trainable
parameter initialized to 0. Noting that Aij ∈ [0, 1), it can
be considered as a probabilistic adjacency matrix, whose el-
ements represent the probability to preserve the edge. Then
after the sparsification, the problem is how to binarizeA. The
simple threshold approach is non-differentiable, thereby not

feasible for stochastic gradient descent optimization. There-
fore, we adopt the hard gumbel-softmax technique [13] to
conduct discrete sampling fromA. In our paper, for the self-
learning binary adjacency matrix Ã ∈ RN×N , we have

Ãij = argmax(Softmax(
logAij + g1ij

τ
,
log(1−Aij) + g2ij

τ
)), (4)

where g1
ij , g

2
ij ∼ Gumbel(0, 1), and τ is the temperature set

to 0.2. At forward propagation, we use the binary adjacency
matrix in Eq.4. In contrast, at backward propagation, the
argmax(·) operation is abandoned, and gradients are calcu-
lated by softmax values. Finally, we successfully construct a
self-learning adjacency matrix that is sparse and binary.

Aggregation Weights Tuning. We assume that connec-
tions between brain regions should contribute differently to
EMCI screening. Therefore, we add a trainable weight ma-
trix on every ST-GC block to scale the importance of spatial
edges. Varying from the symmetric adjacency matrix, weight
matrices are non-symmetric to model directional interactions
between brain regions. Moreover, elements in the weight ma-
trix should be non-negative because graph convolution based
on message passing mechanism are incompatible with neg-
ative connection weights [14]. Hence, for the spatial graph
convolution in the l-th ST-GC block, we rewrite Eq.1 to the
form with the self-learned graph structure, which is

X̃
(l)

1:N,t = D− 1
2 (Ã ∗ReLU(M(l)))D− 1

2X
(l)
1:N,tW

(l), (5)

whereM(l) is the learnable weight matrix in the l-th block
which is initialized as all-ones, and ∗ denotes the element-
wise product. Ultimately, Eq.5 and Eq.2 jointly define a ST-
GC block with the graph structure self-learning mechanism.

2.5. Architecture and Optimization

As shown in Fig.1, we build a network consisting of L = 3
ST-GC blocks to generate spatial temporal feature maps.
Each ST-GC block has 64 channels for output, and the
dropout rate is set to 0.5. Then the feature vector gener-
ated by a graph pooling layer is fed into a fully connected
layer.

The method is developed using Pytorch on a single graph-
ics card (i.e., NVIDIA RTX TITAN 12GB). We train the
model using the Adam optimizer with a batch size of 16, a
learning rate of 3e-4, and a weight decay of 1e-3. The win-
dow size T is set to 12 time points (36s). For optimization,
we adopt the binary cross-entropy loss LBCE . To high-
light effective task-specific ROI connections, we encourage
the sparsity of our self-learned graph structure by adding a
sparsity regularization loss formulated as

LSP =
1

N × (N + 1)/2

N×(N+1)/2∑
i=1

Sigmoid(Θi), (6)

Ultimately, our goal is to minimize the final loss function
L = LBCE + λLSP , where λ is a hyperparameter to adjust
the weight of LSP and is set to 1e-4.



3. EXPERIMENTS AND RESULTS

We perform experiments using the publicly available ADNI
database. The detail of data acquisition is in Sec.2.1. Strati-
fied 10-fold cross validation is exploited to split the training
set and test set. For hyperparameter tuning, we randomly se-
lect 10% samples from the training set as the validation set
in each fold. The performance of our model is measured by
some common evaluation metrics: accuracy (ACC), area un-
der the curve (AUC), sensitivity (SEN), and specificity (SPE).
Results are reported by the mean plus/minus standard devia-
tion across 10 test set splits.

3.1. Performance Comparison with Relative Methods

In this paper, we perform a binary classification task of NC
vs. EMCI. In order to demonstrate the superior performance
of our proposed method, we compare our model with some
related state-of-the-art approaches with a similar number of
samples. The classification results are shown in Table 2. To
ensure fairness, our comparison method is consistent with [2].
The comparison result demonstrates that our method achieves
the best classification performance with 92.2% ACC, 91.7%
SEN, and 92.9% SPE, which are all significantly higher than
other models. The AUC of our model also achieves 94.6%.

Table 2: Comparison with several state-of-the-art methods.

Method Subjects ACC(%) AUC(%) SEN(%) SPE(%)
MK-SVM[15] 50 NC, 56 EMCI 78.3 77.1 82.1 74.0
FSN-PFC[16] 29 NC, 29 EMCI 82.8 88.2 - -

SF-net[17] 67 NC, 77 EMCI 85.2 93.5 86.3 84.1
SAC-GCN[18] 67 NC, 77 EMCI 85.2 89.8 90.9 79.5
MSGTN[19] 44 NC, 44 EMCI 87.4 89.9 87.0 85.6
cwGAT[2] 72 NC, 53 EMCI 90.9 96.7 90.4 91.4
Proposed 73 NC, 73 EMCI 92.2 94.6 91.7 92.9

All the models compared require pre-determined brain
networks or other features constructed from BOLD signals.
In contrast, our method can learn the spatial temporal de-
pendencies directly from BOLD time series and outperforms
state-of-the-art methods.

3.2. Ablation Study

A set of ablation experiments are conducted to examine the
effectiveness of different components. Specifically, we re-
place the self-learned graph structure with a fixed adjacency
matrix in [20], replace our temporal inception module with
a standard 1D convolution (kernel size=3, stride=1), remove
the sparsity loss by set λ = 0, and replace layer-wise weight
matrices with a learnable matrix shared across all layers. Re-
sults can be seen in Table.3. The self-learned graph structure
shows a significant impact (↑ 2.1% ACC) on the classifica-
tion performance, since it allows the model to learn the ef-
fective task-aware spatial topological structure between brain
regions. The sparsity loss also brings improvements (↑ 0.6%
ACC) because it suppresses spurious edges and benefits node

feature aggregation in spatial graph convolution. The tempo-
ral inception module (↑ 0.7% ACC) possesses various kernel
sizes, which can model long-term and short-term temporal
dependencies simultaneously in temporal graph convolution.
Compared with a single learnable weight matrix that is shared
across layers, layer-wise reweighting matrices improves the
accuracy (↑ 1.8% ACC). This could be illustrated by the ex-
planation that node representations in different layers are di-
verse, thereby requiring varying aggregation weights.

Table 3: Ablation study results.

Method ACC(%) AUC(%) SEN(%) SPE(%)
Proposed 92.2± 2.3 94.6± 2.5 91.7± 3.1 92.9± 2.9
-w/o Self-learning Structure 90.1 ± 1.9 92.0 ± 1.8 89.5 ± 2.7 90.3 ± 2.4
-w/o Temporal Inception 91.6 ± 2.2 92.9 ± 2.5 90.2 ± 2.1 92.3 ± 2.0
-w/o Sparsity Loss 91.5 ± 2.9 93.2 ± 2.8 90.3 ± 2.3 92.0 ± 2.7
-w/o Layer-wise Reweighting 90.4 ± 3.0 91.8 ± 2.6 88.9 ± 2.9 91.7 ± 2.4

3.3. Interpretability

To figure out EMCI-contributory brain regions, we synthesize
the learned graph structure and aggregation weights, shown in
Fig.3. Specifically, we generate a score vectorS ∈ [0, 1]N for
brain regions byS =

∑N
i=1

∑L
l=1 Norm(Ã∗ReLU(M(l))),

where Norm(·) represents Min-Max scaling.

(a) Adj Mat (b) Layer 1 (c) Layer 2 (d) Layer 3
Fig. 3: Learned adjacency matrix and aggregation weights.

Top 10% salient ROIs are shown in Table.4. The ex-
cavated ROIs, specifically including PUN.L, IFGoperc.R,
ANG.R, MFG.R, ORBinf.L, MFG.L, and IFGtriang.L, are
consistent with previous finding [21], proving the credible
interpretability of our model. Besides, four ROIs from the
cerebellum may suggest the possible involvement of the cere-
bellum in cognition [22].

Table 4: Top 10% salient brain regions.

ROI names ROI index score ROI names ROI index score ROI names ROI index score
PCUN.L 67 1.000 Cerebelum.4.5.R 98 0.828 Cerebelum.10.L 107 0.738

INS.R 30 0.925 MFG.R 8 0.780 ORBinf.L 15 0.722
IFGoperc.R 12 0.921 Vermis.3 110 0.743 MFG.L 7 0.707

ANG.R 66 0.838 Vermis.9 115 0.741 IFGtriang.R 14 0.691

4. CONCLUSION

This paper proposes a spatial temporal graph convolutional
network with the graph structure self-learning mechanism,
which directly utilize spatial temporal dependencies in BOLD
time series to screen EMCI. Moreover, our graph structure
self-learning mechanism successfully learns the optimal task-
aware brain structure and aggregation weights. With these
efforts, our model achieves better performance on the ADNI
database compared with state-of-the-art methods. Further, we
identify discriminative brain regions related to EMCI detec-
tion by analyzing learned graph structure and weights.
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