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Abstract

Efficient resource allocation is challenging when privacy of users is important. Distributed approaches
have recently been used extensively to find a solution for such problems. In this work, the efficiency of
distributed AIMD algorithm for allocation of subsidized goods is studied. First, a suitable utility function
is assigned to each user describing the amount of satisfaction that it has from allocated resource. Then
the resource allocation is defined as a total utilitarianism problem that is an optimization problem of
sum of users utility functions subjected to capacity constraint. Recently, a stochastic state-dependent
variant of AIMD algorithm is used for allocation of common goods among users with strictly increasing
and concave utility functions. Here, the stochastic AIMD algorithm is derandomized and its efficiency
is compared with the stochastic version. Moreover, the algorithm is improved to allocate subsidized
goods to users with concave and nonmonotonous utility functions as well as users with Sigmoidal utility
functions. To illustrate the effectiveness of the proposed solutions, simulation results is presented for
a public renewable-energy powered charging station in which the electric vehicles (EV) compete to be
recharged.

1 Introduction

In many real-world applications, the goal is allocating scarce resources among n users in order to achieve
maximum total utility so-called total utilitarianism. The concept of the utility here represents the satisfaction
level of each user from the allocated resources. It normally leads to solve an optimization problem that
the objective function is the sum of users utility functions subjected to capacity and other constraints.
Mathematically speaking, we have

maximize
x1,...,xn

n∑
i=1

ui(xi)

subject to

n∑
i=1

xi ≤ C ,

xi ≥ 0 , i = 1, . . . , n ,

(1)

where ui and xi denote each user i’s utility function and allocated resource, respectively and C > 0 denotes
the capacity constraint. Each user’s utility function ui and number of user involved in resource allocation
problem are unknown and reaching to capacity constraint

∑n
i=1 xi ≤ C is just informed by a notification.

To solve the optimization problem given by (1), there are two main solution approaches: centralized and
distributed. Centralized solutions are more efficient since users first admit their individual utility functions
to a decision maker, which then solves the optimization problem to find the optimal allocated resources.
However, users utility functions are private information and the drawback is that users’ privacy protections
is challenged. Distributed allocation is a key concept to resolve this conundrum, i.e., to efficiently allocate
resources while preserving privacy. In distributed resource allocation, a set of users must autonomously
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assign their resources with respect to certain criteria and the main goal is to reach the global optimum.
To model different problems, we need to approximate each user’s satisfaction with a suitable utility function.
We consider three following cases. First, for allocation of common goods, where users do not pay a fee per
use, we adopt concave and strictly increasing utility functions, since it provides mathematical tractability [3]
however limits its applicability. Second, for allocation of subsidized goods, where the fee per use is shared
with the entire population, each user payoff function is defined as the difference between the user utility
function and the cost of received resources. Therefore, considering concave and strictly increasing utility
functions, users payoff functions are concave and nonmonotonous. Third, consider allocation of goods that
are only useful in sufficient quantities. Herein, each user’s satisfaction ideally described by a discontinuous
Step function that we approximate with a continuous Sigmoidal utility function [1].

Example 1 (EV Charging). Recent studies reveal that a fuel-driven vehicle can produce less greenhouse
gas emissions than an EV if the recharging energy is entirely produced by coal-fired power plants. Therefore,
local stations for charging EVs from renewable energy significantly contributes to achieve real environmental
benefits [28]. Imagine a charging station of Electric Vehicles (EVs) whose power supplies from renewable
energy (e.g., solar, wind). Such stations have limited available resources and demand for these finite amounts
of energy is also increasing. The users are EV owners who connect their vehicles to the charging station, and
intuitively some of users need their vehicles more than others (e.g., the handicapped, elderly, and parents
with young kids to pick-up after work). A private utility function determines the level of satisfaction for each
EV owner whose EV is connected to the station to be charged. As the demand for the resource overwhelms
the capacity, every individual who consumes an additional unit directly harms others who can no longer enjoy
the benefits. However, since the return of EVs to charging station is non-deterministic, it seems reasonable
to assume that EV owners are greedy and prefer to charge their own EVs regardless of others due to avoid
range anxiety. The users’ utility functions are chosen normalized logarithmic to represent strictly increasing
concave functions as well as Sigmoidal to approximate Step functions.
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Figure 1: Utility functions: normalized logarithmic (strictly-increasing concave) utility function ui and
corresponding nonmonotonous payoff functions vi when L = 0.4, as well as a discontinuous Step utility
function fi and corresponding approximate continuous Sigmoidal utility function wi .

In this paper, we propose a distributed and iterative algorithm, that is a computationally efficient and
private solution of the resource allocation problems. A stochastic version of the algorithm was used for
common goods such as clean air and access to public road in [27]. We extend the applications and we
make the following specific contributions. We propose derandomized version of AIMD algorithm to allocate
common goods to users with strictly increasing, concave utility functions. We also propose AIMD algorithm
to allocate subsidized goods, where the fee per use is shared with the entire population, to users with concave
and nonmonotonous utility functions. We extend the results to propose a variant of AIMD algorithm to
allocate common goods to users with Sigmoidal utility functions.
The rest of this paper is organized as follows. Section 2 presents the problem formulation. In section 3, we
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(a)

u1 x1(t), . . .
t→∞−−−→ x∗1

...

ui xi(t), . . .
t→∞−−−→ x∗i

...

un xn(t), . . .
t→∞−−−→ x∗n

⊕∑n
i=1 xi(t) > CMs(t− 1)

(b)

Figure 2: Resource allocation solution approaches, (a) centralized , (b) distributed iterative.

propose variants of AIMD distributed algorithm for allocation of subsidized (and common) goods among
users based on their specific utility functions. Section 4, includes EV charging simulation setup and discuss
the numerical results. Section 6 concludes the paper.

2 Distributed Resource Allocation

In this section, we formally define resource allocation problem using utility function concept for both cen-
tralized and distributed solution approaches. The objective is to determine each user’s optimal allocated
resource at which maximum total utility is achieved.

Remark 1. In real life applications, the resource could be time-slotted like energy in kWh or time-varying
like power in kW. Although, we consider a time-slotted optimization problem, we can use the proposed
solution for any time-varying situations without changing the results.

2.1 Baseline and Problem Formulation

Consider n users utilize a shared limited resource C > 0, and let xi ≥ 0 represents the possible allocated
resource to each user i = 1, . . . , n. We attribute a utility, i.e., a measure of satisfaction, to each user i
who takes advantage of the common resource and describe it by means of a utility function. The utility
function ui : R+ → R+, assigns a non-negative real number to each possible value of allocated resource xi,
to represent the level of satisfaction for each user i or quality of service (QoS).
A class of centralized resource allocation problems can be formulated as a nonlinear continuous optimization
problem (1) that is also represented in Figure 2a. In such problems, a central decision maker calculates
the optimal solution vector x∗ = [x∗1, ..., x

∗
n]>, by collecting all information regarding each user’s utility

function ui, capacity constraint C, and number of users n. Although centralized solution approaches focus to
determine efficient resource allocation, in many realistic applications, it is neither applicable nor desirable [18]
since it violates users’ privacy.
Figure 2(b) depicts a class of distributed (and iterative) approach to resource allocation problems in which
allocations emerge as the result of an iterative of local procedures. In other words, a set of users locally
make decisions regarding their resources autonomously. To this end, an algorithm is used to assign each
user i an allocated resource xi(t) in time steps (iterations) 1, . . . , t. In each iteration, each user’s algorithm
update user’s allocated resource xi(t) locally by choosing one of these options: increase, decrease or no-
change compared with previous iteration xi(t− 1). The increase option continues until receiving one bit
signal s(t− 1), that notify capacity constraint

∑n
i=1 xi(t) > C is violated and algorithm, based on a certain
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probability, choose one of the following options: decrease or no-change. When the capacity is available again∑n
i=1 xi(t) ≤ C, the increase option of the algorithm restarts immediately. The procedure repeats until the

number of iterations is large enough t, and users’ allocated resource converge to the optimal allocation x∗.
In order to quantify efficiency of distributed resource allocation, we express the efficiency as follows:

efficiency at time t =
limt→∞

∑n
i=1 ui(xi(t))∑n

i=1 ui(x
∗
i )

, (2)

where the numerator is the output of proposed distributed algorithm and the denominator is the solution of
an interior-point optimization algorithm. In the following sections, we show that the efficiency converges to
1.

3 AIMD Algorithm

In this section, we describe several variants of AIMD algorithm.

Remark 2. AIMD (Additive Increase Multiplicative Decrease) is a distributed and iterative algorithm that
is used widely to control congestion in computer networks. The objective of AIMD is to determine the share
of the resource for each user while total demands remains less than the available capacity, and where the
limited communication in the network is desired. The AIMD algorithm, in its basic version, is composed of
two procedures. In the additive increase (AI) phase, users continuously request for more available resource of
the network until receiving a notification that the aggregate amount of available resource has been exceeded.
Then the multiplicative decrease (MD) phase occurs and users respond to the notification by reducing their
share proportionally. The AI phase of the algorithm restarts again immediately and this pattern is repeated
by each active user in the network [6].

For the sake of representation, we reproduce the stochastic allocated-dependent version of AIMD algo-
rithm that is used for allocation of common goods among users with concave and strictly increasing utility
functions. We shall not describe the guaranties of the algorithm here, rather we refer the interested readers
to [27] for details. Thus, we consider a further and substantial assumption, so-called concavity assumption,
for users utility functions which provide mathematical tractability of optimization problem (1).

Assumption 1. (Concavity Assumption) The utility functions ui : R+ → R+, (i) are strictly increasing
functions of xi with ui(0) = 0, (ii) are concave and continuously diffrentiable with domain xi ≥ 0, where xi
is the amount of resources allocated to user i.

Example 2. We use normalized logarithmic function Equation (3) as strictly increasing concave utility
function that satisfies Concavity Assumption 1 in order to model the level of satisfaction of EV owners
whose car is connected to the charging station to be charged.

ui(xi) = 100
log(1 + ηixi)

log(1 + ηiχi)
, (3)

where χi in kWh is the amount of allocated resource (EV charging) that gives 100 unit utility to the user i.
It also satisfies ui(0) = 0. The parameter ηi indicates how the charge needed urgently by effecting on the rate
of utility percentage that is a function of allocated resource xi. Intuitively higher values of ηi yield higher
utility to user i. Figure 1 represents a normalized logarithmic utility functions ui with ηi = 24.5, χi = 98.

In AI phase, each active user i continues to update its allocated resource xi(t) upward by adding an
amount of growth factor α ∈ (0, C) to its previous allocated resource xi(t− 1) while

∑n
i=1 xi ≤ C. When

the capacity limit has been violated, i.e.,
∑n
i=1 xi > C, users are notified to execute MD phase. Each

user will respond to the capacity signal independently with a certain probability λi , by multiplying the
previous allocated resource xi(t− 1) to a drop factor β ∈ (0, 1) to form current allocated resource xi(t).
The probability λi at t-th iteration, for each user i, depends on the long-term average allocated resource

x̄i(t) = 1
t+1

∑t
k=1 xk through the relation λi(x̄i(t)) = Γ

u′
i(x̄i(t))
x̄i(t)

, where the parameter Γ is chosen to ensure

that 0 < λi(x̄i) < 1.
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Algorithm 1 AIMD for user i

1: Initialize xi(0) arbitrary
2: Broadcast the parameter Γ
3: for time steps t = 1, 2, 3, . . . do
4: if

∑n
j=1 xj(t) < C then

5: xi(t+ 1) = xi(t) + α;
6: else
7: xi(t+ 1) = βxi(t) with probability λi(x̄i(t)) = Γ

u′
i(x̄i(t))
x̄i(t)

8: xi(t+ 1) = xi(t) otherwise;
9: end if

10: end for

3.1 Derandomized Algorithm

The proposed stochastic AIMD Algorithm 1 is considered to have access to sources of perfect randomness,
i.e. unbiased and completely independent random variables, however in real-world implementation, the
physical sources of randomness to which we have access may contain biases and correlations [26]. Thus,
the probabilistic method can also yield insight into how to construct deterministic algorithms [19]. We
now propose a variant of deterministic AIMD for the same purpose. We show that the strong convergence

Algorithm 2 DAIMD for user i

1: Initialize xi(0) arbitrary
2: Broadcast the parameter Γ
3: for time steps t = 1, 2, 3, . . . do
4: if

∑n
j=1 xj(t) < C then

5: xi(t+ 1) = xi(t) + α;
6: else
7: λi(x̄i(t)) = Γ

u′
i(x̄i(t))
x̄i(t)

,

8: xi(t+ 1) = β(1− λi)xi(t) + λixi(t);
9: end if

10: end for

of derivative of utility function of long-term average allocated resource u′i(x̄i(t)), can be used to allocate
resource optimally. Therefore, there exists a derandomized algorithm with the same performance as the
randomized algorithm.
We define a vector z(t) consists of d ∈ N real-valued elements by

z(t) := [x1 . . . xn x̄1 . . . x̄n λ1 . . . λn]>, (4)

and let a class {f (t) : Rd → Rd, t = 1, 2, . . . } of functions such that

z(t) = f (t)(z(t− 1)). (5)

Each function f
(t)
` : Rd → R, ` = 1, . . . , d is also considered ...

The allocated resource xi(t) at t-th iteration, for each user i, is calculated as Equations (6).

xi(t) = (xi(t− 1) + α)1[
∑n

j=1 xj(t)<C] + (β(1− λi)xi(t)

+λixi(t))1[
∑n

j=1 xj(t)≥C]

(6)

x̄i(t) =
1

t+ 1

t∑
k=1

xk (7)

Therefore, iterated function systems (IFS) is defined as: We define λi(x̄i(t)) = Γ
u′
i(x̄i(t))
x̄i(t)

and we use it in

MD phase of the algorithm by xi(t+ 1) = β(1− λi)xi(t) + λixi(t) to build DAIMD Algorithm 2.
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3.2 Subsidized Goods

We extend resource allocation problem to subsidized goods where the fee per use is shared with the entire
population. Suppose if each user i is charged a constant price L per unit of the received resources xi. Each
user payoff function, vi : R+ → R+ is defined as utility function minus the cost of received resource as
follows:

vi(xi) = ui(xi)− Lxi . (8)

Recall each user utility function ui(xi) is considered under Concavity Assumption 1, therefore, each user
payoff function (8) is a concave function but it is not necessarily increasing. The centralized resource
allocation problem can then be formulated as follows:

maximize
x1,...,xn

n∑
i=1

vi(xi)

subject to

n∑
i=1

xi ≤ C ,

xi ≥ 0 , i = 1, . . . , n .

(9)

The optimization problem 9 in which the objective function is non-negative sum of concave functions, is
concave and there exists a global optimal solution [3].

Example 3. Suppose normalized logarithmic function Equation (3) to show each EV owner’s satisfaction
from receiving an amount of energy allocation xi . The cost of allocated energy is defined as the price of
energy L in monetary units, multiply in energy allocation xi . Therefore, the payoff function is defined as
follows:

vi(xi) = 100
log(1 + ηixi)

log(1 + ηiχi)
− Lxi . (10)

Figure 1 represents a normalized logarithmic utility function with ηi = 24.5 , χi = 98 compared with
corresponding payoff functions vi when L = 0.4 .

We improve AIMD Algorithm 1 by controlling the allocation do not exceed from maximum payoff of
each user and design the PAIMD Algorithm 3. The control is applied locally since each user i calculates the
optimal point x∗i = arg maxxi∈R+

vi(xi), ∀i = 1, . . . , n and then in each iteration, in the (AI) phase of the
algorithm compare it to allocated resource xi(t) + α to choose the minimum allocation.
Based on χiandηi, define bounded value

Algorithm 3 PAIMD for user i

1: Initialize xi(0) arbitrary
2: Each user i calculates x∗i = arg max

xi∈R+

vi(xi), ∀i = 1, . . . , n

3: Broadcast the parameter Γ
4: for time steps t = 1, 2, 3, . . . do
5: if

∑n
j=1 xj(t) < C then

6: xi(t+ 1) = min(x∗i , xi(t) + α)
7: else
8: xi(t+ 1) = βxi(t) with probability λi(x̄i(t)) = Γ

v′i(x̄i(t))
x̄i(t)

9: xi(t+ 1) = xi(t) otherwise;
10: end if
11: end for

3.3 Sigmoidal Utility Functions

In this section, we model resource allocation problem (1) using Sigmoidal users’ utility functions that is
defined as following:
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Definition 1. The utility function of wi : R+ → R+ is defined to be Sigmoidal if: (i) The wi(0) = 0 and wi
is strictly increasing function of xi. (ii) wi(xi) is continuously differentiable, with domain xi ≥ 0. (iii) wi(xi)
is convex for xi ≤ ψi and is concave for xi ≥ ψi, which ψi ∈ R+ is the inflection point.

Algorithm 4 QAIMD for user i

1: Initialize xi(0) arbitrary
2: Broadcast the parameters Γ1, Γ2

3: for time steps t = 1, 2, 3, . . . do
4: if x̄i(t) < ψi then
5: if

∑n
j=1 xj(t) < C then

6: xi(t+ 1) = 1
βxi(t) with probability λi = Γ1

w′
i(x̄i(t))
x̄i(t)

7: xi(t+ 1) = xi(t) otherwise;
8: else
9: xi(t+ 1) = max(0 , xi(t)− α)

10: end if
11: else
12: do AIMD with α, β and probability λi = Γ2

w′
i(x̄i(t))
x̄i(t)

13: end if
14: end for

Example 4. (Why do we need Sigmoidal utility functions?). In some situations, such as charging an
electric vehicle with the goal of reaching a predetermined destination (e.g., airport, home, etc.), the user
receive negligible (or non) utility until a threshold of resource is reached (e.g., enough electric charge to
arrive at the destination). Ideally, the best description of the utility function is through a discontinuous Step
function as follows:

fi(xi) =

{
0 if xi < θi ;

100 if xi ≥ θi ,
(11)

where θi shows the sufficient allocated resource that gives 100 unit utility to user i.
Continious Sigmoidal utility functions may be used to approximate a step utility function to any arbitrary
accuracy [25]. Thus, we model EV owner’s satisfaction with Sigmoidal utility function that is expressed by:

wi(xi) =
100

1 + e−ηi(xi−ψi)
− 100

1 + eηiψi
, (12)

where ηi is the steepness of the curve that indicates how the charge is needed urgently for each user i.
The parameter ψi in kWh is the inflection point that achieving it satisfies the urgent need of user i. The
function, also, satisfies wi(0) = 0 and limxi→+∞ w(xi) ≈ 100. Figure 1 represents a Step utility function fi
with θi = 48 and an approximate corresponding Sigmoidal utility function wi with ηi = 0.15 and ψi = 45 .

The QAIMD Algorithm 4 represents the procedure of allocation among users with Sigmoidal utility
functions. The key point is that in each iteration (t), the long-term of allocated resource x̄i(t) is compared
with each user i’s inflection point ψi. If x̄i(t) < ψi, the increase phase is built by multiplying the previous state

xi(t) in a growth factor 1
β > 1 to construct current state xi(t+ 1) with a probability λi(x̄i(t)) = Γ1

w′
i(x̄i(t))
x̄i(t)

.

The decrease phase also is made by subtracting α from the previous state. When x̄i(t) ≥ ψi, the algorithm is
work with AIMD Algorithm 1 procedure. Note that there are two parameters Γ1, Γ2 to ensure 0 < λi(x̄i) < 1
in each case.

4 Simulation

In order to figure out the effectiveness, the AIMD Algorithm 2, 3 and 4 was applied to various logarithmic
and Sigmoidal utility functions with different parameters in MATLAB.
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Figure 3: (a) The deterministic derivative of payoff function u′i(x̄i(t)) for two randomly selected users
(solid lines) compared with corresponding stochastic ones (dashed lines), (b) the deterministic average of
allocated resource x̄i(t) to the stable point for two randomly selected users (solid lines) compared with
corresponding stochastic ones (dashed lines), (c) the efficiency of AIMD Algorithm 1 and PAIMD Algorithm 3
for L ∈ {0, 0.1, . . . , 1} calculated by Equation (2).
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The resource allocation domain is considered as a charging station whose power supplies from renewable
energy (e.g. solar or wind), with constant capacity in kWh equal to C = 35% of the sum of users utility
functions when each user receives 100 unit satisfaction. The users n = 50 are the EV owners who connected
their vehicles to the station for charging at the same time. The AIMD parameters are identical for all users
with α = 1 and β = 0.85. The parameter Γ is also chosen to assure us the condition λi(x̄i) ∈ (0, 1) is
satisfied.

First, we adopt normalized logarithmic utility function expressed by (3), as a strictly increasing concave
function which satisfies Concavity Assumption 1. We choose χi independent uniformly distributed random
number with support (40, 60) and ηi independent uniformly distributed random number with support (0, 1).
We apply deterministic DAIMD Algorithm 2 for allocation of power as a common good (no charging fee) to
EVs connected to the charging station. Figure 3a shows a rapid convergence for derivative of payoff functions
u′i(x̄i(t)) when iteration t increases. It also reveals the coincidence of deterministic and stochastic versions
of derivative of payoff functions u′i(x̄i(t)). Figure 3b depicts the value of long-term average state x̄i(t) for
two randomly selected users and shows each of them converge to a stable value. It also represents that
deterministic and stochastic version of average state x̄i(t) fluctuate differently but the long-term averages
for each user converge to optimal allocation. The efficiency of deterministic DAIMD Algorithm 2, calculated
by Equation (2), in different runs are a real number in the range of (0.97, 0.99).
We also apply stochastic PAIMD Algorithm 3 for allocation of power as a subsidized good to EVs connected
to charging station. Therefore, we consider the price per unit L ∈ {0.1, 0.2, . . . , 1} of the power xi in
the payoff function (10). Figure 3c, depicts the efficiency of PAIMD Algorithm 3 compared with AIMD
Algorithm 1, both calculated by Equation (2). The efficiency of PAIMD Algorithm 3 decreases when the
value of L increases until receiving to a minimum value in (L = 0.3). For large values of L > 0.3 the efficiency
of PAIMD Algorithm 3 increases and converge to 1.
Second, we model EV owner satisfaction with Sigmoidal utility function that are expressed by Equation (12).
We choose ψi independent uniformly distributed random number with support (25, 100) and ηi independent
uniformly distributed random number with support (0, 25). The parameter Γ1 and Γ2 is also chosen to assure
us the condition λi(x̄i) ∈ (0, 1) is satisfied. Figure 4a depicts the derivative of utility functions w′i(x̄i(t))
for six randomly selected users. It illustrates that the derivatives approach to zero as t increase but the
convergence is slower than the derivatives of logarithmic utility function v′i(x̄i(t) in Figure 3a . In Figure 4b
the average of allocated resource x̄i(t) for six randomly selected users is displayed. It shows x̄i(t) approach
to a constant value for some users and to 0 for some other users.
Figure 4c represents the efficiency of QAIMD 4, calculated by Equation (2), for different capacity C/Ψ =
{0.5, 0.75, . . . , 3}, where Ψ =

∑n
i=1 ψi. For each user i the algorithm decides between increasing allocated

resource or decreasing it toward zero. The efficiency of the algorithm is better for small values of capacity
constraint, but it decrease when capacity is around Ψ. The efficiency improve again when C/Ψ is large
enough.

5 Loss of Efficiency Due to Competition

In this section, we allow the individual users to act strategically as in a game. We consider a game in
strategic form, where all users’ utility functions are common knowledge. The resulting competition over
a scarce resource is reminiscent of the tragedy of the commons []. An user may deviate from the AIMD
algorithm and strategically request more resource in order to improve its payoff. Alternatively, an user may
follow the AIMD algorithm but mispresent its utility function. However, we show that, in some situations,
the AIMD outcome and the game’s Nash equilibrium are close to each other.

5.1 Resource Allocation as a Strategic Game

Imagine a resource allocation problem in which there are n users, competing to utilize a scarce fixed common
resource of C > 0. Each user i chooses his own consumption of resources xi from a set of action space
Xi = {xi ∈ R | 0 ≤ xi ≤ C}. A profile of actions x = (xi, x−i) describe a particular combination of actions
chosen by all users, where x−i ∈ X−i is a particular possible of actions for all players who are not i.

Consuming an amount xi ≥ 0 gives user i a benefit equal to ui(xi) when
∑n
j=1 xj ≤ C and intuitively

no other users benefits from i’s choice. When xi increases or other users consume more resources so that

9
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Figure 4: (a) The derivative of Sigmoidal utility functions w′i(x̄i(t)) for six randomly selected users when
C/Ψ = 1.5, (b) the average of allocated resource x̄i(t) to the stable point for six randomly selected users
when C/Ψ = 1.5, (c) the efficiency of QAIMD Algorithm 4 calculated by Equation (2).
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∑n
j=1 xj > C, the user get nothing ui(xi) = 0 because additional requested resources are not provided. Then

we define the payoff function ũi(xi, x−i) of a user i from a profile of actions x as

ũi(xi, x−i) =

{
ui(xi) if

∑n
j=1 xj ≤ C ;

0 if
∑n
j=1 xj > C .

(13)

Where the utility function ui(xi) is considered to be concave, strictly increasing, and continuously differen-
tiable ,i.e., follows assumption 1.

The strategic game (N , Xi, ũi)i∈N , that have infinitely many pure strategies but utility functions are not
continuous, is discontinuous infinite strategic games. This problem should be consider precisely because it
may lead to problem of nonexistence of unique Nash equilibrium.

5.2 Nash Equilibrium

To cut to the chase, the key notion to solve the strategic game (N , Xi, ũi)i∈N , is the Nash equilibrium, that
is an outcome (a decision made by each player) such that no player can improve his individual payoff through
an unilateral move. As stable situations, Nash equilibrium are often considered to be the expected outcomes
from interactions. To solve for a Nash equilibrium we compute the best-response function correspondence
for each player and then find an action profile for which all best-response functions are satisfied together.

To find a solution for Equation (13), we first write out each player i’s best-response correspondence and
we consider that given x−i, player i will want to choose an element in BRi(x−i). Given x−i ∈ X−i each
player i’s best response is the difference between C and

∑n
j 6=i xj . If user i asks for more, then all users get

nothing while if asks for less then he is leaving some resources unclaimed and therefore

BRi(x−i) = C −
n∑
j 6=i

xj . (14)

It is easy to see from the best response correspondence that any profile of demands xi ∈ [0, C] that add up
to C will be a Nash equilibrium. Hence, each player i is indifferent between all of his requests xi ∈ [0, C] and
the game is just not blessed with a unique equilibrium and has an infinite number of equilibria. The obvious
problem with multiple equilibria is that the players may not know which equilibrium will prevail. Hence, it
is entirely possible that a non-equilibrium outcome results because one player plays one equilibrium strategy
while a second player chooses a strategy associated with another equilibrium [4].

It turns out that resource allocation encounters conflict over scare resources that results from the tension
between individual selfish interests and common good. As Hardin stated in his article [10], “freedom in a
commons brings ruin to all,” that here means, social utility of an uncontrolled use of the common resources
that each user have the freedom to make choices, is worse than if those choices were regulated. This
results in the occurrence of the phenomenon called tragedy of the commons. In fact, individual users acting
independently according to their own self-interest behave contrary to the common good of all users by
depleting that resource through their collective actions.

To solve this problem, we first need to bring back the continuity to the payoff function Equation (13).
Thus, we apply the resource allocation back-off condition

∑n
j=1 xj > C directly to the payoff function for

each user i. We define a concave penalty function τ : R+ → R+ so that τ(0) = 1 and τ(C) = 0 and multiply
it to the payoff function (13). To generalize, we also consider each unit of resource costs L and we have

ṽi(xi, x−i) = ui(xi) τ
( n∑
j=1

xj

)
− Lxi ,

for all xi, xj ∈ [0,∞) .

(15)

Example 5. Consider, for example, the concave penalty function τ(z) as follows:

τ
(
z
)

=

√
1− zp

Cp
, (16)

where z =
∑n
j=1 xj and p ∈ N. Intuitively, τ(0) = 1 and τ(C) = 0.
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Figure 5 represents some examples of concave penalty functions Equation (16) for p ∈ {1, 2, 4, 8}. Al-
though the larger values of p reduce inefficiency of Nash equilibrium, however make calculations more com-
plex. In realistic situation of EV charging, this function can be programmed to the charger and it works
when the demand exceeds from capacity C.
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Figure 5: Penalty Function

Since the payoff functions are continuous there is a strong result on existence of the pure Nash equilibrium
that is stated by Theorem 1 [7].

Theorem 1. (Debreu, Glicksberg, Fan) An infinite strategic form game G = (N , Xi, fi)i∈N such that for
each i ∈ G (i) Xi is compact and convex; (ii) fi(xi, x−i) is continuous in x−i; (iii) fi(xi, x−i) is continuous
and concave 1 in xi . Then a pure strategy Nash equilibrium exists.

Another important question that arises in the analysis of strategic form games is whether the Nash
equilibrium is unique. Theorem 2, provides sufficient conditions for uniqueness of an equilibrium in games
with infinite strategy sets.

Theorem 2 (Theorem 1, [20]). Consider a strategic form game G = (N , Xi, fi)i∈N . For all i ∈ G, assume
that the action sets Xi = {xi ∈ Rmi |hi(xi) ≥ 0}, where hi is a concave function, and there exists some
x̃ ∈ Rmi such that hi(x̃i) > 0 . Assume also that the payoff functions (fi)i∈N are diagonally strictly concave
for x ∈ X . Then the game has a unique pure strategy Nash equilibrium. Where payoff functions (fi)i∈N
are diagonally strictly concave for x ∈ X, if for every xne, x̄ ∈ X, we have (x̄ − xne)>∇f(xne) + (xne −
(x̄)>∇f(x̄) > 0 .

The game (N , Xi, ṽi)i∈N has unique Nash equilibrium that is calculated by maximizing user i’s payoff
function ṽi(xi, x−i) and finding the solution to the first order conditions. So, we write down the first-order
condition of user i’s payoff function as follows

xnei =
∂ṽi(xi, x−i)

∂xi
= 0 . (17)

We therefore have n such equations, one for each player, and the unique Nash equilibrium is the strategy
profile xne for which all users in the network, the Equation 17 are satisfied together, so that

xne = (xnei , x
ne
−i), x

ne
i = arg max

xi∈[0,C]

ṽi(xi, x−i), ∀i ∈ N . (18)

When resource allocation problem form as a result of selfish competition among users, the resulting stable
solution may not, in fact, be system optimal [16]. In this circumstance, we would like to measure inefficincy

1in fact quasi-concavity suffices.
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constituted due to decentralized control. This is very important to decide whether a decentralized mechanism
can be applied, regarding the loss of efficiency in comparison with the performance that would be obtained
with a central authority. Price of anarchy (PoA) [13], is a concept that quantifies this inefficiency and is
measured as the ratio between the worst equilibrium and the centralized solution. In the problem considered
here, this notion will be slightly different and defined as the efficiency of the unique Nash equilibrium of the
game G = (N , Xi, fi)i∈N and the optimal centralized solution of (10) as follows:

PoA =

∑n
i=1 ṽi(x

ne
i )∑n

i=1 vi(x
∗
i )

, (19)

where xne is the unique Nash equilibrium given by (18) and x∗ is the solution of (10) .

5.3 Simulation

In this section, we proceed to simulate resource allocation in competition game to investigate in more details
the inefficiency of Nash equilibrium. For this purpose, suppose the EV charging station settings of the section
??. Each user’s utility function is considered as the normalized logarithmic function (3) with uniformly
distributed random parameters of ηi ∈ (0, 25) and χi ∈ (25, 100). We also consider the concave penalty
function Equation 16 with p = 1 for executing the simulation. We start to simulate the problem for two
players. Consider the charging station with the limited resource of C = 25 kWh and two EV owners i ∈ {1, 2}
which their EVs are connected to the station for charging. Both players have normalized logarithmic utility
function Equation (3) with parameters η1 = 15, χ1 = 30 and η2 = 38, χ2 = 70 respectively. Figure ?? depicts
inefficiency of distributed competitive resource allocation in two-player game ,i.e., best response functions
lines intersection, compared with optimal solution U(x∗1, x

∗
2).

Now consider the same setting for a charging station with n = 50 users. Figure plots social optimum
of Nash equilibrium

∑n
i=1 ṽi(x

ne
i ), compared with optimal centralized solution

∑
i∈N vi(x

∗
i ) for diffrent L =

{0, 0.1, . . . , 1}. Figure 6 represents the price of anarchy in competition against two parameters of price
and number of users. The PoA is so sensitive to number of users in the competition such that increasing
number of users negatively affect on PoA. Moreover, if the selfish behavior of users in competition do not
control by pricing, inefficiency increase and consequently the PoA decrease. Note that the price of anarchy
is independent of the competition topology [21].

Figure 6: Price of Anarchy (PoA)

5.4 Related Work

Both centralized and distributed solution approaches for the generic problem of resource allocation were
studied widely in various fields of expertise and a full review is impossible here. In data networks, that
the optimization problem called Network Utility Maximization (NUM), users utility functions are commonly
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considered to be concave, continuous and strictly increasing functions modeling elastic networks [12], [22],
which are more mathematically tractable [3], but limits applicability. Many other applications require in-
elastic network that are more challenging, where non-concave or discontinuous utility functions need to be
maximized. Inelastic networks studied in [15], [8], [9] and Sigmoidal programming algorithm is proposed
in [25]. In [1], using utility proportional fairness policy, both elastic and inelastic utility functions compared.
There is also substantial literature on AIMD, the algorithm proposed in [5] and applied experimentally in [11],
as the most efficient-fair rate control in Internet applications. The efficiency and fairness of the AIMD al-
gorithm also investigated in [14] and a comprehensive review of the AIMD algorithm and its applications
is collected in [6]. This work uses the result of [27] that used AIMD algorithm in stochastic framework for
common goods resource allocation.
EV charging has been the most widely studied as an application of distributed resource allocation. In [2],
proposed a distributed control algorithm that adapts the charging rate of EVs to the available capacity of
the network ensuring that network resources are used efficiently and each EV charger receives a fair share
of these resources. In [24], proposed a distributed AIMD based algorithm to allocate available power among
connected EVs in order to maximize the utilization of EV owners in a range of situations. In [23], they
also used the same formalization framework to expand the modifications of the basic AIMD algorithm to
charge EVs. In both articles they considered a fairness policy as a constraint. The effectiveness of AIMD
at mitigating the impact of domestic charging of EVs on low-voltage distribution networks is investigated [17].

6 Conclusions & Future Work

Our work represents a variety of AIMD-based distributed algorithms for efficient and private resource allo-
cations in real life applications. We considered two type of users’ utility functions based on the application,
first strictly increasing concave functions to represent greediness of users and second Sigmoidal functions to
describe the utility from goods that are only useful in sufficient quantities. We introduced a stochastic AIMD
algorithm to allocate subsidized goods where users have concave and nonmonotonous utility functions. We
also proposed derandomized version of AIMD algorithm to allocate common goods to users with strictly
increasing utility functions. We extended the results to propose the variant of AIMD algorithm to allocate
common resource where users have Sigmoidal utility functions. The numerical simulations of EV charging
are also included in order to validate the convergence of our solutions.
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