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Abstract—Communities are adversely affected by heteroge-
neous social harm events (e.g., crime, traffic crashes, medical
emergencies, drug use) and police, fire, health and social service
departments are tasked with mitigating social harm through
various types of interventions. Smart cities of the future will
need to leverage IoT, data analytics, and government and
community human resources to most effectively reduce social
harm. Currently, methods for collection, analysis, and modeling
of heterogeneous social harm data to identify government
actions to improve quality of life are needed. In this paper
we propose a system, CDASH, for synthesizing heterogeneous
social harm data from multiples sources, identifying social
harm risks in space and time, and communicating the risk
to the relevant community resources best equipped to inter-
vene. We discuss the design, architecture, and performance
of CDASH. CDASH also allows users to report live social
harm events using mobile hand-held devices and web browsers
and flags high risk areas for law enforcement and first
responders. To validate the methodology, we run simulations
on historical social harm event data in Indianapolis illustrating
the advantages of CDASH over recently introduced social harm
indices and existing point process methods used for predictive
policing.

Keywords-social harm; service-oriented systems; CDASH;
Hawkes process; Web service.

I. INTRODUCTION

Crime is highly concentrated in urban communities and
hotspot or “predictive” policing efforts aim to apply lim-
ited resources to high intensity geographic areas and time
intervals to disrupt crime opportunities, leading to aggregate
crime rate reductions [1]-[4]. However, police serve other
roles in the community beyond crime response and pre-
vention, including traffic enforcement, Emergency Medical
Services (EMS) response, and more generally, dealing with
events related to social harm [5]. At the same time, the activ-
ities police departments employ to address social harm issues
in a community (directed patrol, speed traps, community
outreach, etc.) have both the potential to decrease the risk of
social harm, but may also increase the risk or perception of
social harm if the community costs of police activities such
as stop-and-frisk reduce trust and increase grievances among
disenfranchised groups [5]. Other community stakeholders
such as EMS responders, social services, the mayor’s office,
city prosecutor, and individual citizens also participate to
reduce social harm. While collaboration can take place, for
example a paramedic riding along on police patrols [6]

in high drug overdose hotspots, often data is distributed
among several agencies, data analyses are not shared across
agencies, and interventions are not coordinated.
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Figure 1. CDASH fuses heterogeneous data sources, estimates risk of
social harm, and allocates resources for targeted interventions.

Despite these multiple and disparate daily challenges,
existing hotspot and predictive policing algorithms and in-
tervention strategies focus on single or groups of related
sub-categories of social harm events and interventions are
performed primarily by police in isolation. Given the ex-
plosion of data that smart cities are generating, advances in
predictive modeling, and the real-time inter-connectedness
of citizens through the Internet of Things, smart cities of
the future will be able to integrate multiple data streams,
detect and predict social harm threats, communicate key
information to the general public and allocate resources
accordingly. To realize such a capability, new software and
analytics methods are needed to facilitate heterogenous data
sharing across the various agencies tasked with addressing
social harm and to support real-time data driven policing of
social harm in collaboration with community stakeholders.

In Figure 1, we illustrate an integrative policing sys-
tem, called Community Data Analytics for Social Harm
(CDASH). CDASH combines historical and real-time data
across heterogeneous types of social harm data pulled from
police, EMS, and social services databases, along with com-
munity feedback (tips and complaints), to prioritize daily
activities within each patrol beat in the city. For example, a
traffic accident hotspot may be flagged at 7 am for police
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intervention and the patrol unit is given a push notification
to monitor traffic there when not on a call to service. A
community watch group utilizing the application is tasked
with providing soft patrols [7] during 9 am - 4:30 pm
in their neighborhood that is flagged as a high residential
burglary risk. Later at night, a patrol officer is paired with a
paramedic [6] in a drug overdose hotspot and positioned to
shorten EMS response time. Over longer timescales, beats
that receive a higher volume of complaints against officers
or are estimated to have higher rates of under-reporting may
be flagged for a community meeting to be held in that
neighborhood.

In this paper, we provide an overview of CDASH and
descriptions of the key components. In Section II, we
describe the architecture of the CDASH system. In Section
III, we describe a point process-based model for estimating
the risk of social harm. In Section IV, we present results
from several experiments illustrating the scalability, fault
tolerance, and accuracy of CDASH. We run a simulation
study using historical social harm event data in Indianapolis
to illustrate the potential value of the CDASH system.
We conclude the paper by indicating insights learned and
possible future directions for research on this topic.

II. SERVICE ORIENTED ARCHITECTURE OF CDASH
A. System Architecture

As shown in Figure 2, CDASH has a layered architecture
and is a distributed Web-based system accessible through
Web browsers as well as through mobile hand-held devices.
CDASH consists of four layers:

e Presentation Layer
o Middleware Layer
o Application Layer
o Database Layer

Below we describe these layers.

e Presentation Layer

The presentation layer, consists of a C#-based Web
Server (CWS), handling multiple clients and their views
simultaneously. When a client connects, the CWS
presents the latest social harm information including
the predicted hot-spots and live user feeds (if any) to
the client. Also, clients are provided with an option for
entering a new incident if they wish to do so.

For each new feed, the client is required to input cer-
tain information including the type of incident and its
location. With this, CDASH also provides an option for
fetching the location information of the client through
the client’s device accessing its location service with
the client’s permission. There are 18 different types of
incidences currently supported by the available social
harm data in the city of Indianapolis [8] and hence,
these 18 options are available in CDASH. Once the
incident information is provided as an input, the CWS
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Figure 2. CDASH System Architecture.

first updates all the connected clients dynamically.
Next, it pushes the data on a Kafka topic [9] as shown
in Figure 3. The request is in the JSON (JavaScript
Object Notation) format. JSON is desirable as it is fast
and light-weight.
o Middleware Layer
The middleware layer of CDASH consists of the Kafka
Queuing System (KQS). Apache Kafka® is a dis-
tributed streaming platform [9]. Kafka helps in building
fast, scalable, and fault tolerant applications. Kafka has
its own server that is used in managing the messages
passing through it. In CDASH, a live incident fed in
by a client is passed on to a Java-based Web Service
(JWS). In this, the CWS pushes the data on to a topic
which is listened by the JWS. Here, the CWS acts as a
data publisher while the JWS acts as a data subscriber.
e Application Layer

The application layer interacts with the presentation
layer through the middleware layer. This layer is made
of four services and is responsible for handling the busi-
ness logic of the system. As depicted in Figure 3, on
retrieving a live incident from KQS, the JWS checks for
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Figure 4. Sequence of events updating the hotspot.

duplication of the reported incident by executing a cor-
relation logic, which attempts to analyze the reported
incident on the basis of its location, time and incident-
code with the events already reported to the CDASH
system. If the event correlates with any pre-existing
event in the system, all the clients are accordingly
updated by JWS. However, if the event is new and not
correlated to any previously reported incidents, the JWS
interacts with the MySQL Database Service (DS) in the
database layer to fetch the demographic information
of the harm location. The database consists of a table
including the demographic details of various locations
in Indianapolis. Some of the demographic details used
are: total population, gender-ratio, income ranges along
with literacy, unemployment and poverty rate. The
demographic information together with the user input,
is staged for the Hawkes Point Process Service (HPPS).
The HPPS is a prediction service written in Matlab that
takes as input historical incident layer and returns hot-
spot predictions. We provide details of the HPPS in
Section III.

Periodically, currently every 8 hours, to coincide
with a new police shift, the CDASH system runs a

Scheduler Service (SS) that invokes the HPPS to read
the reported crimes and predict hot-spots. The HPPS
requires sufficient amount of new data to generate
new and meaningful hot-spots and thus, an interval
of 8 hours is chosen to run it. As new hot-spots are
generated by HPPS, the SS invokes an Output Service
(OS) responsible for pushing the hot-spot information
towards the CWS as can be seen in Figure 4. The
CWS, on receiving new hot-spots, updates the map
accordingly for the clients.

Database Layer

The database layer of CDASH, as indicated above,
consists of a MySQL Database Service (DS). As de-
scribed in the application layer of the CDASH ar-
chitecture, the database holds information related to
the demography of various locations (on the basis of
zipcodes) of Indianapolis metro. Apart from this, the
database layer also contains all the live events reported
by the users of the system. This helps CDASH in
correlating various reported incidents on the basis of the
type of incident reported, its time and location, thereby
avoiding duplications.



B. Architectural Patterns

The CDASH system employs an implementation of the
Model-View-Controller (MVC) pattern. The CWS in the
presentation layer is the view part of the pattern. It helps in
interacting with the clients and updating them dynamically
as needed. The JWS has an Incident Controller component
that handles all the incoming feeds from the CWS through
the KQS. The HPPS, SS and DS form the model part of
the MVC pattern, holding the application logic for various
functionalities within the system. The results returned, after
the model executes, are pushed towards the CWS through
OS. Having an MVC architecture, makes the design flexible
and enhances extensibility of CDASH.

In order to make CDASH interactive, its response needs
to be in near real-time and thus, any new updates obtained
from the users of CDASH should be pushed on to all
connected users dynamically. Hence, the Observer pattern
is a perfect fit for the CDASH, where information is being
pushed towards the observers instead of a pull model that
requires a lot of polling, creating a large network traffic and
ultimately slowing down the entire application. In CDASH,
we achieve this by using the SignalR technology of C#. The
CWS includes a SignalR hub to which all the clients connect
automatically when they connect with the application. As
soon as any new update is available to the system, SignalR
recognizes it, an updated map is generated by the CWS and
pushed towards all the connected clients.

III. HAWKES PROCESS MODEL OF SOCIAL HARM

A number of algorithmic methods have been proposed for
estimating crime hotspot risk including multivariate models
[10]-[12], kernel density estimation [13]-[17] and spatio-
temporal point processes [18], [19]. While each approach
has tradeoffs, marked point processes have the advantage
that long-term intrinsic risk [19], short-term dynamic risk
[18], and periodic/seasonal trends [20] in the intensity can
be handled systematically with only event data as input. In
[4], a randomized controlled trial of point process based
predictive policing was conducted and this model will form
a starting point for our dynamic model of social harm.

A. Property Crime Hawkes Process

We first review the property crime Hawkes process (also
referred to as Epidemic Type Aftershock Sequence or ETAS)
defined in [4]. Let a spatial domain be discretized into
square cells or “boxes” in which we will estimate the rate
of crime incidents. The conditional intensity, or probabilistic
rate A\, () of events in box n at time ¢ is determined by,

Aa(t) = pin + Y Owe™ (78, )
ti <t

where ¢!, are the times of events in box 7 in the history of the
process. The ETAS model has two components, one model-
ing place-based environmental conditions that are constant

in time and the other modeling dynamic changes in risk.
Rather than modeling fixed environmental characteristics
of a hotspot explicitly using census data or locations of
crime attractors, long term hotspots are estimated from the
events themselves. In particular, the background rate y is
a nonparametric histogram estimate of a stationary Poisson
process [21]. If over the past 365 days a grid cell has a high
crime volume, the estimate of p will be large in that grid
cell. The size of the grid cells on which p is defined can
be estimated by Maximum Likelihood and in general the
optimum size of the grid cell will decrease with increasing
data. However, for a fixed area flagged for patrol, a greater
number of small hotspots are more difficult to patrol than a
small number of large hotspots.

The second component of the ETAS model is the trigger-
ing kernel fwe %! that models “near-repeat” or “contagion”
effects in crime data. The exponential decay causes grid cells
containing recent crime events to have a higher intensity than
grid cells with fewer recent events and the same background
rate. The ETAS model estimates both long term and short
term hotspots and systematically estimates the relative con-
tribution to risk of each via Expectation-Maximization [18],
[19]. Given an initial guess for the parameters 6, p, and w,
the EM algorithm is applied iteratively until convergence by
alternating between the following two steps:
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where T is the length of the time window of observation.
The EM algorithm can be intuitively understood by view-
ing the ETAS model as a branching process [18]. First
generation events occur according to a Poisson process with
constant rate p. Events (from all generations) each give
birth to N direct offspring events, where N is a Poisson
random variable with parameter 6. As events occur, the rate
of crime increases locally in space, leading to a contagious
sequence of “aftershock” crimes [18] that eventually dies
out on its own, or is interrupted by police intervention; the
former occurs naturally so long as 6 < 1, while the latter is
unaccounted for by the model. In the E-step, the probability
that event j is a direct offspring of event ¢ is estimated,
along with the probability that the event was generated by



the Poisson process u. Given the probabilistic estimate of
the branching structure, the complete data log-likelihood is
then maximized in the M-step, providing an estimate of the
model parameters.

B. A Marked Point Process Model of Social Harm

Now suppose we have m = 1,..., M social harm event
categories. For each event type m, we have a secondary mark
¢(m) representing the average societal cost of an event of
type m. Given this cost mark, we can then define a dynamic
social harm index SI,,(¢) in each grid cell n as the expected
cost per unit time,

M
SL(t) = 3 e(mA7 (1), ™
m=1
where A" (t) is a point process estimated independently on
event data of type m. The dynamic social harm index can
then be used to rank hotspots over a given time interval,
where the top k hotspots are flagged for intervention. Be-
cause this type of ranking is common in hotspot analysis
and policing, a popular accuracy metric is the Predictive
Accuracy Index (PAI). The PAI is the percentage of events
captured in the top k hotspots divided by the percentage of
city area that the k& hotspots comprise. In the case of social
harm, we use a modified PAI capturing the proportion of
total cost captured in the top hotspots relative to random
chance:
% societal cost captured in top k hotspots

PAI@k = .
% city area covered by k hotspots

. (8

The above mentioned model is encapsulated in CDASH
as the HPPS. In the next section, we detail how the cost
per event can be estimated and present simulation results on
applying our point process methodology to social harm data
in Indianapolis. We also describe several experiments with
the CDASH system. We focus on heterogeneity, scalability,
fault tolerance, and predictive accuracy.

IV. EXPERIMENTS AND ANALYSES
A. Heterogeneity

Heterogeneity is one of the major challenges faced by any
distributed system. We have implemented CDASH in such a
way that it can handle heterogeneity in terms of different
hardware components and network protocols. To reach a
large spectrum of proposed users of CDASH, it is made
accessible through all browsers on desktop devices and also
from mobile hand-held devices through mobile-based apps.

CDASH ensures that regardless of the device used, the
user will always be presented with the most recent view of
the global state at any time. It achieves this by updating
the views on all the connected devices dynamically as
often as needed. This, in turn, ensures that all the users
have a consistent view of the global state of current social
harm events thereby avoiding any potential confusion and
associated chaos.
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Figure 6. Response Time of JWS.

B. Scalability

In our experiments, scalability is measured by observing
the relation between the number of requests and their
average execution time. We have experimented with the
scalability-related behavior of the CDASH system by im-
plementing a test module for firing multiple requests. Since
the presentation and application layers are decoupled and
work as independent units, we analyzed the execution time
for the CWS and JWS separately. The performance of the
CDASH system is shown in Figures 5 and 6. It is less
likely that there would be more than 1000 user requests
simultaneously in a real-world scenario. Hence, we have
experimented with 1000 as the upper limit on the user
requests. The average round-trip time was observed to be
in the range of 0.86 milliseconds to 1 millisecond for the
CWS while 29 milliseconds to 56 milliseconds for the JWS,
which is near real-time and acceptable with respect to the
nature of typical social harm events.

We analyzed the above response times for the CWS and
JWS separately. Firstly, with the CWS, it was observed that
the time taken was shared equally by modules that: i) fetch
the geolocation (based on user’s location). ii) update the
map’s markers and legends data to be displayed to the clients
and iii) dynamically update all the clients. Next, with the
JWS, it was observed that the overall time taken by the
JWS was divided almost equally between the JWS, DS and
other auxiliary activities (staging data for HPPS). However,
as stated above, since the presentation and application layers
are decoupled, the overall response time for a user would be
equal to that of the time taken by the CWS as the Application
layer works asynchronously in the back-end.



C. Fault Tolerance

Failures can occur in any system. However, distributed
systems, having various distributed components working
together, are more prone to failures. In CDASH, we dealt
with the following failures:

e CWS Failure
o JWS or DS Failure
e Client Failure

Below we describe these failures.

o CWS Failure
If the CWS fails, the point of contact of the users
with CDASH is lost. Thus, any user attempting to
connect with application will be presented with an error
message displaying page not available. The only way
of dealing with these failures is restarting the CWS.

e JWS or DS Failure
CDASH is made fault tolerant towards the JWS and/or
DS failures by the KQS. Kafka helps in retaining inci-
dent details in its server while the JWS or DS is down.
The messages are retained in the Kafka server until they
are consumed and committed by the consumer. In case
of failures, the messages are not committed and hence
they are not lost. Once the failed components are up and
running, Kafka automatically redelivers the messages
thus making these components fault tolerant. Addi-
tionally, we have enhanced the fault tolerance of the
JWS by running two instances of it at any given time.
These instances are configured to operate in active-
passive mode running on two different servers. All
the requests are directed towards the primary instance
(active component). If the primary service instance is
down due to any failures, the requests are redirected
towards a secondary service instance (passive compo-
nent). The synchronization between the two instances
is configured to be handled automatically in Kafka.

o Client Failure
In the event of a client failure, any of its requests that
may have reached the CDASH system will be processed
and its effect will be seen in the generated global
state of the social harm picture. Later, if the client
reconnects, the client can see his input being reflected
on the map generated by the CDASH system.

D. CDASH Accuracy Analysis

In order to assess the accuracy of the CDASH system, we
run a historical simulation of the system in Indianapolis. The
data we use includes all crime, drug overdose, and vehicle
crash data for years 2012-2013 that were provided electron-
ically from the appropriate government agency and included
time and data stamp as well as state-plane coordinates for
each incident that were converted to WGS84 coordinates.
Social harm weights are derived from established crime,
drug, and vehicle crash cost estimation studies. Costs for

homicide, rape, robbery, aggravated assault, arson, motor
vehicle theft, residential burglary, larceny, embezzlement,
forgery, fraud, and vandalism were gleaned from estimates
of crime costs to society [22]. Vehicle crashes resulting
from drugs or alcohol, simple assault, and driving while
impaired costs were derived from monetary estimates of
crime prevention [23]. Lastly, cost estimates based on per-
incident occurrences in the United States were utilized for
suicide attempts [24], vehicle crashes not related to drugs or
alcohol [25], and drug overdoses [26]. Each of these latter
three estimates were calculated by dividing the total annual
costs for each incident type by the total number of each
incident in a given year. In Table I, we provide summary
statistics for Indianapolis social harm including the volume
of incidents over 2012 and 2013, the estimated cost per
event to society, and the total cost over the two year period
attributed to each event category.

We first train the model on a 100x100 grid using Indi-
anapolis social harm data from 2012. We assume that police
have fixed resources and can patrol k hotspots each day
(see Figure 7). We also assume that if a hotspot is patrolled,
then all events are prevented from occurring on that day
(an alternative choice would be to allow for a percentage
reduction that varies with event category).

Then for each day ¢ in 2013, the simulation proceeds as
follows:

« Estimate the expected cost SI,,(t) as in Equation 7 for
each grid cell.

o Rank the grid cells in decreasing order according to
expected cost ST, (t).

o Flag the top k grid cells for directed patrol on the next
day t + 1.

e On day t 4 1 record the number of events prevented
and the cost associated with those events.
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Table I
SUMMARY STATISTICS FOR INDIANAPOLIS SOCIAL HARM 2012 & 2013

Type Count Cost/Event  Total

Suicide Attempt 134 $5,251 $703,634
DWI Arrest 3546 $500 $1,773,000
Forgery 481 $5,265 $2,532,465
Embezzlement 876 $5,480 $4,800,480
Arson 723 $16,428 $11,877,444
Drug Overdose 4112 $3,922 $16,127,264
Rape 1160 $41,247 $47,846,520
Vehicle Crash Drug/Alcohol 1610 $30,000 $48,300,000
Fraud 11371 $5,032 $57,218,872
Vandalism 13641 $4,860 $66,295,260
Motor Vehicle Theft 9081 $10,534 $95,659,254
Residential Burglary 21468 $6,170 $132,457,560
Robbery 6386 $21,398 $136,647,628
Larceny 53241 $3,523 $187,568,043
Aggravated Assault 11797 $19,537 $230,477,989
Homicide 220 $1,278,424  $281,253,280
Vehicle Crash No Influence 40718 $7,864 $320,206,352
Simple Assault 30802 $11,000 $338,822,000
Total 211367 $1,980,567,045

o Repeat for each day in 2013.

We compare our proposed social harm Hawkes process,
equation 7, with a property crime Hawkes process [4]
and a static harm index [5] using the outlined simulation
methodology. In Figure 8, we show the PAI of each method
as a function of the fraction of the city flagged for patrol each
day in the simulation. Note that a PAI of 1 corresponds to
random patrol and all methods perform better than random.
Also, PAI values tend to decrease as a larger portion of
the city is patrolled, because lower risk cells contain less
crime and police interventions have a lesser impact in these
areas. The social harm Hawkes process performs the best
out of all methods, achieving a PAI of 15 when 50 hotspots
are selected each day (comprising 0.5% of the city). In the
lower figure we plot the fraction of social harm captured as a
function of the fraction of the city patrolled in the simulation.
We note that almost $ 200 million (20%) of the social harm
cost to Indianapolis in 2013 is captured in 2% of space-time.
The top 10% of space-time contains over half of all social
harm cost.

V. DISCUSSION

We introduced CDASH, a system for i) collecting het-
erogeneous social harm data, ii) modeling space-time social
harm risk, and iii) communicating risk to community stake-
holders for the allocation of resources. We ran a simulation
study using historical data from Indianapolis illustrating the
potential impact such a system could have on social harm
prevention. Our method captures 20% of social harm cost in
2% of space-time, compared to current social harm indices
and predictive policing models of property crime that capture
5-15%.

Future work will focus on several directions. We envision
implementing the principles of role-based access control (to
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provide different privileges and different views to different
participants in this effort), and incorporating different trust
models associated with different interactions between the
users of the system. In addition, while conducting the
experiments, we realized that to solve or prevent social
harm, civic bodies must create a temporary network and
collaborate quickly. This fits in the structure of Virtual
Organizations. We will be focusing on building over the con-
cept of Information Technology-based virtual organizations
which help decentralized working units in collaborating and
coordinating activities.

In terms of predictive modeling of social harm, machine
learning and multivariate statistical models may improve
upon the predictive accuracy of CDASH and will allow for
the incorporation of more data streams (weather data, city
sensor data, GIS data, etc). Ultimately these systems need to
be tested in field trials to determine what types of tasks are
feasible, how can information best be communicated through
the application, and what is the impact of interventions on
reducing social harm.
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