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Abstract First responders deal with a variety of “social
harm” events (e.g. crime, traffic crashes, medical emergencies)
that result in physical, emotional, and/or financial hardships.
Through data analytics, resources can be efficiently allocated
to increase the impact of interventions aimed at reducing
social harm T CDASH (Trusted Community Data Analytics
for Social Harm) is an ongoing joint effort between the
Indiana University Purdue University Indianapolis (IUPUI),
the Indianapolis Metropolitan Police Department (IMPD),
and the Indianapolis Emergency Medical Services (IEMS)
with this goal of using data analytics to efficiently allocate
resources to respond to and reduce social harm. In this paper,
we make several enhancements to our previously introduced
trust estimation framework T CDASH. These enhancements
include additional metrics for measuring the effectiveness of
forecasts, evaluation on new datasets, and an incorporation of
collaborative trust models. To empirically validate our current
work, we ran simulations on newly collected 2019 and 2020
(Jan April) social harm data from the Indianapolis metro area.
‘We describe the behavior and significance of the collaboration
and their comparison with previously introduced stand alone
models.

Keywords-Social harm; Subjective logic; Trust management;
Hotspots; Collaborative patterns.I

I. INTRODUCTION

Devising a strategy for a smart city is a challenging task,
as it requires a combination and an in depth exploration of
a number of domains. In [1], six domains of smart cities
are described one of the key domains indicated in that
report is Safety and Security. That report indicates that
technology and data will play significant roles in preventing
crimes by assessing multiple streams of community and
crowdsourced information. One concept, related to Safety
and Security of smart cities, that can be mitigated by the
use of such multiple streams of data is social harm. Social
harm is “a concept that enables criminology to move beyond
legal definitions of ‘crime’ to include immoral, wrongful and
injurious acts that are not necessarily illegal” [2]. Social
harm incidents may lead to physical harm (e.g. injury sus
tained from an assault or traffic crash), financial (e.g., fraud),
or emotional/psychological harm [3]. Many social harm
incidents require first responders (e.g., law enforcement and
emergency personnel) to coordinate together to prevent or
quickly respond in order to lessen their impact. One way of
quantifying the impact of social harm is by determining the
economic burden carried by society due to such incidents.
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Figure 1: T CDASH System Architecture.

Social science experts view costs associated with crimes
from two perspectives, quantifiable and unquantifiable costs
[4] , Quantifiable costs point to direct monetary cost to the
society, including the loss in business, damage to property,
medical expenses, and others. Unquantifiable costs refer
to psychological impacts resulting in anxiety and loss of
productivity among victims.

One way of dealing with social harm is by using statistical
models combined with software tools for forecasting social
harm and directing resources to places and times where
interventions are needed. For this purpose crime mapping
[5]1 ., “risk terrain” regression models [6], [7], point processes
[8] and deep learning [9] are some of the approaches that
have been considered. For a comprehensive review of spatial
crime forecasting see [10]. Defining high risk areas help
police, social service providers, and community stakeholders
to allocate their resources efficiently.

One challenge that arises in modeling social harm is the
integration of 1) real time data from 911 that is un verified
and subject to label noise and 2) verified incident reports
that may take several days or weeks to enter the records
management system. Methods are needed for associating
these data and correcting mislabeled real time data that can
lead to misleading alarms, thereby allowing for a more
optimal allocation of resources. To accomplish this, there is a
need for a platform where various stakeholders, including the
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law-enforcement agencies, community organizations and cit-
izens, can quickly and anonymously report live social harm
incidents. To this effect, in our past work, we have developed
and deployed the Trusted Community Data Analytic for So-
cial Harm Prevention (T-CDASH) system [11] — a web-based
system for capturing, analyzing, forecasting, and thereby,
alleviating social harm. Figure 1 shows an overview of the
T-CDASH system. The T-CDASH system can bring together
various stakeholders, including law-enforcement agencies,
community organizations, emergency medical services, and
citizens to provide integrated data sharing and analytics
in near real-time. The T-CDASH system uses a Hawkes
Point Process Service (HPPS) [12] for generating social
harm forecasts and provides a user interface to different
stakeholders in the community to allocate resources for
targeted interventions.

The T-CDASH system incorporates a trust framework
consisting of several models that assign different degrees
of trust to each social harm event. In our previous research
[11], we empirically evaluated these trust models and com-
pared their accuracy using 2012-2013 UCR (Uniform Crime
Reporting) [13] and CAD (Computer Aided Dispatch) [14]
datasets obtained from the IMPD. In this paper, we enhance
this past work by:

« evaluating the effectiveness of the T-CDASH system
by applying its trust models to the most recent (Jan
to Apr. 2019 and Jan to Apr. 2020) RMS (Records
Management System) [15] dataset, again, received from
the IMPD.

« considering the frequency of a social harm event along
with its average cost to identify top hotspots for a given
geographical region (“policing beat”) — in our previous
work [11], the top hotspots for each policing beat were
selected based solely on the average cost associated
with a social harm incident in that beat.

+ devising and experimenting with different collaborative
patterns amongst trust models and empirically validat-
ing these patterns using both the new RMS and the old
datasets (used in [11]).

The rest of the paper is organized as follows: The second
section presents related research work on modeling trust.
Section III explains the details of the T-CDASH trust models
and the data management process along with pre-processing
and correlation operations performed on the RMS dataset.
Section IV presents results from several experiments indi-
cating the performance of different trust models developed
as part of the framework on 2012-2013 and 2019 & 2020
(Jan-April) datasets. The paper concludes by discussing the
insights gained and presents directions for future work.

II. RELATED WORK
To generate reliable forecasting, it is important for the
data to be reliable — i.e., there is a need to consider the
trust associated with the data. This paper focuses on the

trust viewpoint of social harm events. Significant research
is available on establishing trust in distributed systems.
Jgsang [16] established an opinion model for estimating
the trust of events based on belief (b), disbelife(d), and
uncertainty(u). Here, opinions regarding a proposition/event
translate in degrees of belief, disbelief and uncertainty.
The belief, disbelief and uncertainty are calculated based
on evidential analysis. For any proposition/event, positive
evidences supporting the proposition trigger the belief. Also,
negative evidences opposing the proposition contribute to
the disbelief. Uncertainty is mainly attributed to the lack of
evidences. Ceolin et al. [17] created a trust algorithm for
computing b, d, and « as introduced by Jgsang in [16]. The
algorithm was applied in the maritime domain for estimating
trust of messages to track ships. The T-CDASH system used
Jpsang’s opinion model for estimating trust of social harm
events.

Another common way of integrating trust with events
is through the reputation model. Furtado et al. [18] used
this reputation model to describe the reputation-based trust
management methodology in WikiCrimes [19] system for
generating reputation scores for the registered users. The
reputation score increases with each genuine crime reported
and it is used by the application for associating trust with
the live reported events — preserving anonymity of users
is a critical requirement for such reputation-based systems.
However, limited work has been done in creating a compre-
hensive system that combines the forecasting of future social
harm incidents while allowing users to report live incidents.
In the T-CDASH system, instead of reputation model, we
have used crime-related attributes such as incident types,
location, and days and historical data to associate trust with
reported events.

ITI. TRUST MODELS AND DATA MANAGEMENT
A. Trust Models

Due to the presence of many stakeholders (e.g., IMPD,
community organizations, and citizens) in the T-CDASH
system, there is a need to manage the trust associated with
their interactions with the T-CDASH system. Any malicious
or incorrect interaction with the T-CDASH system may
affect its hotspot forecasting. One way of ensuring and
maintaining the accuracy of forecasting is to pre-process and
filter out live user-inputs (especially from untrusted users
such as citizens) before they are considered for generating
hotspots. This pre-processing and filtering stage helps in
assigning a trust value to each live interaction — to achieve
this objective, in our previous work [11], we proposed six
trust models, and empirically evaluated and compared their
effectiveness. The trust models are:

« Ground-truth model: in this model, all the inputs are

assumed to be trustworthy and passed to the HPPS
service for generating the hotspots.



o Optimistic model: this model considers a high percent-
age (80% to 90%) of all the live user-inputs (randomly
chosen) to be trustworthy and passes them to the HPPS
service; others are ignored.

o Pessimistic model: it is opposite of the Optimistic
model. Here, only a small percentage (10% to 20%)
of all the live user-inputs (randomly chosen) are con-
sidered to be trustworthy and passed on to the HPPS
service; others are ignored.

o Average model: in this model, half of all the live user-
inputs (randomly chosen) are considered as trustworthy
and passed on to the HPPS service.

o Random model: in this model, a set of live user-
inputs are randomly chosen in the process of hotspots
generation; others are ignored.

« Opinion-based model: this model selects or rejects the
live inputs based on the trust tuple made up of belief
(b), disbelief (d) and uncertainty (u) values. The b, d
and u values are computed in two ways by this model.

- Random: it randomly assigns values to b, d and u.

- Heuristic: it utilizes the correlation created be-
tween live and historical data. This is based on
actual event attributes and its correlation with
historical incidents.

In this research, these trust models are composed with

following four different collaboration patterns:

e ‘OR’ Collaboration: The T-CDASH system considers,
for the forecasting purposes, only those social harm
events that are generated by at least one of the above-
mentioned trust models.

o ‘AND’ Collaboration: The T-CDASH system considers,
for the forecasting purposes, only those social harm
events that are generated by all the above-mentioned
trust models.

e ‘MAJORITY" Collaboration: The T-CDASH system
considers, for forecasting purposes, only those social
harm events that are generated by the majority (>= 3)
of the above-mentioned trust models.

e ‘XOR’ Collaboration: The T-CDASH system consid-
ers, for forecasting purposes, only those social harm
events that are generated by exactly one of the above-
mentioned trust models.

B. Data Management

We considered, for this research, data from three different
sources: RMS, UCR and CAD system. As explained by
the Law Enforcement Information Technology Standards
Council (LEITSC) in [14], the CAD system assists in
performing public safety operations in an automated manner.
It includes incident reporting, emergency vehicle dispatch,
along with incident tracking and management capabilities.
Information captured by CAD assists in creating the RMS
reports. LEITSC [15] describes RMS as an agency-wide sys-
tem for recording, persisting, and retrieving information and

documents related to law enforcement operations. Although
the RMS allows multiple incident reporting mechanisms,
it records only a single entry for each incident. The RMS
datasets (2019 & 2020 (Jan-April)) were made available, to
us, by the IMPD for the Indianapolis metropolitan area. On
the other hand, the UCR consists of data collected from four
different systems [13] (2012-2013). In this section, we will
mainly focus on the recently available RMS dataset mapping
mechanism and trust association with the T-CDASH system.
In our previous paper [11], details about UCR and CAD
were provided .
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Figure 2: Statistics for Indianapolis social harm 2019 & 2020
(Jan-April) RMS dataset.

RMS Data. A report is made by the IMPD whenever an
incident is investigated. This RMS data is available from
Socrata [20] — Socrata is a Database-as-a-Service (DaaS)

At the time of the submission of this paper, we received the CAD
dataset for 2020 (Jan-April) for Indianapolis. This dataset contains 2,60,980
reported incidents along with 412 unique incident types. The received data
is unstructured and has been collected on a daily basis. Hence, it will need
additional preprocessing and mapping before it can be used with the T-
CDASH system. We will pursue that work as a future direction.



Table I: RMS to HPPS input incident Mapping

RMS - Incident description

HPPS - Incident description ~ HPPS - Incident Code

DRIVING UNDER THE INFLUENCE
DAMAGE TO PROPERTY

CREDIT CARD/AUTOMATIC TELLER MACHINE FRAUD

ATTEMPTED OR THREATENING SUICIDE
COUNTERFEITING/FORGERY

ALL OTHER LARCENY

ATTEMPTED BURGLARY

MOTOR VEHICLE THEFT

FIGHT

ARSON

AGGRAVATED ASSAULT

ATTEMPTED ROBBERY

FORCIBLE FONDLING

MURDER AND NONNEGLIGENT MANSLAUGHTER

DWT Arrest 1
Vandalism 3
Fraud 4
Suicide Attempt 5
Forgery 6
Larceny 8
Residential Burglary 9
Motor Vehicle Theft 11
Simple Assault 12
Arson 13
Aggravated Assault 14
Robbery 15
Rape 17
Homicide 18

platform that helps in managing government data. Since
these entries are recorded post police investigations, they
can be considered highly trustworthy. The statistics for the
Indianapolis social harm 2019-2020 (Jan-April) RMS dataset
is presented in Figure 2. It indicates the frequency and the
cost (unit $10 millions) associated with each social harm
event for the 2019 and 2020 datasets. It is worth noting,
from this figure, that some categories of the incidents, such
as homicide, occur less frequently but are associated with a
high cost.

Data Mapping. Different social harm reporting and man-
agement systems store data in different formats, and each has
their own schema. To analyze, correlate, and process these
data records, in T-CDASH, it is necessary to convert them in
a schema used by the Hawkes Point Process Service (HPPS).
To achieve this, each record of the RMS is preprocessed.
Currently, the T-CDASH system supports hotspot forecasting
for 18 different incident types [12]. It is, thus, necessary to
map the RMS records (o these 18 categories.

The RMS records maintained by the IMPD are analyzed
and mapped to the HPPS input categories. For the RMS,
incident descriptions closely resemble the type of incident
and are used for generating the mapping. Table I provides
the mapping between various RMS incident descriptions
(collected from 2019 & 2020 (Jan-April) datasets) and
the corresponding HPPS input incident categories. For the
mapping, we followed the similar mechanism [11] that was
used to map the UCR and CAD reported incident categories
(2012-2013) to HPPS input incident categories.

Data Correlation. Trust, as indicated earlier, is an
important feature associated with the T-CDASH system.
To maintain reporter’s anonymity and to avoid misuse of
reporter’s historical reputation, this trust is computed by
using Jgsang’s opinion model [16] consisting of belief (b),
disbelief (d) and uncertainty (u) tuples — in a similar way as
utilized by Ceolin et al. [17]. Through the opinion model,
a certain degree of trust is assigned to each live incident
reported to the T-CDASH system. These b, d, u values are

calculated by the T-CDASH system using the number of
positive evidences, negative evidences, and total evidences
[21] that it has received. In the T-CDASH system, to gather
these evidences, geo-coordinates, the type, and the reported
date of the incident are considered. For calculating the total
evidences, the geo-coordinates (circular range 110 m) and/or
day (4 days), are considered. Based on these features, each
live social harm incident is correlated with historical social
harm incidents. If there is a positive correlation between the
historical incidents and the current incident then reported
incident is deemed trustworthy.
IV. EXPERIMENTAL RESULTS

This section discusses various experiments performed to
empirically validate the accuracy of different trust models
proposed within the T-CDASH system with recent and previ-
ous datasets. This section also presents different approaches
to generate the top hotspots (e.g., hotspots based on the
incident frequency and combination of incident frequency
and average cost) and their impact on accuracy. In addition,

the usage of collaboration patterns between different trust
models is discussed here.

Table II: Training and Testing Years for Evaluating Trust
Models

Training Year

2012-2013 2013
2019-2020 2020

Testing Year

A. Training the Hawkes Point Process Service (HPPS)

While evaluating the trust models and make forecasting
about the top social harm hotspots, in a policing beat, it is
crucial to train the HPPS properly. Since the UCR and RMS
data are highly trustworthy, the HPPS is trained on the UCR
data (2012-2013) and the RMS data (2019 and 2020). Also,
real-time data is required to test the trust models — the CAD
data are considered for evaluating the trust models as those



Table III; Different approaches to generate to hotspots using 2012-2013 dataset

Model Location?  Day? Avg cost-based Incident freq.-based Combination of Incident freq.
Hotspots Matched (%)  Hotspots Matched (%) and Avg cost based
Hotspots Matched (%)
Optimistic (80%) yes yes 37.46 58.1 43.06
Pessimistic (5%) yes yes 49.66 65.07 58.13
Average yes yes 42,93 60.7 50.22
Random yes ves 4285 60.68 50.06
Random Heuristic yes yes 42.03 67.97 63.16
Heuristic (50% - 50%)  ves yes 49.59 67.33 61.75

data contain the real-time reporting of social harm incidents.
However, the CAD data for 2019 or 2020 was not available
for our experiments. Hence, we generated synthesized CAD
data based on the RMS data of 2020 and CAD data of 2016
(most recent CAD data that are available). It is worth noting
that many incidents included in the CAD dataset are not
reported in the RMS dataset in the same way. One of the
reasons for such a difference is that an incident may have
never happened. To synthesize a CAD dataset for testing,
we considered two different strategies: (a) two-third data is
randomly obtained from the CAD records of 2016 and one-
third is randomly taken from the RMS data of 2020, and (b)
one-third data has randomly selected from the 2016 CAD
dataset whereas the remaining data was randomly picked
from the RMS records of 2020. On examining the UCR
and CAD data of 2013, it is observed that approximately
2/37% of CAD data is reflected in the UCR reported records.
Therefore, based on this observation, we initially selected the
strategy (a). We also wanted to experiment with the opposite
scenario and hence, we then selected the strategy (b). Our
experiments, hence, involve two combinations of yearly data
for training and testing the trust models as shown in Table
II. All the experiments are performed on the monthly data of
the testing period and then equated out over the entire span
(2012-2013 dataset the duration is entire year and 2019 and
2020 dataset the duration is 4 months).

B. Experiments with 2012-2013 Dataset

Based on our previous [11] experiments and associated
insights, we selected the following parameters for the ex-
periments with the RMS dataset.

« Time series data cross-validation. In our previous
experiments [11], two different cross-validation tech-
niques were utilized: Rolling Origin (RO) and Rolling
Windows (RW) [22] [23]. The experimental results
indicated that performance of RO, as indicated by
accuracy, was less accurate than that of RW. Therefore,
in our current experiments, we have used only the RW
cross-validation technique.

« Allowed Input (%). For the Optimistic and Pessimistic
models, with the increase of allowed input percent-
age, the accuracy of matched hotspots was reduced.
Therefore, in our current investigation, while using

the Optimistic model, 80% of inputs were considered
trustworthy. Similarly, for the Pessimistic model, 5% of
inputs were considered trustworthy.

+ Trust Aspects. Trust tuples (b, d, and u), associated
with an incident, depend on the positive and negative
evidences available for that incident [11]. To gather
these evidences, in our past work, we considered three
aspects of each incident: Location, Day, and Incident
Type. Hence, in our experiments, we have considered
all these three aspects.

o Trust Threshold Value. The Opinion-based model, in
our past experiments, used different predefined thresh-
old percentages of belief and disbelief. Here, if the
generated belief value of an incident is higher than
a selected belief’s threshold value, then the incident
is considered for generating hotspots. Again, if the
generated disbelief value of an incident is higher than
a selected disbelief’s threshold value, then the incident
is ignored. Based on the results of those experiments,
we decided to apply only 50% as the trust threshold
value for both belief and disbelief.

C. Approaches to generate the top hotspots

In our experiments, the Ground-truth model acts as a
baseline model, and the accuracy of all the other models
is defined in terms of the hotspots matching percentage.
The hotspots matching percentage is the percentage of top
hotspots for each policing beat, generated by a model,
that match (have the same location and incident type and
within the day range) with the top hotspots generated by
the Ground-truth model. In the T-CDASH system, the top
hotspots for each beat are selected based on their average
cost associated with the social harm incident. In the current
research, we have also explored additional criteria, which
are: incident frequency and combination of both (incident
frequency followed by the average cost).

Using these parameters, we carried out various experi-
ments (using all the 6 trust models indicated in Sect. I11-A)
with the T-CDASH system using the 2012-2013 and 2019
and 2020 datasets to investigate the impact of the additional
criteria (mentioned above) in terms of hotspot matching
percentage. The results of these experiments are presented
in Table IIL
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Figure 3: Statistics for Indianapolis social harm 2013 UCR and CAD dataset based on Incident’s cost and frequency.

As seen from Table III, the inclusion of the incident
frequency has significantly boosted the accuracy percentage
of matched hotspots percentages when compared with other
two criteria (cost and a combination of cost with frequency)
for all six models. On analyzing the UCR and CAD data of
2016, we observed that three incidents categories (Homicide,
Simple Assault, and Aggravated Assault) out of the top 5
categories matched based on the cost metric. Whereas, four
incidents categories are matched (Larceny, Simple Assault,
Residential Burglary and Aggravated Assault) out of the
top 5 categories based on the incident frequency metric (as
presented in Figure 3). Here, Figures 3(a) and (b) outline the
UCR and CAD dataset statistics based on the cost feature.
Similarly, Figures 3(c) and (d) represent the UCR and CAD
dataset statistics based on the incident frequency feature.

Hence, to select the top hotspots in a policing beat, the
incident frequency should be the most suitable criteria to
consider.

Another experiment, using the same parameters, was
conducted for the RMS (2019 and 2020) datasets as well.
The results of that experiment are provided in Table IV. Here,
we can observe the same trend in terms of the performance
of trust models. However, the accuracy percentage is much
higher than the 2012-2013 dataset — a possible reason for
this higher accuracy is that thesc RMS datascts arc of a
shorter duration (only four months Jan to April). Another
possible reason could be related to the way we created
the synthesized the CAD data for testing. In Table IV, as
indicated earlier, the synthesized CAD data is a combination
of two-third CAD data from the year 2016, and remaining

Table 1V: Different approaches to generate to hotspots using 2019 and 2020 (Jan-April) dataset

Model Location?  Day? Avg cost-based Incident freq.-based Combination of Incident freq.
Hotspots Matched (%)  Hotspots Matched (%) and Avg cost based
Hotspots Maiched (%)
Optimistic (80%) yes yes 60.1 68.69 63.29
Pessimistic (5%) yes yes 67.05 78.01 72.38
Average yes yes 64.34 71.8 68.93
Random yes yes 64.01 71.35 67.56
Random Heuristic yes yes 51.83 64.82 57.96
Heuristic (50% - 50%)  yes yes 58.22 69.57 61.72




data is obtained from the RMS 2020 dataset. In addition, we
have experimented with the other approach, where only one-
third of synthesized data was obtained from previous CAD
data and remaining from the RMS 2020 dataset. For, both
approaches the performance of all the trust models varies
insignificantly excluding the Heuristic model. For second
approach, the Heuristic model hotspots matched percentage
rises to 73.57% based on the incident frequency.
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Figure 4: Statistics for Indianapolis social harm 2020 (Jan-
April) CAD dataset based on Incident’s frequency.

As indicated above, our existing CAD mapping scheme,
in the T-CDASH system, uses 38 different reported incident
types. We wanted to check the applicability of this mapping
scheme to the recently received CAD data for 2020. Hence,
as a preliminary investigation, we identified incidents (from
the newly received CAD dataset for 2020) which belong
to these 38 CAD categories and plotted them using the

frequency-based incidents’ statistics. Those details are pre-
sented in Figure 4.

D. Collaborative Trust Models

Instead of using each of the trust models in a linear man-
ner, as indicated earlier, we employed different collaborative
patterns among the trust models. The rationale for such
collaborative (and hence, parallel forecasting) is twofold —
(a) real-time events may be generated asynchronously and
a user of the T-CDASH system may decide to employ a
certain trust models for a certain type (e.g., use the heuristic
model where there is lot of past data available for a particular
beat) of incident data stream, and (b) parallel execution of
trust models will result in a short turn-around time than a
sequential execution of 6 trust models. In this study, we did
focus only on the first part as the size of all the datasets are
not very large — in future, if we can obtain large datasets
and use them for training purposes, we could reduce both the
training and forecasting times by collaborative executions of
the trust models. The collaborative patterns are applied to
all the 6 trust models. However, from previous experiment
findings [11], we had observed that the Pessimistic and
Heuristic models always outperformed than other trust mod-
cls. Therefore, as an additional experiment, we applied the
‘OR’, ‘AND’, and ‘XOR’ collaboration patterns only to the
Pessimistic and Heuristic models. The resulting outcomes
arc presented in Table V and Table VI. Here, for 2012-2013
dataset, we observed that the collaboration between two
trust models (Pessimistic and Heuristic) performed better
than the collaboration between all the 6 models. However,
a different scenario was observed for the 2019 and 2020
datasets — the collaboration between the Heuristic and the
Pessimistic models resulted in a lower matching percentage
than compared to the collaboration between all 6 models.
A possible reason for this change of behavior is that the
stand-alone matching percentage of the Heuristic model is

Table V: Performance of Collaborative Trust Models with 2012-2013 dataset

Model Location?  Day?  Avg cost-based Hotspots Matched (%)
AND Compose (All) yes yes 40.75
OR Compose (All) ves yes 37.86
MAJORITY Compose (All) yes yes 4135
AND Compose (Pessimistic & Heuristic)  yes yes 4357
OR Compose (Pessimistic & Heuristic) yes yes 42.64
XOR Compose (Pessimistic & Heuristic)  yes yes 44.59

Table VI: Performance of Collaborative Trust Models with RMS (2019 and 2020 (Jan-April)) dataset

Model Location?  Day?  Avg cost-based Hotspots Matched (%)
AND Compose (All) yes yes 6133
OR Compose (All) yes yes 574
MAJORITY Compose (All) yes yes 65.81
AND Compose (Pessimistic & Heuristic)  yes ves 59.27
OR Compose (Pessimistic & Heuristic) yes yes 55.17
XOR Compose (Pessimistic & Heuristic)  yes yes 62.76




lower than other models and that contributes to the different
behavior. Comparing with the stand-alone performance of
each trust model, we can conclude that the collaboration
between all the 6 trust models, for the 2019 and 2020
datasets, does not yield any significant improvement. A
possible reason for such a low performance is that the 2019
and 2020 dataset is small in size (only 4 months).
V. CONCLUSION AND FUTURE WORK

This paper describes enhancements made to our past
work, using the T-CDASH system, for forecasting social
harm events using various datasets (CAD, RMS, and UCR).
These enhancements include: (a) addition of the frequency of
incidents, to the average cost, while computing the hotspots
for each policing beat, (b) apply the six trust models to
new datasets (2019 and 2020) obtained from the IMPD, and
(¢) investigation of different collaborative patterns amongst
the six trust models. For the new (2019 and 2020) dataset,
we observed, quite surprisingly that the Pessimistic model
outperforms all the other trust models. One possible reason,
in addition to the small size of the dataset, for this behaviour,
is the lack of actual CAD data for the same time period.

Moreover, in our experiment, we also observed that for
both the datasets, the collaborative patterns do not yield any
significant improvement in the hotspot matching percentage
when compared with the stand-along models. However, for
the 2012-13 dataset, a collaboration between only two mod-
els outperformed the collaboration between all the models.
Experimenting with additional datasets, such as the CAD
data for 2020 that we recently received, is necessary to
generalize matching percentages and the collaborative be-
havior between the models. In the future, different machine
learning techniques can also be incorporated for generating
trust models. Additionally, other comparison metrics, such
as Earth Mover’s Distance, can be applied to the results of
the standalone and collaborative outcomes. Although, in this
paper, we have described the applicability of T-CDASH on
the data related to Indianapolis, T-CDASH can be easily
adapted to any other city’s social harm data. Such an
adaptation will require the mapping of the reported incidents
to the HPPS incident codes and run similar experiments.
Therefore, an experimentation with other datasets associated
with different cities is an interesting direction to explore in
future.
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