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Abstract—Complex inner-city junctions are among the most
critical traffic areas for injury and fatal accidents. The devel-
opment of highly automated driving (HAD) systems struggles
with the complex and hectic everyday life within those areas.
Sensor-equipped smart infrastructures, which can communi-
cate and cooperate with vehicles, are essential to enable a
holistic scene understanding to resolve occlusions drivers and
vehicle perception systems for themselves can not cover. We
introduce an intelligent research infrastructure equipped with
visual sensor technology, located at a public inner-city junction
in Aschaffenburg, Germany. A multiple-view camera system
monitors the traffic situation to perceive road users’ behavior.
Both motorized and non-motorized traffic is considered. The
system is used for research in data generation, evaluating new
HAD sensors systems, algorithms, and Artificial Intelligence (AI)
training strategies using real-, synthetic- and augmented data.
In addition, the junction features a highly accurate digital twin.
Real-world data can be taken into the digital twin for simulation
purposes and synthetic data generation.

I. INTRODUCTION

One of the most challenging locations for drivers and HAD
systems are inner-city junctions. Extensive traffic density
highly restricts the field of view (FOV) of drivers and vehicle-
based perception systems. Towards reliable HAD systems, it
is mandatory to investigate to what extent these restrictions
can be compensated from a vehicle perspective. Intelligent
junctions equipped with sensors are already used to cope with
these restrictions cooperatively [1] [2] [3]. Moreover, one can
use them to evaluate the perception capabilities of vehicle-
only HAD systems. Carefully matched-up sensor positions,
alongside empiric perception models can dissolve almost
all occlusions, allowing a seamless scene understanding at
complex junctions. Empirical approaches are necessary to
satisfy these use cases. These topics are part of the cooperative
research project AI Data Tooling [4]. The project will develop
and investigate holistic tools and methods for providing data
of different sensor modalities for AI-based functions. The aim
is to develop a complete data solution for the training and
validation of AI-based automated driving functions by inte-
grating real data, synthetically generated data, and augmented
data as a mixture of these two and methods for the efficient
handling of this data set. The presented sensor setup facilitates
a multi-view perception of traffic participants, with a broad
area coverage among the junction. This publication focuses
on installation, data flow, and research targets of intelligent
infrastructure at a junction.

Moreover, it underlines the possibilities for future research
within road safety and training strategies using a mixture
of real-, synthetic- and augmented data. The publication is
structured as follows: First, we review comparable research
junctions in Sec. II. Second, we discuss the requirements and
analysis for developing the infrastructure perception system
in Sec. III. Next, the system architecture, data recording, and
digital twin are described in Sec. IV, followed by challenges
and research targets in Sec. V. Finally, we summarize the
current status in Sec. VI.

II. STATE OF THE ART

This chapter references other intelligent junctions used
for vulnerable road users’ (VRUs) safety and reviews the
research work carried out on data acquired by those. Sev-
eral environmental observing junctions have been proposed.
However, the main focus of the majority of research is carried
out on high-level traffic flow understanding [5]. In contrast,
some research targets VRU safety topics, which require high-
resolution sensing technologies. One of them was introduced
in 2012 for the German Ko-PER project [1]. A combination
of laser scanners and gray-scale cameras is used to monitor
the traffic of the whole junction in general. In addition, a
precise 90-degree stereo camera setup using two gray-scale
full HD cameras has been used to detect and predict VRUs
behavior crossing the street, focusing on one corner of the
junction. Furthermore, this setup is used for the DeCoInt2

[6] project with the research target of detecting intentions of
VRUs based on collective intelligence, focusing on cyclists.
The DeCoInt2 project covered two major research areas: per-
ception, and motion anticipation, both under the cooperative
aspect between static mounted sensors and mobile research
vehicles. For motion anticipation, Reitberger et al. provided
a cooperative tracking algorithm for cyclists [7], Bieshaar
et al. used Convolutional Neural Networks to detect starting
movements of cyclists [8], and Zernetsch et al. developed a
probabilistic VRU trajectory forecasting method [9]. Kress et
al. used this sensor setup as a reference to evaluate a human
keypoint detection model deployed to a mobile research
vehicle [10]. It is worth mentioning that this sensor setup
and the knowledge from the Ko-PER and DeCoInt2 projects
was utilized for the development of the novel proposed sensor
setup.

A comparable junction is located in Braunschweig, Ger-
many, serving as a field instrument for detecting and assessing
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traffic behavior. The junction can provide trajectory data of
road users, acquired by multi-modal sensor setups. Mono
cameras and radar are utilized for the 3D detection of vehicles.
For VRU detection, multiple binocular stereo camera setups
facing the pedestrian crossings are used. [2]

Since 2019 Continental operates two intelligent junctions
in public use in Auburn Hills, Michigan. The systems are
used to improve traffic flow, reduce pollution, and increase
the junction’s safety by communicating hidden dangers to
approaching connected vehicles and pedestrians. Camera and
radar sensors are used to create an environment model pro-
viding information about road users, traffic infrastructure,
static objects to connected vehicles using infrastructure-to-
everything (I2X) communication [3].

III. REQUIREMENTS AND ANALYSIS

The requirements for the original Ko-PER junction intro-
duced in 2012 are derived from intensive analysis of accident
scenarios which occur at junctions [1]. The analysis is based
on the German In-Depth Accident Study (GIDAS) database
[11]. It contains more than 20,000 registered accidents in
the area of Hannover and Dresden since the year 1999.
According to GIDAS, Goldhammer et al. clustered a total
of 29 types of relevant intersection accidents, focusing on
pedestrians, into five scenarios, covering 74.8% of severe
and lethal accidents. Accident scenarios are complex due to
many different influences like the quickly changing num-
ber and variety of road users, complex intersection layout,
speed ranges, and different directions from which traffic may
approach. 71 % of all accidents, including pedestrians and
58 % of all accidents including cyclists in Europe, happen
inside urban areas, mostly at intersections and crosswalks
[12]. Furthermore, over 60 % of all fatalities occurring at
junctions are of VRUs. We used these results as a baseline
for our requirement analysis. According to GIDAS inter-
vehicle and vehicle to pedestrian accident rates at junctions
are continuously decreasing, from 43% in 2010 to 33% in
2020. This development illustrates the impact of improved
driver assistance systems. In contrast, vehicle to bicycle,
vehicle to ”others”, and ”inter-VRU” accidents increased,
from 42% in 1999 to 67% in 2020. The group ”others”
represent road users like electric bikes and scooters, still
belonging to VRUs. Based upon this development and in
contrast to Ko-PER or DeCoInt2, we are focusing on VRUs
in general (i.e. pedestrians, cyclists and ”others”).

For accurate VRU detection and motion anticipation, high-
resolution image-based sensors are essential. For determining
positions of VRUs, seamless stereoscopic coverage of the
VRU relevant areas at the junction is necessary. To further
minimize occlusions, the sensors need to be mounted several
meters above street level.

In addition, seasonal and weather conditions might be chal-
lenging for image-based sensors. Thus, we need to monitor
the weather and analyze the impact of weather effects on
image-based perception.

For AI-based perception and prediction methods, so-called
corner cases that are critical and rarely occurring are essential.
Corner cases can efficiently be generated using simulations. A
precise environmental model, including textures and material
properties, is required to simulate situations and scenarios at
the junction as accurately as possible.

A suitable image acquisition frame rate is required to deal
with a wide range of possible velocities for both motorized
and non-motorized road users. We aim to maximize the frame
rate while keeping both amount of data and computational
load manageable.

IV. SYSTEM DESCRIPTION

Fig. 1: Illustration of the junctions topology, including an overview of all
camera positions (red) with full stereo coverage in the highlighted area
(orange).

The junction consists of the main road with five lanes
and a daily traffic volume of 30,000 vehicles. Fig. 1 gives
a schematic overview of the junction’s topology. The main
road has two straight-ahead lanes at the junction area and
a separate left-turn lane for each direction. The more minor
approaches have one lane per direction and a left-turn lane
on one side. There are three traffic light-controlled crosswalks
and a bicycle lane along the main road, which VRUs highly
frequent, due to proximity to a university. The four corners of
the junction show different occlusions by roadside structures
and parking cars. Thus, the road users’ FOV in many common
traffic scenarios is limited.

A. Sensor Setup

In advance of installing the multi-camera network setup, the
FOV of all sensors was simulated for different positions and
alignments. The sensor setup was adjusted to achieve a best-
case stereo coverage of the inner junction area, including the
three pedestrian crosswalks, a bicycle lane, and a sensor cov-
erage up to 100 meters into the junction approaches. Elevated



mounting positions, up to eight meters, alongside overlapping
FOVs, dissolve occlusions that may appear. All sensors are
mounted to existing infrastructural light and signal poles. The
optical sensor network consists of six identical color CMOS
cameras with an ultra-high-resolution of 4096x2160 pixels.
Each camera is equipped with a 71-degree horizontal aperture
angle lens, operates at a fixed 25 Hz acquisition rate, and uses
a five GigE interface to submit its acquisition data. Every
camera is placed within a weather-resistance case, including
a temperature-controlled heating and cooling system for all-
season commitment. The transmission of sensor data is done
via five and ten Gigabit Ethernet uplinks using fiber and
copper cables with lengths of 80 meters. The cameras are
aligned to achieve multiple 45- and 90-degrees stereo setups.
In total, seven stereo systems are used. The complete stereo
FOV is illustrated in Fig. 1. Cameras 1-3 focus on the section
between pedestrian crosswalks one and three. Cameras 4-
6 focus on the section between pedestrian crosswalks two
and three. In addition, cameras one, five, and six covers the
three connected approaches corresponding to the pedestrian
crosswalks, whereas cameras two, three, and four each cover
two approaches by reduced attention.

In addition to the image-based sensor setup, a meteoro-
logical station is used to provide weather information as
supplementary context. The station consists of two sensors
placed in proximity to the junction. One sensor is responsible
for measuring environmental parameters and is located on a
building’s roof, next to the junction. A second sensor is used
to track the current visibility at the junction. Thus it is placed
at a light pole next to the junction center ten meters above
road level. Both sensors are shown in Fig. 2.

Fig. 2: Different mounting positions of sensors.

B. System Architecture

To handle the amount of data six ultra-high-resolution color
cameras provide, a custom build hardware- and software
stack is required to maintain real-time data recording and
processing in a single system. By using 25 Hz, each camera
transmits 1.77 Gigabits of data, resulting in a total amount
of 10.62 Gigabits of processing data from all cameras. Fig.
3 illustrates the complete schematic system architecture with
the sensor setup described in the previous section. The data
processing system consists of a 64-Core processor with 256
GB of RAM, three GPUs, four TB of PCIe 4.0 NVMe
storage, and ten high-speed Ethernet ports. The GPUs are

necessary for high-speed image data encoding. On the CPU
side, our software stack makes heavy use of multithreading
for simultaneous data handling. In addition to simple sensor
data recording, the system can serve real-time demonstrations,
including 3D perception and VRU motion anticipation. For
highly precise synchronization, the cameras are triggered by
GPS timestamps. Simultaneously, dedicated UTC timestamps
are sent to the data processing system associated with the
sensor data by CAN-Bus. A storage server with 576 TB of
capacity is connected to the data processing system to store
more extensive data sets. The Robot operation system (ROS)
manages the complete data handling within the processing
system. It enables the establishment of a flexible node-
based data processing pipeline using a publisher-subscriber
architecture.

Fig. 3: Schematic overview of the system architecture.

C. Data Recording

As described in the previous subsection, the cameras pro-
vide a data stream of more than 10 Gigabits. To ensure a
continuous and seamless data recording, GPU fixed encoding
hardware functionalities are used. Each GPU can processes
two camera streams simultaneously. The fixed-function unit
encodes the camera’s raw data into the lossless compressed
H.264/MPEG-4 AVC format [13]. Using the H.264 compres-
sion algorithm, we can reduce the amount of data by a factor
of eight to ten on average, depending on the current junction
traffic volume. The recording node itself can subscribe to a
user-defined number of cameras. GPU resources are auto-
matically managed. Within a recording session, the camera
images are uploaded into the GPU memory and passed to the
hardware-accelerated encoding unit. Afterward, the resulting
H.264 binary stream is stored on disk. A synchronization file
is created to keep the UTC timestamps.

D. Meta Data

Besides the raw data recording capabilities, the system
performs several post-processing tasks to create a wide range
of metadata for additional research topics. We are using
Detectron2 for state-of-the-art object detection, segmentation
and human pose extraction [14]. In addition, triangulation is
applied for each stereo-system to determine 3D coordinates



for all detected VRUs. By merging all seven stereo-systems,
we maintain a complete 3D perception of the junction’s
critical areas, as illustrated in Fig. 1. This allows us to track
objects in real-world coordinates. Furthermore, the system can
estimate 3D human body poses, as introduced by Open Pose
[15]. The H.264 encoding mentioned in subsection IV-C can
be used to extract optical flow, which is a powerful input
feature for the task of human motion anticipation in general,
as shown by Carreira and Zisserman [16] and for VRU motion
anticipation in particular, as shown by Zernetsch [17].

E. Digital Twin

A digital clone of the junction is created by a combina-
tion of photogrammetry and road-level laser scans. A drone
carrying a specific high-resolution camera is used to receive
the visual scan of the junction, supported by measurement
vehicles to scan the complete ground area and facades. Both
methods achieve a highly accurate digital model with a
better than 1 cm textural resolution and a 3 cm or better
structural resolution. The model can be utilized in simulation
environments, increasing the junction’s research capabilities
in synthetic data creation and applications.

V. RESEARCH TARGETS AND CHALLENGES

Based on the data collection capability enabled by the
junction, we want to envision future research directions.
Unlike ground-based vehicles, our system can sense objects
of interest without occlusion. For HAD vehicles, perception
systems have to be safe and reliable. Due to the high-
quality data and its multiple perspectives, our sensor setup can
serve as a reference system for evaluating and safeguarding
vehicular HAD systems. That can be done in the form of a test
site or by utilizing the data to train vehicular HAD systems
by transferring labels from the reference system. Furthermore,
the digital twin enables data generation and evaluation by
simulation. We want to collect data, analyze critical scenarios,
define evaluation metrics, develop methods for meta-data
acquisition, and provide a simulation environment for the
digital twin.

The meta-data provides an interface between the real world
and its digital twin, e. g. human body poses and trajectories
can be used to animate pedestrians and cyclists within a
simulation environment. Both synthetic and real data allow
us to analyze the quality requirements of synthetic data and
how well the mixture of real and synthetic data works for
use cases like object detection and motion anticipation. Using
synthetic data alongside real data is promising, as it allows us
to teach HAD systems even those scenarios that rarely occur.

For an accurate sensor system, several challenges must still
be overcome. One is a continuous calibration of the cameras
to compensate for drifts in position and orientation caused
by temperature and mechanical vibrations. The second is
maintaining suitable perception models within the presented
system regarding changes in seasons, traffic patterns, and
urban mobility. For example, electric bicycles change the way
human car drivers interact with cyclists within a few years.

VI. CONCLUSIONS

This paper presented a sensor network operating at a
complex public junction as part of the AI Data Tooling
project, including time-associated data acquisition and data
processing. Moreover, we highlighted the research capabili-
ties of our system and defined future research targets. The
dedicated setup of ultra-high-resolution cameras enables a
highly accurate perception of all road users within the inner
junction area. It will be used as a reference for vehicle sensor
evaluation and simulation, data creation, and analyzing AI
training strategies using real- synthetic- and augmented data.
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