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Abstract—Global epidemic propagation rate and structure are
strongly coupled with the international air transport network.
Due to the network structure, countries are desynchronized in
the way infections arise, transported, mitigated, and re-infect
again. A global lockdown is detrimental to the international
economy, and many argue that unless the whole world is evenly
vaccinated, we cannot return to pre-COVID lives. The current
challenge is that new waves of re-infection are spreading, and
vaccination will take many months to materialise across the
world. Here, we show how certain small airports (0.1% of
global) contribute much more to the epidemic spread process,
irrespective of the actual spreading mechanics. We use trophic
coherence as a metric for network stability in directed graphs
(e.g., recurring network source of reinfection). We find that the
air transport network has a trophic coherence similar to a ran-
dom expectation (99% of airports form a tightly looped network)
and practically all networks need to be equally protected to
ensure global security.

Index Terms—air transport network; network science; data
analysis; epidemics; COVID-19;

I. INTRODUCTION

Future globally connected smart cities need to be conscious

of the benefits and risks of domestic and international air

travel [1]. In this paper, we focus on network science analysis

of transport networks [2], [3], which can yield insights into

the risk of not only pandemic spreading, but also waves of

reinfections. In particular, we focus on the general stability of

a global network to some dynamic process.

Epidemic spreading along air transport networks is a well-

established research area [4]. Evidence particular points to the

local air transport network at a virus outbreak location [5] as

key to its initial spread, as well as long-range air travel on

the general global epidemic development. The effectiveness of

air travel to spread infectious diseases is also exasperated by

the congested nature of airports [6]. Existing works approach

epidemic modeling from 2 perspectives.

A. Epidemic and Dynamic Process Network Models

In the first category, evidence driven research [5] focus on

how new strains or new outbreaks propagate along local air
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travel links from the source of the outbreak, which sets the

important initial conditions of an outbreak. Any SIS/SIR/SEIR

modeling [7] depends on the initial conditions and measure-

ment accuracy to predict the success of the epidemic process

[8], [9].

In the second category, more theoretical models that use

network science models to predict the spread-ability of an

epidemic, premised on the graph attributes of the network.

Network science has been used to drive understanding in a

wide range of phenomenons, using network statistics [2], com-

munity analysis [10], or node level centrality analysis [11].

In epidemics, early analysis examined Markovian dynamics

driven by the largest eigenvalue of the connectivity matrix

[12], but is based on Markovian dynamic assumptions and a

random null network model [13]. Other work look at relatively

simple local graph measures such as node degree [11] and

focus on single connection impact. Expanding to a more

diverse set of node centrality measures such as betweenness

and assortativity was still implying dynamics that are based

on shortest-paths or random walkers, and does not address the

dynamics in either a direct manner or in an agnostic manner

[14]. Neither do these analysis consider the stability of a new

infection, e.g., how fast will it die out on the air transport

network.

B. Trophic Coherence: Dynamic Agnostic Network Models

Trophic coherence is inspired by ecology as a way to re-

organise the network and understand how processes spread

on the network. In ecology, it is frequently used for food

webs [15], [16], and has been extended to consider neuron

signals to epidemics [17], as well as rail transport [18] and

water distribution [19]. This framework was generalised to

the spread of dynamical processes and infections [20]. The

underlying ideas is that low trophic level nodes (basal) have a

strong effect on the spread process, as well as the overall co-

herence of the network. Coherent networks are stable and can

synchronize faster, whereas incoherent networks are unstable

and infections and re-infections can occur in waves.
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Fig. 1. Global Air Transport Network Pre-COVID19. Nodes with the same
color represents airports in the same country. It is a densely looped network,
while some airports disconnect with others.

C. Innovation and Assumptions

In this paper, we analyse the pre-COVID air transport

network as a proxy to what state of travel the world wants to

return to as it recovers. Yet, because there will be new COVID

strains and remnants, we examine which airports are most

prone to reinfecting the world. Instead of being data-driven

by unknown future breakouts, we take the perspective that

any breakout at global scale must be driven by basal nodes,

e.g., those airport nodes that transmit the most energy from

a network science perspective. This differs it from existing

centrality analysis that does not consider feedback loops and

network coherence and stability.

To achieve this, we for the first time, convert the pre-

COVID19 air transport network into a trophic network. This

way we can see if the world recovers to the original state,

what the challenges will be. We have the following key

contributions and their associated assumptions:

1) Dynamic Agnostic Stability: the overall stability of

the network for any dynamic process (e.g., we do not

assume any SIS/SIR model, but rather look for general

network patterns)

2) Key Airports that Drive Reinfection: identify which

airports are basal nodes that drive the reinfection pro-

cess, assuming that the process is already spreading

(e.g., we are not looking for initial conditions)

Our work is dynamic agnostic and will demonstrate how

waves of infections can occur. This sets it aside from existing

work that focuses on snapshots of evidence [5], simple

network centrality measures [11], [14], or dynamic specific

models that assume a particular Markovian, SIS/SIR, or

random walker model [13].

II. DATA & METHOD

A. Data Set

We take a snapshot of the air transport network in 2017-

18 as a representative network showing major inter-city

connections. The air transport data was purchased from the

commercial vendor OAG, an air travel intelligence company,

and network level data (flights per airport) was calculated.

Domestic flights account for approximately 50% of these

flight paths. The network which we constructed using this

OAG data is shown in Figure 1. We have used this data before

in previous papers [2], [21]. Whilst we could have used a year-

by-year analysis, we felt this was over analysing the problem

as the basic network does not change significantly year by

year. The data consists of flight volumes between airports,

with 9000+ airports and 34000+ flight links between them

for the year that we focus on.

B. Trophic Structure of Air Transport Network

The trophic level of an airport node si is defined in terms

of the average trophic level of its in-neighbours

si = 1 +
1

kin
i

∑

j

aijsj . (1)

where aij is the adjacency matrix of the air transport network

and kin
i =

∑
j aij is the in degree. Basal nodes kin

i = 0 have

trophic level si = 1 by convention. By solving the system

of equations (1), it is always possible to assign a unique

trophic level to each node as long as there is a least one basal

node, and every node is on a directed path which includes a

basal node [15]. In our study the trophic level of an airport

is the average level of all the airports from which it receives

passengers plus one. For this reason, airports in or near remote

areas tend to have a lower trophic level than those close to

heavily populated coastal areas.

Each edge has an associated trophic difference: xij =
si − sj . The distribution of trophic differences, p(x), always

has mean 1, and a network will be more trophically coherent

the smaller the variance of this distribution. We can measure

trophic coherence with the incoherence parameter q, which

is simply the standard deviation of p(x):

q =

√
1

L

∑

ij

aijx
2

ij − 1 (2)

where: L =
∑

ij

aij is the number of connections (edges) be-

tween the stations (nodes) in the network. A perfectly coherent

network will have q = 0, while a q greater than 0 indicates less

coherent networks. The degree to which empirical networks

are trophically coherent can be investigated by comparing

with a null mode. The basal ensemble expectation q̂ is a

good estimation for finite random networks [16], which can

be calculated by

q̂ =

√
L

LB

− 1, (3)
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Fig. 2. Global Air Transport Network Restructured into Trophic Levels
(Stability Contribution): 5 basal nodes contribute highly to network instability,
99% of network contribute similarly, and Greenland have highest trophic level
(contribute to instability the least).

where LB is the number of edges connected to basal nodes.

q/q̂ can be used to analyze the coherence of the network.

q/q̂ > 1 indicates that the network is incoherent (such as

metabolic networks); q/q̂ < 1 reveals coherent network (such

as food webs); q/q̂ close to 1 shows that the coherence of

the network is similar to a random expectation (such as gene

regulatory networks) [16].

III. RESULTS

A. Stability from Trophic Coherence

The major flows of passengers (from one airport to another)

determine the stability of the air transport network. We can

consider the flows filter method to remove the irrelevant edges.

For example, the number of passengers from airport i to j is

much higher than that from j to i, then the edge aji can be

ignored. We defined the threshold T to remove the irrelevant

edges. If aij/aji > T , then aji is removed. Since, the ratio

aij/aji of most edges in air transport network is close to 1, the

larger the T , the less edges will be removed. If T is close to 1,

a large number of edges will be removed in the air transport

network and some important information will be lost. The

trophic levels of the air transport network are shown in Figure
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Fig. 3. The trophic coherence of the air transport network with different
threshold T .

(2). There are 5 basal airports in the network, which mainly

send passengers to the world. On the other hand, airports in

Greenland have high trophic levels, which means they have

little effects on the dynamics.

To analyse the stability of the network, we calculate the

trophic coherence of the network with different threshold T . In

Figure (3), it shows that when 3 < T , the ratio q/q̂ is robust,

which provides a good condition to analyze the network. q/q̂
of the air transport network equals to 1.14. While, when T
is close to 1, the ratio q/q̂ varies, even though not too much.

This is because a small threshold T removes a large number

of edges, which cause the structure change of the network.

The analysis reflects the fact that remove some loops of the

network will not heavily affect the trophic coherence, which

means these edges have little effects on the stability of the

network.

B. Airports with Low Trophic Level

Here we set T = 3 and the trophic levels are shown in

Figure (2). There exists 5 important airports (see Figure 2)

in the air transport network, which are regarded as the basal

nodes. To analyse the effects of the basal nodes, we remove

some of them and calculate the trophic coherence (shown

in Figure 4). It shows that the removal of basal nodes will

largely affect the trophic coherence of the network, which

makes the network less coherent. Comparing with the removal

of edges (shown in Figure 3), the removal of basal nodes

have much more influence on the trophic coherence as well

as the dynamics. Also, we compare the effect of removal basal

nodes and nodes in other trophic levels on trophic coherence

in Figure 4. The removal of basal nodes has obvious effects on

trophic coherence, while the removal of nodes in other trophic

level has little effects on trophic coherence. That is to say,

these 5 airports are considered basal and largely contribute

to infection dynamics. The research [17] shows that trophic

coherence affects the infection of the network. In coherent

network, the infection spreads easily in the whole network,



0 1 2 3 4
removal nodes

1.15

1.20

1.25

1.30

1.35

1.40

1.45

q/
q

similar to a random expectation

incoherent

removal nodes in other trophic level
removal basal nodes

Fig. 4. The effects of removal nodes on the network. The green line shows
that the removal of basal nodes cause trophic incoherence. The red line shows
that the removal of nodes in other trophic level has little effects on trophic
coherence.

while infection only reaches a fraction of the network in a less

coherent network. Therefore, comparing with airports in other

trophic levels, protecting these 5 airports is more efficient to

prevent the spreading of intections in the whole network.

IV. CONCLUSIONS

Future globally connected smart cities need to balance the

benefits and risks of air travel [1] [22]. In this paper we

analyse the pre-COVID air transport network as a proxy

to what state of travel the world wants to return to as it

recovers. Yet, because there will be new COVID strains and

remnants infection pockets, we examine which airports are

most prone to re-infecting the world, given no emerging

variant geographic bias. Instead of being data-driven by un-

known future variant breakouts, we take the perspective that

any sustained re-infection process must be driven by basal

nodes, e.g., those small proportion (0.1%) of airport nodes

that transmit outwards the most passengers. What we found

that the trophic coherence of the air transport network is close

to 1 - similar to a random expectation. Airports in Greenland

have high trophic level, which have the smallest effects on the

infection dynamic stability. Also, in line with intuition, due

to the largely symmetric nature of passenger flows, 99% of

airports have similar contribution to stability, whereas only 5

minor airports are considered basal and contribute as potential

sources to unstable reinfection dynamics. As such, outside this

minority, there is no clear priority order to safeguard airports

and 99% of airports are equally important. The analysis of

trophic coherence of the air transport network points out

the important airports which contribute much more to the

infection dynamic stability. Also, the whole network is divided

into different trophic levels where nodes in lower trophic level

affect more on the dynamic stability. The limitation is that

the contribution of group or community structure in the same

trophic level to the global dynamic stability is still not clear.

In the future, it is interesting to reveal the effects of group or

community structure on the dynamic stability of the work.
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