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Abstract—Humanitarian disasters and political violence cause
significant damage to our living space. The reparation cost to
homes, infrastructure, and the ecosystem is often difficult to
quantify in real-time. Real-time quantification is critical to both
informing relief operations, but also planning ahead for rebuild-
ing. Here, we use satellite images before and after major crisis
around the world to train a robust baseline Residual Network
(ResNet) and a disaster quantification Pyramid Scene Parsing
Network (PSPNet). ResNet offers robustness to poor image
quality and can identify areas of destruction with high accuracy
(92%), whereas PSPNet offers contextualised quantification of
built environment damage with good accuracy (84%). As there
are multiple damage dimensions to consider (e.g. economic loss
and fatalities), we fit a multi-linear regression model to quantify
the overall damage. To validate our combined system of deep
learning and regression modeling, we successfully match our
prediction to the ongoing recovery in the 2020 Beirut port
explosion. These innovations provide a better quantification of
overall disaster magnitude and inform intelligent humanitarian
systems of unfolding disasters.

I. INTRODUCTION

Rapid advances in deep learning (DL) has enabled signif-

icant remote sensing applications in automated systems for

disaster management. According to the World Health Orga-

nization (WHO), 90,000 people die 160 million people are

severely affected by a variety of natural disasters. Furthermore,

45 million people are displaced from their homes due to

a variety of natural disasters and political violence. In the

whole year of 2019, there were 409 severe natural disasters

occurred worldwide. Therefore, there is clearly a challenge to

quantify the magnitude of said disasters and conflicts, in order

to inform a range of government and NGO systems to provide

appropriate assistance and recovery plans [1]–[5].

A variety of existing methods already exist to monitor cities

and its citizens, ranging from geo-tagged social media and

Google search data to gauge happiness and public health

response [6]–[10], mobile apps to measure public activity [11],

and Internet-of-Things sensors to monitor critical infrastruc-

tures [12]. What is lacking is a remote sensing approach to

real-time estimate the social and economic damage from a

variety of natural and man-made disasters. This is critical

to informing short-term relief and long-term reconstruction

response.

A. Automated Disaster Quantification and Management

In post disaster scenarios, site exploration and disaster eval-

uation is challenged by dangerous and difficult environments

for first responders. Scalable quantification, updated quantifi-

cation is extremely challenging over vast areas. For example

Hurricane Katrina (2005) caused damage over 230,000 km2

grossing to over $160bn of damage.

Satellite images have been previously used for understand-

ing site access and automating responses, but manual feature

processing is often slow and lacks scalability to large areas.

Recent advances in deep learning can identify of hazard zones,

provide risk assessment and insurance compensation. The data

used includes a combination of aerial drone photography, satel-

lite imaging, and social media data. In recent years, automated

disaster detection system [13] have used CNNs to extract

data from the immediate disaster area and prioritise resource

distribution and recognise viable infrastructure for aid delivery

[14]. The results show that the accuracy of disaster detection

is 80-90%. Similar work using aerial photos from UAVs have

been used with a VGGNet deep learning model achieving

91% accuracy [15]. Recognising the complex discontinuities

in disaster images, improvements were made by adding a

residual connection and extended convolution to the previous

CNN frameworks [16]. When combined with the feature maps

generated by aerial images and satellite image samples, the

work improved the overall classification of the satellite images

for building damage by nearly 4%. More recently, researchers

have developed a new deep learning approach to analyse

flood disaster images and quickly detect areas that have been

flooded or destroyed to assess the extent and severity of

damage [17]. However, the open challenge in this area is scene

parsing, whereby recognising and segmenting livable objects

(e.g. houses, infrastructure) from natural environment (e.g.

trees and open spaces) is critical to quantifying the built livable

space impact. Another open challenge is that quantification

thus for in the above work has focused on singular dimensions,

however we must recognise that economic damage and human

fatality are both important indicators, and there is a growing

body of work that examines social response to disasters via

social media analysis [18]. Therefore, we would need to

develop a model that combines them.
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Informs Damage Quantification

Fig. 1. Disaster scene parsing using PSPNet: (a) pre- and post-disaster images containing both built and natural environment, (b-c) feature map feeds a
pyramid pooling module to achieve (d) contextual object segmentation that informs damage quantification.

B. Contribution and Assumptions

This paper aims to find a way to describe the severity of

the disaster and try to quantify the disaster automatically. Our

novel contributions are as follows:

(N1) We use over 100 case studies from open sources, which

includes before and after photos, disaster information (e.g.

date, cost, fatality, etc.) and created a novel database which

previously did not exist before for academia.

(N2) We compare two state-of-the-art approaches in deep

learning, the readily available Residual Network (ResNet) and

the more suitable custom configured Pyramid Scene Parsing

Network (PSPNet). The former ResNet has a lower require-

ment for image quality, whereas the latter PSPNet is capable

of scene parsing for livable space separation from natural

environment. We compare the trade-off performance of image

quality requirement vs. damage quantification accuracy.

(N3) We develop a multi-linear regression model to map

the neural network outputs from (2) to the actual economic

and human damage values. We keep (2) and (3) separate in

order to enable the neural network models in (2) to be useful

to a much wider set of humanitarian contexts beyond damage

quantification.

(N4) Finally we train our mode on historical cases across

a spectrum of global disasters and then test our model on a

more recent event.

As far as we are aware of, no such combined deep learning

and disaster quantification system exists. The system fits into

a wider need to automate humanitarian disaster response,

allocate and prioritise global emergency resources to either

preemptively address or respond to disasters [19].

The assumptions of this method is as follows.

(A1) We assume that the aerial images centred on the dis-

aster zone is representative of the majority of overall damage

and the deep learning algorithm captures the essential features,

as damage is often centred around the damage epicentre for

single point disasters (e.g., explosions, volcanoes, tsunamis),

but less so for hurricanes and flooding events.

(A2) We assume that most the economic damage can be

seen above the surface and underground damage or ecological

TABLE I
DATA PARAMETERS

Data or Parameter Value
Case Studies 124

Disaster Categories 9
Time Span 2004 to 2019
Location Global

Death Toll 2 to 165,000
Economic Damage $0.12 to 360 billion

Living Space villages to major cities
Resolution 0.3m to 3m

damage is not considered in our model.

(A3) We try to capture how a combination of economic loss

and human life lost in a multi-linear regression model as the

metric of interest. This is not ideal but necessary to aggregate

the diverse damage metrics.

II. DATA AND METHODOLOGY

A. Database

We source all our images and accompanying disaster data

from open source websites. The images should have high

quality (256×256 dpi) and 124 disasters are covered ranging

from forest fire, earthquake, mudslide, tsunami, volcanic erup-

tion, hurricane, typhoon, tornado and major industrial explo-

sions, spanning several recent years around the world. Our

major sources of data are: (1) EM-DAT international disaster

database established by WHO and the Belgian Government

[20], (2) CRED Centre for Research on the Epidemiology of

Disasters, (3) Inria Aerial Image Dataset [21], and (4) xBD

dataset [22]. We summarize our data in Table 1.

B. ResNet for Baseline Classification

We first consider the widely used ResNet model [24], which

is designed to get an initial output for the severity of disasters

according to the images for pre- and post-disaster. ResNet

has the advantage of being relatively robust as poor image

quality and different noises. Noises can often arise due to

environmental conditions (e.g. smoke from conflict or fire)



(a) Baseline ResNet-34 Output: Probabilistic Value of Disaster Likelihood: 

92% accuracy, 0.05 loss

(b) Scene Parsing PSPNet Output: Build Environment Occupation %: 

89% accuracy, 0.21 loss

Fig. 2. Baseline ResNet and Scene Parsing PSPNet: data, training, and performance. (a) ResNet produces a probability score for a disaster with high accuracy
and is robust to noise, whereas (b) PSPNet can quantify the amount of built environment damage with a lower accuracy and is not robust to noise.

TABLE II
BASELINE RESNET-34 FOR ROBUST DISASTER DETECTION:

ARCHITECTURE AND TRAINING/TESTING PARAMETERS

Layer Output Size Details
Conv 1 112×112 7×7, 64, stride 2
Conv 2 56×56 3×3 max pool, stride 2

[3× 3, 64, 3× 3, 64]× 3
Conv 3 28×28 [3× 3, 128, 3× 3, 128]× 4
Conv 4 14×14 [3× 3, 128, 3× 3, 256]× 6
Conv 5 7×7 [3× 3, 128, 3× 3, 512]× 3

Pool, FC 1×1 Average, 1000-d FC, SoftMax
Training Value

Batch Size 16
Epochs 30

Learning Rate 0.00001
Loss Func. Cross Entropy
Optimizer Adam

FLOPs 3.6× 109

Test Performance 92% Accuracy, 0.05 Loss

TABLE III
PSPNET FOR SCENE PARSING DISASTER SCALE QUANTIFICATION

THROUGH BUILD ENVIRONMENT SEGMENTATION

Training Value
Backbone DenseNet [23]
Batch Size 4

Epochs 100
Learning Rate 0.0001

Loss Func. Cross Entropy
Optimizer Adam

Test Performance 84-88% Accuracy, 0.21 Loss

or compression of image due to communication bandwidth

and edge processing limits. As a baseline, we first attempt

a binary ResNet model with two classifications, disaster and

non-disaster, and the output is the final classification with a

probability based on training. A total of 271 images was used

for training and 44 images used for validation. In the ResNet-

34 model, 34 convolutional layers are used and the architecture

used is given in Table 3. The baseline ResNet (see Figure 2a)

is robust to noise (loss 0.05) and has a high accuracy of 92%,

but it can only quantify the likelihood of a disaster present.

This is sufficient for prioritising further investigation on a large

scale, but is not effective in quantifying the magnitude of the

damage as it cannot classify the built environment and assign

a notion of contextualised value or worth.

C. PSPNet for Scene Parsing

Whilst the baseline ResNet is robust to noise and has

a high accuracy, it can only quantify the likelihood of a

disaster present. PSPNet is therefore selected and configured,

because it can segment all build environments and label them

for quantification later in the paper [25]. The proportion of

constructions area in the satellite images before and after

disasters can be calculated. Through these two data, the change

rate of constructions can be obtained. From the change rate

of constructions, disaster situations can be reflected quantita-

tively. A total of 661 images was used for training and 59

images used for validation. In the PSPNet model, a backbone

is based on DenseNet [23]. A feature map CNN (see Figure

1) of 3 layers pooled at 4 different sizes. After which they are

convolved with 1×1 filters to reduce the depth of the feature.



TABLE IV
CASE STUDY RESULTS ON BEST AND WORST PERFORMANCE

Location Disaster Damage ResNet PSPNet

Japan Earthquake (2011) $369bn 19k death 100% 90%

Indonesia Tsunami (2004) $94bn 16k death 99% 80%

Oklahoma Tornado (2013) $20bn 29 death 90% 65%

Philippines Typhoon (2013) $30bn 7k death 69% 71%

Guatemala Volcano (2018) $0.12bn 461 death 69% 45%

Montecito Mudslide (2018) $2bn 21 death 63% 59%

Bahamas Hurricane (2019) $4.7bn 370 death 55% 40%

Texas Hurricane (2017) $125bn 88 death 52% 64%

Malibu Fire (2018) $6bn 2 death 51% 46%

Florida Hurricane (2018) $25bn 74 death 51% 63%

Next, all the features are up-sampled and concatenated. The

model of PSPNet also has been created and pre-trained by

Pytorch and the process of training model is displayed in

Figure 1 with architecture in Table 2.

Using the output segmentation (white colour indicates

healthy built environment), we are able to identify the volume

of change after a disaster. The scene parsing PSPNet (see

Figure 2b) is not as robust to noise (loss 0.21) as ResNet,

and has a lower accuracy of 84-88%, but it can quantify the

damage to built environment from a disaster. This enables us

to attempt to quantify the economic and human cost of at post

disaster analysis or during an unfolding disaster.

III. RESULTS FOR DISASTER COST QUANTIFICATION

A. Disaster Case Studies

The outputs of ResNet-34 and PSPNet model are listed

in Table 4 for a few selected case study in different areas

of the world, under different type and scale disasters, with

varying levels of damage. From the table, it can be seen that

the difference between ResNet-34 and PSPNet has an average

of 8%. However, we can see that both are quite accurate

(80-100%) in predicting the disaster and level of damage for

large disasters (e.g. Japanese 2011 earthquake or Indonesia

2004 tsunami), but has poor accuracy for small disasters (e.g.

Malibu fire 2019 or Florida hurricane 2018). This is partly

because of the lack of clear differentiation in damage in

smaller disasters, as well as the lower volume of training data

(e.g. training is biased towards larger data sets).

B. Projecting the Economic and Life Loss

Previously the CNNs were able to identify which features

mapped to damages, but could not yet appropriate a economic

and human life cost to the damages. The 2 primary damage

labels for every event are economic loss ($bn) and the number

of deaths. We wish to cluster them into a number of severity

categories in order to reduce the resolution and dimensionality

of the problem into a single severity class scale.

We select unsupervised k-means to cluster over 2000 cases

of natural disasters from 2000 to 2019 using data from EM-

DAT [20]. From the Figure 3, it can be found that all data

has been divided into three clusters, a different colour dis-

tinguishes every cluster of severity. This analysis is relatively

reasonable because three cluster centres (three stars in Figure

3a-left) show the linear relationship, it is smooth and clear

to judge red, blue and green area in the graph representing

gentle, medium and severe disasters respectively. The number

of cluster 1 cases is 779, which is 39% of all cases, and

proportions of cluster 2 and cluster 3 are 32% and 29%.
In Figure 3a-right, we put every event into the corresponding

cluster, and then plot outputs corresponding to every event

into a graph as shown in Figure 3-2 with both ResNet-34 and

PSPNet outputs, the linear relationships relate CNN outputs

with the actual damage scale. The confidence interval of both

models is set to 95% (see Figure 3b). It can be found that

the R2 of ResNet-34 model is 0.48, which is much smaller

than that of PSPNet at 0.76. Our multi-linear regression model

relating PSPNet Loss output to predicted damages is:

Loss = 0.1× Economic Loss + 0.038× Deaths + 0.12, (1)

and we have checked that the residue is normal distributed.

C. Case Study: Beirut Port Explosion 2020

In 4th August of 2020, there was a powerful explosion in the

port warehouse area of the Lebanese capital Beirut, causing

widespread damage to the capital and destroying almost all

buildings near the sea. At least 154 people have been killed,

and nearly 5000 injured in the explosions (The Guardian,

2020). The main effect of the explosion radiated out from

the point of explosion, so it is unnecessary to input wider

satellite images of distant Beirut areas and only a single port

area satellite image is used. First, we put these two images

(Figure 4a) imported into the database with some necessary

information such as location, date, and number of deaths.

The economic loss is uncertain now, so the purpose is to

find an approximate economic loss of this disaster. Second,

using the pre-trained PSPNet model, we predict the damage

in Figure 4b. The predicted loss in built livable space 72%

under the severe category. Using Equation 1, the predicted

economic loss is $15.6bn US dollars. This corresponds with

early government estimates of $10-15bn. As such, despite

large explosions were not part of the training data, the PSPNet



(a) left: k-means clustering of disaster damage, 

right: cluster relation to ResNet & PSPNet Outputs

(b) left: PSPNet output mapped to predicted damage, 

right: statistical significance of a multi-linear regression fit.
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Fig. 3. Prediction of Severity and Damages using Unsupervised Clustering and a Multi-linear regression linking CNN outputs with Damage Data.

model can be successfully used in disaster management to

predict and assess disaster costs.

IV. CONCLUSIONS AND FUTURE WORK

Humanitarian disasters and political violence cause signifi-

cant damage to our living space. The reparation cost to built

livable space (e.g. homes, infrastructure, and the ecosystem) is

often difficult to quantify in real-time. Real-time quantification

is critical to both informing relief operations, but also planning

ahead for rebuilding. Here, we used satellite images before

and after major crisis around the world for the last 20 years

to train a new Residual Network (ResNet) and Pyramid Scene

Parsing Network (PSPNet) to quantify the magnitude of the

damage. ResNet offers the robustness to poor image quality,

whereas PSPNet offers scene parsing contextualised analysis

of damage.
Both of these techniques are useful and can be cascaded:

(Step 1) ResNet can identify priority areas on low resolution

imagery over a large area with 90% accuracy, and this can

be followed up with (Step 2) PSPNet to accurately identify

the level of damage with 80% accuracy. As there are multiple

damage dimensions to consider (e.g. economic loss, death-

toll), we fitted a multi-linear regression model to quantify

the overall damage cost to the economy and human lives. To

validate our model, we successfully match our prediction to

the ongoing recovery in the 2020 Beirut port explosion. These

innovations provide a better quantification of overall disaster

magnitude and inform intelligent humanitarian systems of

unfolding disasters.

Future work will focus on the open challenge of integrating

economic damage with social suffering, and collecting large

scale surveillance data on social responses (e.g., migration,

education, welfare) will be challenging. There is already

a growing body of work that examines social response to

disasters via social media analysis [18], looking at how com-

munities assist each other and provide real time information.

This work deserves more research and integration into a large

quantification framework for future resilient smart cities.
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