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Abstract—In this paper we show how Shannon entropy, an
intuitive and versatile measure of uniformity of a probability
distribution, can be adapted to quantify the heterogeneity of land
use and population density in and around human settlements.
Using a raster data set of estimates of historical population
density and land use, we show that local entropy measures
capture salient aspects of the evolution of urban systems. Through
the case studies of the UK, India, and Italy we reconnect
the temporal evolution of the measures to some of the main
socioeconomic and political changes and epidemic events these
countries went through during the last three centuries. We argue
that the diffusion of technological innovations is more apparently
correlated to changes in the measures than epidemic events in
themselves. We discuss the potential significance and limitations
of this finding in understanding changes in urban systems in the
context of the ongoing COVID-19 pandemic.

Index Terms—data analysis; resilience; land use; entropy

I. INTRODUCTION

Since their emergence, cities have been the main places of

exchange and interaction for the human race. More recently,

with over 50% of the world population living in urban areas,

cities have also become its primary abode. From being local

centres of trade, craftsmanship, and administration, cities have

seen their functions and structures multiply and become more

complex. With urbanisation rates increasing worldwide, the

destiny of Man seems to be that of becoming more and more

a Homo Urbanus [1]. Yet, the growth of cities has hardly ever

been a smooth process: wars, epidemics, political changes,

and technological innovations have all impacted the pace and

form of urbanisation. Most recently, the ongoing Covid-19

pandemic has put into question the seemingly irreversible trend

towards greater urbanisation that has characterised much of

the world, albeit with different onsets and speed, since the

industrial revolution began in the 1700s.

Urbanisation, in both its dimensions of increased land con-

sumption and growing density, provides unique challenges in

time of pandemics, as COVID-19 has shown. On the one hand,

the virus has been reported to spread faster in larger cities

compared to smaller centres in the first weeks of the pandemic

[2]. On the other hand, a primal role in disease emergence

and spread is attributed to the sprawling urban fringes, where

zoonoses are made more likely by proximity with agricultural

and wild environments [3], and whose unboundedness pushes

their residents and workers alike to move around vaster areas,

thus making it more difficult to limit contagion [4].

The possibility afforded by telecommunication technologies

to pursue home-working has led some architects and urbanists

to call for a rethinking of urbanisation. Alternative models

were proposed, which rejected the need of physical density

to achieve the relational density and the agglomeration effects

which constitute the rationale behind the existence itself of

cities. Koolhaas and Boeri, amongst other, have argued that

the future lies in the rediscovery of villages, especially those

located in declining internal areas, and the return of population

to rural areas [5], [6].

Yet their visions for the future of cities have been accused of

naivety [7], as they neglect the complex long-standing reasons

that have driven the abandonment of villages and rural areas

in the last decades, such as the expansion into rural areas of

typically urban economic, political and cultural models, that

has impacted their values, identity and ambitions. Furthermore,

these proposals ignore the fact that village depopulation does

not happen in a homogeneous fashion. In the US, for instance,

rural areas in proximity to metropolitan counties are less

affected by decline, as are rural areas that have shifted their

economic focus from agricultural production to recreational

activities or specialised as retirement destinations [8].

Early data analyses do not support the idea of a consistent

return of population to rural areas during the pandemic, and

depict instead a much more heterogeneous situation. Using

mobility data from Facebook’s Data for Good initiative, [9]

shows that during the first lockdown, India witnessed a sharp

decrease in Facebook users in urban areas (4-11%), paralleled

by an increase in their number in rural areas (7%). Though

Facebook user data may not be representative of the population

as a whole, the finding suggests that a large displacement

of people towards rural and peripheral areas may have taken

place during the lockdown, mostly attributed to the return of

migrant workers residing in cities to their places of origin,

often smaller, remote localities.

The number of Facebook users was also used to study the

change in population density in the UK from March 2020 to

September of the same year, evidencing that larger cities (and

London in particular) saw a strong decline in users, as opposed

to smaller towns, especially along the coast, that witnessed an

increase across the period [10].
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On the other hand, Facebook’s mobility data in Italy showed

that people did not move considerably within the country

during the first lockdown. Peripheral rural areas saw only

marginal increase in the total number of users, whilst most

users who appeared to have moved out of large cities, moved

to mid-sized towns in their vicinity and urban belts, reflecting

a halt in the established commuting patterns rather than a rural

exodus [11]. In fact, it was argued, only a minority of high-

income, knowledge-intensive workers could afford moving to

rural areas permanently, provided they wanted to.

The national differences of the short term impact of the

pandemic on the population distribution suggest that a more

nuanced and context-informed approach is needed to under-

stand the impact that an event of this kind might have on the

future evolution of the urban system.

Whilst it is not possible at this stage to know for sure how

cities will change after this tumultuous present, looking at the

past may help us identify what events have been the main

drivers in shaping urban form thus far, and whether epidemics

feature as one of them. It is with this idea in mind that

in this paper we look at the evolution of two fundamental

aspects of urban form: land use and population density, in

different countries around the world from 1700 to present day

and correlate major historical events (political changes, tech-

nological innovations, and epidemics) to urbanisation trends.

We do so through Shannon entropy-based measures of the

local heterogeneity of land use and population density in and

around human settlements. To our best knowledge this paper

constitutes the first application of spatial entropy measures to

study the evolution of systems of settlements at the national

scale from a long-term historical perspective.

II. DATA

For this paper, we use the HYDE 3.2 data set [12]. This

raster data set provides worldwide land use and population

density estimates from 10,000BCE to 2015CE, with more

frequent and accurate data in more recent years. HYDE 3.2

allows to distinguish between several categories and subcate-

gories of land use, including the following 7, that we take as

the basis for our analysis: urban areas, dense settlements, vil-

lages, cropland, rangeland, semi-natural, and wild lands. Cells

corresponding to seas and oceans are unclassified. Estimates

of the total population counts and density for each cell are

also given. The resolution of the longitude/latitude grid, is

5′ × 5′, corresponding to roughly 85 km2 around the equator.

Other data sets such as [13], [14], and [15] also provide

population density grid with higher resolution, but the latter

two do not provide historical estimates, and the former only

provides them starting from 1970, making them unsuitable

for our long term analysis. It is important to notice that the

data estimation procedure detailed in [12] assumes a functional

relation between urban population densities and urban land

area that may not be accurate for individual cities. Yet, given

our focus on larger areas and averaging procedures, we deem

the data set suitable for our scopes.

III. METHODOLOGY

We assess the level of heterogeneity and disorder in land

use and population density in and around human settlements

via local entropy measures adapted to the raster form of the

above described data set.

A. Cell Neighbourhoods

For each cell (i, j) in the raster data set, we consider the

neighbourhoods Cn
(i,j) formed by the cell itself and its closest,

n− 1 = 4, 8 or 20 closest neighbours, as measured by great-

circle distance between the centres of the cells. The resulting

neighbourhoods correspond to discs around the centre of the

cell (i, j), having radii 8km, 12km and 20km at the equator,

respectively (see Fig. 1). The neighbourhood Cn
(i,j) acts as an

observation windows of size n around the cell (i, j).

cell (i, j) C5
(i,j)

C9
(i,j) C21

(i,j)

Fig. 1. Neighbourhoods Cn
(i,j)

of a cell (i, j) for n = 5, 9 and 21.

B. Local entropy

Consider a region R of the world (e.g. a country), and

fix some window size n ∈ {5, 9, 21}. Let (i, j) be any cell

whose land use classifies it as a human settlement (urban,

dense settlement, or village). Suppose n′ of the cells in its

neighbourhoods Cn
(i,j) fall within R and on land. Let pk

be the fraction of these n′ cells in Cn
(i,j) with land use k,

where k ranges along the aforementioned 7 categories, (so

that
∑

k pk = 1). We define the land use local entropy En
(i,j)

of the cell (i, j) with respect to its n − 1 closest neighbours

as the Shannon entropy [16]

En
(i,j) = −

∑

k

pk log2(pk).

The application of Shannon entropy to spatial urban data has

been pioneered by [17], and since then replicated in a number

of studies, including [18], [19].

Shannon entropy is an intuitive measure of the heterogeneity

of the distribution {pk}k. The minimum value of the entropy

(En
(i,j) = 0) is achieved when all cells in the neighbourhood



Cn
(i,j) have the same land use as (i, j), i.e. we have a homo-

geneous landscape around (i, j). The more heterogeneous the

landscape is, the larger the value of the entropy. The maximum

possible value of En
(i,j) depends on n′, rather than n directly.

For example, for any value of n, if the neighbourhood Cn
(i,j)

contains only n′ = 5 cells falling on land and within the

borders of the region R, the most heterogeneous case is the

one in which the 5 cells have any 5 distinct land uses, i.e.

pk = 1
5 for any 5 of the k’s and pk = 0 for the remaining

two, giving a maximum value of log2(5).
Normalising the values of En

(i,j) by the appropriate max-

imum values allows to avoid border effects and compare

the local entropy at (i, j) for different window sizes. The

normalised values fall between 0 (complete homogeneity) and

1 (maximum heterogeneity). We use the normalised values to

define a new raster of land use heterogeneity around human

settlements (See, e.g., Fig. 3 in the Section V). Summing over

all cells (i, j), we obtain En
land, a measure of the total local

entropy of human landscapes in R. Averaging over cells, we

similarly obtain E
n

land, a measure of the mean local entropy

of urban landscapes in R.

By computing En
land and E

n

land at different moments in

time, it is finally possible to study the evolution of the local

heterogeneity of land use in the region R.

In a completely analogous way, we classify the density

raster data into different categories, and study the evolution of

the local entropy of the population density in time. For simplic-

ity and symmetry, here we choose 7 categories: zero density

(uninhabited lands), densities between 1 and 50 inh/km2

(sparsely populated), 51 to 100 (moderate-low density), 101

to 200 (moderate-high density), 201 to 500 (high density),

501 to 1,000 (very high density), and 1,001 or more inh/km2

(extremely high density). We proceed as before calculating

the local entropy of the density in the neighbourhoods of each

cell classified as human settlement, and normalising the values

accordingly. Summing over the cells we obtain En
density , a

measure of the total local entropy of population density in R.

Averaging, we obtain E
n

density , a measure of the mean local

entropy of population density in R.

IV. EXAMPLE

As a simple example, we consider the two 9-cell regions

in Fig. 2. As reference systems, we take the top cell in each

region to be (1, 1). We choose n = 5 as the window size. In the

region in Fig. 2a, we have agricultural land with a moderately

dense settlement at its centre. In this case, only the central

cell (2, 2) contains a human settlement, so we only deal with

C5
(2,2). Here n′ = 5 and pdense = 1

5 , pcropland = 4
5 , with

pk = 0 for every other land use k. Thus

E5
(2,2) = log2(5)−

8

5
.

Normalising by the maximum value log2(5), we obtain

E5
land = E

5

land =
log2(5)− 8/5

log2(5)
≈ 0.31.

(a) A simple region: a moderate density settlement surrounded by fields

(b) A more complex region: a mixture of high, moderate and low density
areas, as well as agricultural land.

Fig. 2. Examples of a simple and a more complex region.

In Fig. 2b, we have a more complex region with one urban

cell at the centre (2, 2), four cells with dense settlement

around it {(1, 2), (2, 1), (3, 1), (3, 2)}, two low density villages

{(2, 3), (3, 3)}) and two cells of cropland {(1, 3), (3, 1)}. In

this case, we have to compute Cn
(i,j) for all cells except the

two allocated to cropland. As an example of cell on the border,

consider (1, 2). C5
(1,2) contains n′ = 4 cells, with purban = 1

4 ,

pdense = 1
4 , pcropland = 1

2 , and pk = 0 for all other land use

k. Hence

E5
(1,2) =

3

2
,

and the normalising constant is log2(4) = 2.

After computing and normalising appropriately each cell

entropy value, we sum or average over the 7 cells with human

settlements, and obtain

E5
land ≈ 4.2 , and E

5

land ≈ 0.6,

reflecting the fact that this region is considerably more hetero-

geneous than the top one, both overall, and on average around

each settled cell.

V. RESULTS

We apply the above methodology to study the change in

time of the local entropy of land use and population density

in the UK, India, and Italy, the three countries for which

the impact of Covid-19 on the distribution of population was

discussed in Section I. We consider the years from 1700 to

2015, a period in which the countries were shaken by impor-

tant socioeconomic changes (e.g., the industrial revolutions),

political events (e.g., the colonisation and decolonisation of

India, the rise of Fascism, the World Wars), and at least two

major epidemics (the Bubonic Plague of 1894-1901 [20], and

the Spanish Flu in 1918-1920).



Local Entropy of Land Use in the UK

1700 1900 2015

Local Entropy of Land Use in India

1700 1900 2015

Local Entropy of Land Use in Italy

1700 1900 2015

Fig. 3. Local Entropy of Land use in the UK, India, and Italy, in 1700, 1900, and 2015. The window size is n = 5
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Fig. 4. Total local entropy En
land

of land use and En
density

of population density in the UK, for n = 5, 9, and 21 nearest neighbours. Whilst differences

in absolute values exist, the general trends are not impacted by the window size and are mostly consistent between the measures.
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Fig. 5. Mean local entropy E
n

land of land use and E
n

density of population density in the UK, for n = 5, 9, and 21 nearest neighbours. The general trends
are not greatly affected by the window size but reveal important differences between the measures.

A. Raster of local entropy

Figure 3 shows the countries’ raster of local entropy of land

use in 1700, 1900 and 2015.

In the UK, after a dramatic expansion from 1700 to 1900,

the number of cells occupied by human settlements remains

roughly unchanged to 2015. As some of the cells previously

classified as villages turn into dense settlements or are incorpo-

rated into the growing urban areas around major metropolises,

their color shift from orange (low local entropy) to green (high

local entropy), reflecting the growing heterogeneity in land use

of the areas around them.

In Italy, a similar expansion is observed from 1700 to 1900,

but the expansion continues this date. The majority of new

cells occupied by settlements appear in the vicinity of already

established urban areas, especially in the Po Valley and along

the coast. These cells are characterised by large local entropy,

reflecting their nature of urban fringes.

In India, the Valley of the Ganges and the South were

already hosting several settlements by 1700. The period to

1900 sees the expansion of settlements especially along the

coast. A great expansion of the settled areas in the interior

follows. Most of the cells are classified as villages surrounded

by other villages or cropland, and this is reflected by the

predominance of low entropy (orange) cells. Nonetheless,

higher values are observed in either more remote areas of the

interior and along the Himalayas, where settlements border

wilder landscapes, and around established large urban centres.
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Fig. 6. Comparison of local entropy E
5
land of land use and E

5
density of population density in the UK, India, and Italy.

B. The impact of historical events on the local entropy

In Fig. 4 we show the evolution of the total local entropy

of land use En
land and population density En

density in the

UK from 1700 to 2015 for various choices of window size

n = 5, 9, and 21. The value of n is found not to affect the

overall trends. The evolution of En
land (Fig. 4a) and En

density

(Fig. 4b) reflects quite clearly the two industrial revolutions

that the UK experienced between 1760-1840 and from the

1870s to the beginning of World War I in 1914. Both show

a sustained growth in total local entropy, and were followed

by more unstable decades of plateauing or slowly decreasing

entropy values. Recent years are characterised by different

behaviours in the two measures: whilst the entropy of land use

continues to grow, the entropy of population density enters a

phase of relative decline.

To distinguish the purely local effects from the mere ex-

pansion of the system of settlements, we look at the mean

entropy E
n

land and E
n

density in Fig. 5. As above, the value

of n does not affect the main trends. These are not constant

during the two industrial revolutions and may represent more

nuanced consequences of industrialisation. The first industrial

revolution sees at first a rapid increase in E
n

land, followed

by a sharp decrease starting from 1800 (Fig. 5a). This could

reflect the fact that after a period of emergence of large number

of new settlements, urban areas become better established

and development happens mostly around them, creating more

homogeneous urban and dense landscapes in their surround-

ings. The second industrial revolution, on the contrary shows

at first a decline in E
n

land, followed by a modest recovery

toward the dawn of WWI after an all time minimum in 1900.

This suggests that more complex phenomena were already

in place concerning land use in the UK. This is a period of

strong expansion of the railway and the decline in the measure

may denote growing concentration of population in compact

cities before the rise of urban sprawling, but more studies

are necessary to confirm this hypothesis. The evolution of

E
n

density during the first industrial revolution is of fast growth

which plateaus towards the end of the period, followed by an

increase in subsequent decades proceeding until present day

(Fig. 5b). Our interpretation is that the technologies of the first

industrial revolution allow only up to a certain maximum urban

density, and, thus, stratification and heterogeneity of densities.

It’s only as new technologies emerge that maximum population

density can again increase.

In Fig. 6 we perform a similar analysis for average entropy

of land use E
5

land and population density E
5

density comparing

the UK, India and Italy. The choice of n = 5 is arbitrary, as

also in these cases, it was found not to have a major impact on

the overall trends. The change in E
5

land in India follows very

closely the evolution of the political situation of the country

(Fig. 6a). As rule of the British East India Company on India

is established in 1757, the entropy of land use enters a period

of fast decline. The measure returns to grow in the early 19th

century and continues to do so until the end of WWII, at a

time when India regain its independence. On the other hand,

the evolution of E
5

land for Italy does not seem to be deeply

affected by major events in the 19th century, including the

unification of the country in 1861, proceeding instead a steady

decline begun in the mid 18th century. It is only in the 1920s

that the measure returns to growth. This is a period which

sees Italy under Fascist rule, fast demographic expansion after

WWI, the growth of Rome as capital, and the foundation

of a few new urban centres in swampy areas reclaimed for

cultivation, but the growth in the measure may also reflect

more general industrialisation and urbanisation trends seen

elsewhere in Europe, including the UK. The evolution of

E
5

density is monotonically increasing and relatively smooth

for both India and Italy (Fig. 6b).



C. The impact of pandemics on the local entropy

The effects of the Spanish Flu are difficult to extricate from

those of the WWI, to which it immediately followed. On the

other hand, the impact of the Bubonic Plague, which ravaged

India from the end of the 19th century, seem to be negligible

on existing trends. Whilst this does not constitute evidence

that the current pandemic will not have a deeper impact on

current urbanisation trends, it suggests that the direct impact

of pandemics so far on the entropy of urban landscapes and

population density may not have not been such to offset other

established trends. It is rather the diffusion of technological

innovation that seems to correlate more strongly with the

evolution of an urban system, in good accord with the theory

of innovation waves [21]. Whether, though, pandemics may

create the condition for political, social, and technological

changes to happen, which may in turn affect urbanisation,

is a more complex question to answer, and other examples

in history, such as the Justinian Plague and the Black Death,

seem to suggest that this may well be the case [20].

VI. DISCUSSION AND APPLICATIONS TO SMART CITIES

It is too early to make predictions on the long-term effect

that the pandemic will have on current patterns of urbanisa-

tion. Looking at the past confirms that correlation, let alone

causation, between major events and changes in urban form

are often far from obvious. As such, a long term historical

vision help to shed some light on the inherently unpredictable

nature of urbanisation.

Large cities have certainly lost some of their attractiveness

[22]. Yet it should not be forgotten that all cities are, in virtue

of their density and enhanced social contact, impractical places

to live in without technological intervention [23]. Technologies

and timely policies, such as app-based trackers, temporary

social-distancing-based crowd management, and testing facil-

ities, can alleviate the challenges of a pandemic, as shown in

the case of the very dense urban environments of Singapore

and South Korea [24]. Perhaps in the future health-tracking

technologies will be as ubiquitous as sewage and water pipes

are in many cities today.

And if indeed COVID-19 will lead, as some suggested, to a

rediscovery of rurality and smaller centres, the main question

is how to funnel this shift to the development of more balanced

and equitable system of settlements. Of the four scenarios

proposed in [25] for the future of UK cities, none predicts

that high paid knowledge workers will consider relocating to

deprived areas of the country, thus boosting their economy,

unless incentives are offered to them. Instead, the impact of the

pandemic could maintain or even exacerbate existing patterns

of inequality, benefiting mostly already affluent suburbs or

smaller towns.

COVID-19 shows us that smart cities solution should be

devised on the one hand at managing growing populations

in cities, but also at tackling their possible depopulation and

growth of disorder, allowing rapid and, as much as possible,

equitable reorganisation of systems of settlements and efficient

redistribution of resources.

VII. CONCLUSION

In this article, we have shown that past changes in the local

entropy of human landscapes are correlated to the diffusion of

technological innovations and, to a lesser extent, major politi-

cal events, while the impact of pandemics is less apparent or at

least indirect. Future efforts should be directed at corroborating

the validity of entropy measures as methodological tools via

comparisons with other measures, for instance spatial autocor-

relation. Examining the diffusion of specific innovations, such

as transport technologies (railways, cars), will be essential to

clarify the nature of the observed correlations with the final

goal of establishing causation mechanisms.
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