
DeepFlow: Abnormal Traffic Flow Detection
Using Siamese Networks

Sepehr Sabour, Sanjeev Rao and Majid Ghaderi
Department of Computer Science, University of Calgary

{sepehr.sabour, sanjeev.rao, mghaderi}@ucalgary.ca

Abstract—Nowadays, many cities are equipped with surveil-
lance systems and traffic control centers to monitor vehicular
traffic for road safety and efficiency. The monitoring process
is mostly done manually which is inefficient and expensive. In
recent years, several data-driven solutions have been proposed
in the literature to automatically analyze traffic flow data using
machine learning techniques. However, existing solutions require
large and comprehensive datasets for training which are not
readily available, thus limiting their application. In this paper,
we develop a traffic anomaly detection system, referred to as
DeepFlow, based on Siamese neural networks, which are suitable
in scenarios where only small datasets are available for training.
Our model can detect abnormal traffic flows by analyzing the
trajectory data collected from the vehicles in a fleet. To evaluate
DeepFlow, we use realistic vehicular traffic simulations in SUMO.
Our results show that DeepFlow detects abnormal traffic patterns
with an F1 score of 78%, while outperforming other existing
approaches including: Dynamic Time Warping (DTW), Global
Alignment Kernels (GAK), and iForest.

I. INTRODUCTION

Motivation. Driving safety continues to be a challenging prob-
lem in city management. Based on a road safety plan published
by Canadian Council of Motor Transport Administrators,
about 2000 people are killed, and 165, 000 are injured in car
accidents annually in Canada [1]. Distracted driving leads to
unusual actions such as sudden accelerations, decelerations,
and lane changes that other vehicles cannot predict, which can
result in collisions. Technology is expected to play a significant
role in road safety to lead the transportation system toward
zero fatal accidents [1]. An Intelligent Transportation System
(ITS) makes use of technologies such as vehicular networks,
cloud computing, and artificial intelligence to solve traffic flow
problems. For example, ITSs employ Vehicle to Everything
(V2X) communications [2] to collect information related to
vehicles, pedestrians, and road conditions. This data can be
used to analyze traffic flows and driver behavior in order to
detect abnormal driving patterns. Detecting abnormal behavior
in vehicular traffic, apart from improving transportation safety,
significantly impacts evaluation of driving skills, including that
of autonomous vehicles. For instance, insurance companies
can base their premiums on one’s driving behavior. Also,
understanding the misbehavior of autonomous vehicles can
help analyze the risks involved in detaching human drivers
from vehicles.

This work was supported by Wedge Networks Inc., Alberta Innovates and
Natural Sciences and Engineering Research Council of Canada.

The emergence of Machine Learning (ML) has paved the
way for more efficient solutions for many of the challenges
faced in various fields such as fraud detection, cyberattack
prevention and anomaly detection. ML solutions can help
reduce the system dependence on human-in-the-loop processes
in order to boost performance and reduce cost. Traffic man-
agement in cities can benefit from this idea too. A modern
traffic control center is equipped with several display devices
to monitor daily traffic flows in a city. The operators in these
centers continuously watch for abnormal events on the roads to
make sure traffic flows are steady and safe. In addition, these
centers provide helpful information to the emergency units in
case of accidents. However, manually checking traffic cameras
in a city is inefficient and expensive. An automated system to
check for traffic anomalies is essential for continuous and real-
time analysis of vehicular traffic.

Existing solutions such as [3]–[7] use a dataset of normal
driving patterns, and mark any unseen pattern as an anomaly.
However, several factors like weather condition, road side con-
structions and traffic load can change the behavior of vehicles.
Therefore, a huge dataset of normal patterns is required, which
is not easy to acquire. Other solutions rely on finding outliers
in traffic flows [8], [9]. These approaches are based on two
assumptions. First, the driving data (e.g. trajectory, speed, and
acceleration) of abnormal vehicles diverges from normal ones.
Second, normal vehicles form the majority of a given traffic
flow. However, the behavior of normal vehicles in a fleet varies
over time, which makes it challenging for such approaches
to distinguish between normal and abnormal patterns. For
example, drivers may usually drive within ±10% of the speed
limit and still be considered to be driving normally.
Our Work. In this work, we introduce DeepFlow, an anomaly
detection system which detects abnormal traffic flows by
analyzing vehicle trajectories in a fleet. We use a small set
of normal cases to train our model, and test it with a dataset
containing previously unseen patterns. We show that DeepFlow
can address the challenges faced by existing approaches. The
model learns the similarity between vehicles, assigns a score
based on that, and classifies flows based on this similarity
score. Our realistic experiments show DeepFlow is effective
even when a comprehensive dataset is not available for
training.

The main idea behind our solution is that vehicles in a
normal traffic flow have similar trajectory data, so the presence

ar
X

iv
:2

10
8.

12
01

6v
1

 [
cs

.L
G

]
 2

6
A

ug
 2

02
1

of any abnormal cases can be detected by measuring the
average similarity between vehicles. For example, when a car
drives with a higher speed and acceleration than other ones or
abnormally changes lanes, its trajectory data is different than
others. To measure this similarity, we use neural networks to
compress the data-series from each vehicle into a latent vector,
and we measure the distances between them.

Our main contributions in this paper are:
• We present the design of DeepFlow, a traffic anomaly

detection system, and describe its various components
including data collection, anomaly detection and appli-
cation.

• We design, implement and evaluate a semi-supervised
Siamese network to measure the abnormality score of
traffic flows within a fleet of vehicles.

• We use realistic traffic simulations in SUMO to obtain
datasets for training and testing DeepFlow. Our results
show that DeepFlow detects abnormal traffic patterns with
78% F1 score and outperforms other existing approaches
including: Dynamic Time Warping (DTW), Fast Global
Alignment Kernels (GAK) and iForest.

Paper Organization. We review recent work on traffic
anomaly detection in Section II. The design of DeepFlow is
discussed in Section III. The anomaly detection engine used in
DeepFlow is presented in Section IV. In Section V, we describe
the simulation process and our datasets. Evaluation results are
presented in Section VI, while Section VII concludes the paper.

II. RELATED WORKS

In the following, we briefly review several representative
papers on traffic anomaly detection that are most relevant to
our work. We categorize available works into history-based
and outlier-detection approaches.

History-Based Approaches. In this approach, the behav-
ioral history of vehicles is used to check for the presence
of anomalies in real-time. For instance, SafeDrive [3] is a
driving anomaly detection approach that uses historical data
to generate a state graph in which states represent the value
(or its range) of sensor data, and weighted edges show the
likelihood of transitions between the states. At the beginning
of the driving path, the vehicle is in the starting state, and by
receiving the real-time driving events, the state changes. One
can measure the driver’s anomaly score by aggregating the
weight of the traveled edges. Similarly, authors in [4] employ
a graph-based approach and reinforcement learning techniques
to detect abnormal trajectories.

Neural networks such as autoencoders [10] and LSTMs [11]
have also been used for history-based anomaly detection. For
example, a technique for detecting anomalies using autoen-
coders is proposed in [5]. Similarly, authors in [6] propose
an anomaly management system which uses autoencoders
to find abnormal drivers in a collaborating transportation
system. Driving behavior prediction is another approach to
identify anomalies. To give an example, authors in [7] apply
two different solutions containing a recurrent neural network

Data Collection

E
m

ergen
cy

U
n

its

Application

Se
lf

R

ep
or

ti
n

g
C

ol
la

b
or

at
iv

e
R

ep
or

ti
n

g
Su

rv
ei

ll
an

ce

R
ep

or
ti

n
g

T
ra

ffic C
o

n
tro

l
C

en
ters

E
n

fo
rcem

en
t

 u
n

its

Anomaly Detection

Fig. 1: High-level design of DeepFlow.

(RNN) and a long short-term memory (LSTM) to predict
driver’s actions, and mark behaviors that are varying from the
predicted ones.

Outlier-Detection Approaches. These approaches compare
the behavior of vehicles and mark outliers. For instance, in [8],
three ML algorithms, namely Support Vector Machine (SVM),
Isolation Forest (iForest), and K-Nearest Neighbors (K-NN),
are used to detect outlier drivers. Also, the authors of [9]
present a reckless driver detection framework which uses
vehicular collaboration to collect data and then apply support
vector machine (SVM) and decision-tree models to measure
every vehicle’s driving performance.

In general, history-based approaches require a large dataset.
On the other hand, SVM and K-NN are supervised approaches,
which need a dataset containing abnormal cases for training.
However, DeepFlow can operate with a small dataset, and
because it is a semi-supervised method, no datasets containing
abnormal cases are required for training.

III. DEEPFLOW DESIGN

Fig. 1 shows the high-level design of DeepFlow. As shown
in the figure, DeepFlow contains three components including
data collection, anomaly detection and application. In the
following, we describe each of these components.

A. Data Collection

We feed DeepFlow with time-series data collected from a
group of vehicles; this contains information such as speed,
location and steering angle. The data can be gathered using
one or a combination of the following approaches:

Self Reporting. Most modern vehicles are equipped with sen-
sors and onboard communication devices due to the industry-
wide push towards more automated vehicles. These sensors
measure the speed, location, and gap between a vehicle and
the surrounding objects. Vehicles can report their data to the
server for anomaly detection. The self-reported data to the
server is more accurate than other approaches. Nevertheless,
it demands that all vehicles have the required hardware. Also,
an abnormal vehicle can manipulate or avoid sending data to
stay hidden from the anomaly detection system.

Collaborative Reporting. In this approach, each vehicle
measures the state of the adjacent vehicles and reports it to
the server. The information inferred by the other neighbors

Fig. 2: Tracking vehicles using a surveillance camera [12], [13].

may be inaccurate; however, participating vehicles can reach
a consensus on its validity using vehicle to vehicle (V2V)
communication. Therefore, the system understands the correct
state of the traffic flow even if an adversarial vehicle blocks
or changes the data. However, like any other wireless network
solution, jamming and corrupting the communication signals
is possible.

Surveillance Reporting. Surveillance systems such as traffic
cameras and road sensors can capture information like the
speed and location of the vehicles. Image processing tech-
niques can be used to process the collected video feeds and
extract traffic flow information. For example, Fig. 2 shows a
demo of such a vehicle tracking system [12], [13]. Despite
the processing overhead of this approach, it does not require
any hardware installed on the vehicles. Also, since there is
a direct connection between the surveillance devices and the
cloud server, it has a lower security risk.

B. Anomaly Detection

At the core of DeepFlow is a Siamese network, as depicted
in Fig. 3. A Siamese network contains two identical neural
networks with the same weights. This model is used to
measure the similarity of two vectors by feeding them to
the twin networks and comparing their outputs [14]. Siamese
networks are very useful in applications where no compre-
hensive dataset exists for training. The anomaly detection
component applies a pre-trained machine learning model on
each vehicle’s trajectory data and outputs an anomaly score
for it. The detector can function on a cloud or an edge server.
For the sake of privacy requirements and decreasing the cost of
storage requirements, the server can eliminate all the processed
data after making the required computations. In Section IV, we
delve into the structure of the applied machine learning model
in this component.

C. Application

The output of the anomaly detection can be used in multiple
applications as described below.
Traffic Flow Analysis. By employing this system we can
measure the average abnormality score of traffic flows in
streets, junctions and highways, which can help optimize the
vehicular movements in these areas.
Enforcement of Traffic Laws. Enforcement units make use
of this system to detect aggressive and distracted drivers. The

Tr ain ing Phase

Reconstruction
Er ror

Simi lar i ty
Score

Optimize
Model

Simi lar i ty
Post

processing
Threshold

Check

Compressor

Detector

Autoencoder

Reconstructed
Input

Latent
Vector

Opt im ized Weights

Anom aly
 Yes/No

Test PhaseTrajector y data of the
vehicles in a f leet

Fig. 3: Structure of DeepFlow’s Siamese network.

detected abnormal drivers can be penalized based on their
anomaly scores.
Emergency Situation Detection. Traffic accidents can affect
the abnormality score of a flow, which makes DeepFlow able to
mark sudden changes in scores and notify nearby emergency
units.

This paper mainly focuses on implementation and evalua-
tion of the anomaly detection component. Therefore, elabora-
tion of the data collection and application components is out
of the scope of this article.

IV. ANOMALY DETECTION ENGINE

DeepFlow employs a semi-supervised machine learning ap-
proach based on a Siamese network to detect abnormal traffic
patterns. Fig. 3 shows the architecture of this network. The
input of the network is a set of trajectory data-series col-
lected from vehicles driving in a fleet. At the first step, the
Compressor converts the data from each vehicle to a latent
vector. Then, the Detector measures the distance between
the vectors, specifies a similarity score for each one, and
finally measures the abnormality score of the flow. In the
following sub-sections, we explain the architecture, objectives,
and functionality of each component in detail.

A. Compressor

The compressor is intended to shrink the input into a
compressed “latent representation”, which is accomplished
by using an autoencoder (AE). An autoencoder is a type of
artificial neural network trained to compress the input and then
decompress it with minimal distortion. These neural networks
are composed of two parts, an encoder that imposes a bottle-
neck and compresses the data, followed by a decoder which
reconstructs the input from the compressed representation [10].

Usually, the only objective of an AE is to minimize the
reconstruction error. In our system, we use the Mean Squared
Error (MSE) to measure the error. Also, to simplify the
learning process, we use a tanh function to limit the error
value in a range between 0 and 1. Thus, the reconstruction
loss function in DeepFlow can be expressed as follows:

RLoss(Y, Ŷ) = tanh
(1
n

n∑
i=1

(Yi − Ŷi)
2
)
, (1)

H : LSTM hidden state size
L : Latent vector size

X: Input data sequence length
F: Number of Features

LSTM 1[X,F] LSTM 2[X,H] [1,L]
Latent
Space

LSTM 3LSTM 4
l inear

tr ansformation
[1,L]

[X,L][X,H][X,F]

Input Data

Reconstructed
Input

Fig. 4: Structure of DeepFlow autoencoder. The arrows show the flow
of data and indicate the input and output dimensions at each point in
the network.

where Yi and Ŷi are the ith actual and the ith reconstructed
values of the input vector with size n, respectively.

To use the latent representation for outlier detection, we
consider the compressed representation of an outlier pattern
to be different from the regular patterns. In the training phase,
we use a dataset containing only normal trajectories to train
our model to maximize the similarity of latent vectors. Hence,
we add a second error function, similar to the first one, to
measure the distance between latent spaces:

Sim(Li, Lj) = tanh
(1
n

n∑
k=1

(Li[k]− Lj [k])
2
)
, (2)

where Li and Lj are the latent vectors, created for vehicles i
and j, respectively. In DeepFlow, we calculate the aggregated
loss in each training iteration and optimize the neural networks
to minimize this value. We use the following expression to
determine the aggregated loss:

Loss =
1

m

m∑
i=1

RLoss(Yi, Ŷi)

+
2λ

m(m− 1)

m∑
i=1

m∑
j=i+1

Sim(Li, Lj),

(3)

where Yi, Ŷi and Li are the input, reconstructed input, and
latent representation of vehicle i, respectively. Also, m is the
number of vehicles in the fleet, and λ indicates the importance
of reconstruction accuracy over the similarity score.

As shown in Fig. 4, DeepFlow’s autoencoder consists of four
LSTMs and one linear neural network. LSTMs use a shared
state between the nodes to remember the changes in the input
over time. In each step, a sequence of mathematical processes
decides which part of the data should be remembered through
the shared state and which part should be eliminated [11]. The
first two networks in our autoencoder change the dimension
of the input data and convert it to the latent vector. Then,
the next two LSTMs increase the size of the vector; finally,
the linear neural network unit reconstructs the input. The
compressor unit has two outputs: the latent representation and
the reconstructed input. In the training phase, we use both
outputs to optimize the model using (3). However, we only
use the first output in the testing phase and pass the latent
vector to the detector unit.

B. Detector

After training the compressor, the system can be used to
detect anomalies. The Detector compares the latent space of
each time-series data using an MSE function which is similar
to the loss function used in the training phase. We use the
following expression to calculate the abnormality score of
traffic flows:

AS = 1− 1

m(m− 1)

m∑
i=1

m∑
j=i+1

Sim(Li, Lj) . (4)

After calculating the score, we compare it with a threshold
to decide whether the traffic is normal or not. A high score
suggests low similarity between the behavior of the vehicles,
which indicates an anomaly is present. Therefore, finding an
optimal threshold is critical. In Section IV, we study two
approaches for finding a suitable threshold.

C. Implementation

The model is implemented in Python using PyTorch as
explained below.

PyTorch. To implement the model, we use Python3 program-
ming language and PyTorch [15]. PyTorch is an open source
deep learning library which facilitates building ML models
by providing basic machine learning modules such as LSTMs
and linear neural networks. We use the predefined models in
PyTorch to construct the Siamese network 1 in DeepFlow.

PyTorch Lightning. This library [16] allows us to run neural
network models on any hardware (CPU, GPU, TPU) with no
changes required in the source code. This feature is helpful as
our development is done on a desktop computer, while model
training is conducted on an Ubuntu Linux server with two
V100 GPUs.

Weights & Biases. One of the main challenges in this work
was finding the proper number of epochs for training our
model. This is important because, first, we try to find the
minimal loss value which is important to prevent the model
from over-fitting the training dataset. Second, we should
monitor the value of the two loss functions. At the beginning
of the training phase, the value of the reconstruction error
is significantly higher than the similarity error. After several
iterations, the model learns to reduce the first loss value and
proceeds to minimize the second one. Therefore, we need
to monitor these values to stop the training after a suitable
number of iterations. For this, we used Weights & Biases
(WandB) [17] to monitor the training process.

V. TRAFFIC FLOW DATASET

The input of DeepFlow is trajectory data collected from a
group of vehicles in a fleet. Due to the difficulty in obtaining
a dataset from a group of vehicles in an actual scenario, we
generated the necessary datasets using simulation. The datasets
used in our evaluations are generated using the road traffic sim-
ulator software Simulation of Urban Mobility (SUMO) [18],

1Our source code is available at: https://github.com/pesehr/DeepFlow

4

1

2

3

Fig. 5: Simulated City of Calgary traffic flow using SUMO. The
highlighted paths are used for generating the test dataset.

which is an open-source traffic simulator capable of simulating
different components involved in a traffic scenario such as
roads, vehicles and pedestrians.

A. Traffic Simulation

In order to use this software, the following elements should
be specified:

• Network File: The location and shape of each road,
junction, and sidewalk. Also, the network file indicates
the traffic rules such as direction, priority, and speed limit
of each path.

• Traffic Demand File: Determines how many vehicles
are in the system and describes their behavior. Also, each
driver’s arrival and departure time, and the path taken by
them should be defined in the traffic demand file.

SUMO includes several tools to help with the simulation
process. We use the following tools in our work:

OSMWebWizard. A Python script implemented to work with
OpenStreetMap [19] which extracts network data from the
actual street map. In this work, we use it to simulate downtown
Calgary and the surrounding regions. We select this area due
to the variety of available streets. Fig. 5 shows the area of the
city which is simulated.

TraCI. An interface implemented by SUMO to get data
values from simulated vehicles and control their behavior. It
is available as a Python library and employs a TCP-based
client-server architecture to access the simulator [20]. We use
TraCI to manipulate the speed of the vehicles and create the
scenarios that are used in our training dataset.

B. Collected Data

We generated two different datasets for the training and
testing process. The training dataset contains trajectory data
of 6660 normal vehicles (across 1332 groups of cars) driving
in a straight street. The initial assigned speed of each vehicle
is distributed randomly according to a Gaussian distribution
(parameters are in Table I), and it changes based on one of
the three scenarios in Fig. 9.

In the first scenario, we simulate a group of vehicles driving
with a constant speed limit; the second and third involve an

0 10 20 30 40 50 60
time (s)

12.0

12.5

13.0

13.5

14.0

14.5

Sp
ee

d
(m

/s
)

Vehicle #1
Vehicle #2
Vehicle #3
Vehicle #4
Vehicle #5

Fig. 6: Constant speed limit.

0 10 20 30 40 50
time (s)

12

13

14

15

16

17

Sp
ee

d
(m

/s
)

Vehicle #1
Vehicle #2
Vehicle #3
Vehicle #4
Vehicle #5

Fig. 7: Speed limit raise.

0 10 20 30 40 50 60 70
time (s)

9

10

11

12

13

14

Sp
ee

d
(m

/s
)

Vehicle #1
Vehicle #2
Vehicle #3
Vehicle #4
Vehicle #5

Fig. 8: Speed limit decline.
Fig. 9: Driving scenarios simulated for the training dataset.

increase and decrease of the speed limit in a road. We use
these scenarios to help our model learn how a group of normal
vehicles changes their behavior when it is necessary.

We also use simulated traffic in four streets (highlighted in
Fig. 5) with different shapes, number of lanes and speed limits
in the city to test our model. Path #1 is located in a residential
area and contains one lane with a speed limit of 40 km/h.
Paths #2 and #3 are two main streets with two lanes, with
maximum permitted driving speed of 50 km/h. Also, vehicles
can drive up to 80 km/h in the three lanes of path #3.

This dataset contains the trajectory data of 16320 vehicles
with 1020 abnormal cases. Each abnormal case consists of a
vehicle either over-speeding or under-speeding (as shown in
Table I). Similar to normal cases, the speed of each abnormal
case is chosen randomly. Table I shows the parameters of the
Gaussian distribution used for each speed class. The numbers
in the table are multiplied by the speed limit of a street, for
example the speed of a normal vehicle cannot exceed the street
speed limit by more than 10%.

TABLE I: Speed classes for each vehicle.

SpeedClass σ µ min max
× Speed Limit of streets

Normal 1.0 0.1 0.9 1.1
Over Speed 1.25 0.1 1.2 1.3

Under Speed 0.75 0.1 0.7 0.8

VI. EVALUATION RESULTS

In this section, we evaluate the anomaly detection perfor-
mance of DeepFlow and compare it with three baseline meth-
ods: Dynamic Time Warping (DTW) [21], Global Alignment
Kernels (GAK) [22], and iForest [23].

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

DeepFlow + MSE (F1:0.783)
DeepFlow + Cosine (F1:0.681)
GAK (F1:0.707)

iForest (F1:0.567)
DTW (F1:0.667)

Fig. 10: ROC curve for DeepFlow, DTW, GAK, and iForest.

0.0 0.2 0.4 0.6 0.8 1.0
Recall (Sensitivity)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

 (P
PV

)

DeepFlow + MSE (F1:0.783)
DeepFlow + Cosine (F1:0.681)
GAK (F1:0.707)

iForest (F1:0.567)
DTW (F1:0.667)

Fig. 11: Precision-Recall curve for DeepFlow, DTW, GAK, and
iForest.

A. Implemented Approaches

DTW and GAK are two techniques to compare two or
more time series with unequal length, which find an optimal
alignment between the points on the two sequences. We use a
Python package called TsLearn [24] which provides machine
learning tools for the analysis of time series to implement
these two methods. Additionally, iForest is an unsupervised
anomaly detection technique that works based on isolating the
outlier cases. We implement it using Sklearn [25], an open
source machine learning library which contains various tools
for supervised and unsupervised learning.

Additionally, we use a Cosine similarity function instead
of (2) and study its performance compared to MSE. To
calculate the similarity of two latent vectors A and B using
the Cosine similarity, we use the following expression:

cos(A,B) =
∑i=1

n AiBi√∑i=1
n A2

i

√∑i=1
n B2

i

(5)

B. Performance Metrics

Undetected abnormal vehicles in the system are a threat to
traffic safety; on the other hand, marking normal vehicles as
abnormal is not desirable either. Therefore, finding a proper
threshold has a significant impact on the True Positive and
False Positive rate of the system. We employ a Receiver
Operating Characteristic (ROC) curve to show DeepFlow’s
performance compared to other solutions; this displays the
True Positive rate (TPR) versus False Negative rate (FNR)
when we change the anomaly score threshold. TPR shows the
proportion of abnormal cases which are detected, and FNR
indicates the proportion of normal cases which are marked
incorrectly.

TABLE II: Performance evaluation.

Method Recall Precision F1 Time
DeepFlow (MSE) 71.27% 86.96% 78.34% 96ms
DeepFlow (Cosine) 67.84% 68.38% 68.11%

GAK 70.88% 70.54% 70.71% 33ms
DTW 78.92% 41.40% 66.75% 136ms
iForest 89.90% 57.83% 56.69% 154ms

727

692

723

917

805

109

320

302

1298

587

1535

1324

1342

346

1057

293

328

297

103

215

DeepFlow
MSE

DeepFlow
Cosine

GAK

iForest

DTW

0% 25% 50% 75% 100%

True Positive False Positive True Negative False Negative

Fig. 12: TP, FP, TN, and FN for DeepFlow, DTW, GAK, and iForest.

We also use the Precision-Recall metric to evaluate the
quality of our detector. Precision-Recall is an important mea-
sure when we use an imbalanced dataset. Precision is defined
as the ratio of between the number of true positives and the
number of detected anomalies, while recall determines the
proportion of the actual abnormal cases that are identified
correctly. A high value in both metrics is a sign of good
performance for the detector. To consider Precision and Recall
metrics in our evaluations, we use F1 Score as it places equal
weights on both precision and recall; this can be expressed as
follows:

F1 = 2× precision×recall
precision+recall (6)

C. Results and Discussion

Performance Comparison. We use the dataset that is de-
scribed in Section V. The results, shown in Fig. 10, Fig. 11
and Table II, indicate that DeepFlow (with MSE) outperforms
other solutions.

Based on Fig. 10, there is a threshold where DeepFlow
detects 70% of the abnormal cases or a 6% FN rate. However,
achieving the same TP rate using GAK or DTW will result
in an FN rate of 18% and 26%, respectively. Likewise, the
Precision-Recall curve in Fig. 11 shows that DeepFlow can
achieve both greater precision and recall than other methods.
In addition, Table II shows that DeepFlow can reach the highest
F1 score among all the evaluated approaches. Also, we show
the average anomaly detection time for each traffic flow in the
table.

Microscopic Behavior. As Fig. 12 shows, DeepFlow achieved
the lowest number of false positives and detected more than
700 abnormal cases. Although iForest and DTW detected more
abnormal cases than DeepFlow, a large number of normal cases
are incorrectly marked by these approaches. The reason is
that the random distribution of the vehicles speeds makes it

TABLE III: DeepFlow F1 score for streets shown in Fig. 5.

Path Indiv. Com. Feature
1 81.4% 74.9% Includes turnings
2 82.5% 60.0% Curved and longest
3 95.4% 86.4% Straight (similar to training)
4 78.0% 76.4% North to south

difficult for these classifiers to distinguish between the normal
and abnormal cases, thus resulting in high false positive rates.
However, DeepFlow learns the pattern of similarity between
the normal behaviors, which help it detect anomalies more
accurately.

Anomaly Threshold. Finding a proper threshold value can
affect the accuracy of the system noticeably. This value can
be selected for each street individually or a common value can
be used. Table III shows that finding a threshold specifically
for each street increases the F1 score. However, it requires
providing a dataset containing abnormal cases for each path
and calculating the corresponding threshold value. Therefore,
we suggest using a common threshold for the majority of the
paths in cities and only assign individual thresholds for streets
with greater importance, e.g. highways.

Road Characteristics. From Table III, we can observe that
the performance of DeepFlow is dependent on the shape and
length of the street that is being monitored. For example, street
#2 is the longest simulated path which results in our model
being unable to detect abnormal cases as accurately as in other
paths. Also, street #3 has the most similar structure to the
training dataset among other paths, so our model is able to
detect anomalies with a higher F1 score on this path.

Parameter Tuning. We analyze the result of changing the
value of two different training parameters on our model
behavior. First, we investigate the effect of the λ value in
Exp. 3 on the training performance. The results show that best
performance is when the importance of the two loss functions
in the training phase are equal, which can be achieved by
setting the λ value to 1. Second, we searched for the best latent
vector size. Our experiment shows that we can, on average,
get the best result from compressing the input value by 60%.

VII. CONCLUSION

In this paper, we presented DeepFlow for detecting abnormal
traffic flows. We showed that DeepFlow performs well even
when it is trained with a dataset that is collected in a different
environment. This feature indicates that DeepFlow can be
employed for roads with different shapes, number of lanes
and speed limits, with no retraining required. Even though
that DeepFlow can work with any number of inputs (e.g.
speed, acceleration and steering angle), we used trajectory
data to detect anomalies as this type of data can be collected
easily using existing surveillance camera infrastructure at no
additional cost. Despite the excellent performance and easy
implementation, our model suffers from two disadvantages.
First, this model only works for a group of vehicles and cannot
detect abnormal behavior of an individual car. The second

problem is, we assume abnormal vehicles form the minority
of target traffic flow, so our model only works as long as this
assumption holds.

Future works include determining the effect of using more
variables (such as speed, acceleration, and vehicle angle) and
considering a wider range of anomalies.

REFERENCES

[1] Canadian Council of Motor Transportation Administrators, “Towards
Zero: The safest roads in the world,” 2016. [Online].
Available: https://roadsafetystrategy.ca/web/road-safety-strategy/files/
public/docs/RSS-2025-Report-January-2016-with%20cover.pdf

[2] “Intelligent Transport Systems (ITS); vehicular communications; basic
set of applications; definitions,” European Telecommunications Stan-
dards Institute, Tech. Rep., 2009.

[3] M. Zhang, C. Chen, T. Wo et al., “SafeDrive: Online driving anomaly
detection from large-scale vehicle data,” IEEE Trans. on Ind. Inform.,
vol. 13, no. 4, 2017.

[4] H. Wu, W. Sun, and B. Zheng, “A fast trajectory outlier detection
approach via driving behavior modeling,” in Proc. ACM Conf. on Inf.
and Knowl. Manage., 2017.

[5] H. Oikawa, T. Nishida, R. Sakamoto et al., “Fast semi-supervised
anomaly detection of drivers’ behavior using online sequential extreme
learning machine,” in IEEE ITSC, 2020.

[6] S. Ucar, C. Patnayak, P. Oza et al., “Management of anomalous driving
behavior,” in IEEE VNC, 2019.

[7] M. Matousek, M. EL-Zohairy, A. Al-Momani et al., “Detecting anoma-
lous driving behavior using neural networks,” in IEEE IV Symp, 2019.

[8] M. Matousek, M. Yassin, A. Al-Momani et al., “Robust detection of
anomalous driving behavior,” in IEEE 87th VTC, 2018.

[9] L. Zhang, L. Yan, Y. Fang et al., “A machine learning-based defensive
alerting system against reckless driving in vehicular networks,” IEEE
Trans. on Veh. Technol., vol. 68, no. 12, 2019.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[11] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget:
Continual prediction with LSTM,” Neural Computation, vol. 2, 2000.

[12] Z. Tang, G. Wang, H. Xiao et al., “Single-camera and inter-camera
vehicle tracking and 3D speed estimation based on fusion of visual and
semantic features,” in Proc. CVPR Workshops, 2018.

[13] M. Naphade, M.-C. Chang, A. Sharma et al., “The 2018 NVIDIA AI
city challenge,” in Proc. CVPR Workshops, 2018.

[14] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks
for one-shot image recognition,” 2015.

[15] A. Paszke, S. Gross, F. Massa et al., “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Inf. Process.
Syst., 2019.

[16] W. Falcon et al., “PyTorch Lightning,” 2019. [Online]. Available:
https://github.com/PyTorchLightning/pytorch-lightning

[17] L. Biewald, “Experiment tracking with Weights and Biases,” 2020.
[Online]. Available: https://www.wandb.com/

[18] P. A. Lopez, M. Behrisch, L. Bieker-Walz et al., “Microscopic traffic
simulation using SUMO,” in IEEE ITSC, 2018.

[19] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org,” 2017. [Online]. Available: https://www.
openstreetmap.org

[20] A. Wegener, M. Piórkowski, M. Raya et al., “TraCI: An interface for
coupling road traffic and network simulators,” in Proc. Commun. and
Netw. Simul. Symp., 2008.

[21] M. Müller, Dynamic Time Warping. Springer Berlin Heidelberg, 2007,
pp. 69–84.

[22] M. Cuturi, “Fast global alignment kernels,” in Proc. Int. Conf. on
Machine Learning, 2011.

[23] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in IEEE Int.
Conf. on Data mining, 2008.

[24] R. Tavenard, J. Faouzi, G. Vandewiele et al., “Tslearn, A machine
learning toolkit for time series data,” Journal of Machine Learning
Research, vol. 21, no. 118, 2020.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, Michel et al., “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, 2011.

