
Abstract
This paper investigates a class of main memory

accesses (invalid memory traffic) that can be eliminated
altogether. Invalid memory traffic is real data traffic that
transfers invalid data. By tracking the initialization of
dynamic memory allocations, it is possible to identify
store instructions that miss the cache and would fetch
uninitialized heap data. The data transfers associated
with these initialization misses can be avoided without
losing correctness. The memory system property crucial
for achieving good performance under heap allocation is
cache installation - the ability to allocate and initialize a
new object into the cache without a penalty. Tracking
heap initialization at a cache block granularity enables
cache installation mechanisms to provide zero-latency
prefetching into the cache. We propose a hardware mech-
anism, the Allocation Range Cache, that can efficiently
identify initializing store misses to the heap and trigger
cache installations to avoid invalid memory traffic.
Results: For a 2MB cache 23% of cache misses (35% of
compulsory misses) to memory are initializing the heap in
the SPEC CINT2000 benchmarks. By using a simple
base-bounds range sweeping scheme to track the initial-
ization of the 64 most recent dynamic memory allocations,
nearly 100% of all initializing store misses can be identi-
fied and installed in cache without accessing memory.
Smashing invalid memory traffic via cache installation at
a cache block granularity removes 23% of all miss traffic
and can provide up to 41% performance improvement.

1. Introduction
Microprocessor performance has become extremely

sensitive to memory latency as the gap between processor
and main memory speed widens [17]. Consequently, main
memory bus access has become a dominating performance
penalty and machines will soon be penalized thousands of
processor cycles for each data fetch. Substantial research
has been devoted to reducing or burying these large mem-
ory access latencies. Latency hiding techniques include
lockup-free caches, hardware and software prefetching,
and multithreading. However, many of these techniques
used to tolerate growing memory latency do so at the ex-
pense of increased bandwidth requirements [3]. It is appar-
ent in our quest for performance that memory bandwidth
will be a critical resource in future microprocessors.

This work investigates the reduction of bandwidth re-
quirements by avoiding initialization misses to dynamical-
ly-allocated memory. The use of dynamic storage
allocation in application programs has increased dramati-
cally, largely due to the use of object-oriented program-
ming [18]. Traditional caching techniques are generally
ineffective at capturing reference locality in the heap due
to its extremely large data footprint [7][18]. Dynamic
memory allocation through the heap can cause invalid, un-
initialized memory to be transferred from main memory to
on-chip caches. Invalid memory traffic is real data traffic
that transfers invalid data. This traffic can be avoided with-
out affecting program correctness. We observe that a sig-
nificant percentage of bus accesses transfer invalid data
from main memory in the SPEC CINT2000 benchmarks.
For a 2MB cache, 23% of all misses (35% of all compul-
sory misses) that access memory are transferring invalid
heap data.

First, this paper discusses the program semantics that
lead to invalid memory traffic in Section 2, then it quanti-
fies its contribution to compulsory misses and total cache
misses in Section 5. In Section 6, we propose an allocation
range base-and-bounds tracking scheme for dynamically
tracking and eliminating excess invalid memory traffic. Fi-
nally, we propose an implementation scheme and quantify
potential performance gains in Section 7.

2. Invalid Memory Traffic
Invalid memory traffic is the transfer of data between

caches and main memory that has either not been initial-
ized by the program, or has been released by the program.
Invalid memory traffic can only occur in the dynamically-
allocated structures of the heap and stack, because instruc-
tion and static memory are always valid to the application.
Hardware will transfer data, based on demand, regardless
of memory state, but the operating system must maintain a
strict distinction and track valid and invalid data in order
to maintain program correctness. During program execu-
tion, all stack and heap memory is invalid until allocated
and initialized for use. Figure 1 illustrates the memory
states and transitions for dynamic heap space. Until heap
space is allocated, it remains unallocated-invalid. After al-
location the new memory location transitions from unallo-

Avoiding Initialization Misses to the Heap

†Electrical and Computer Engineering
University of Wisconsin-Madison

{lewisj, mikko}@ece.wisc.edu

‡Intel Labs
Intel Corporation

bryan.black@intel.com

Jarrod A. Lewis†, Bryan Black‡, and Mikko H. Lipasti†

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

cated-invalid to allocated-invalid. Memory transferred in
allocated-invalid state is considered invalid memory traf-
fic. It remains allocated-invalid until it is initialized by a
write to that memory location. It will then transition to al-
located-valid. Once a memory location is allocated-valid it
is ready for program use. The application program can
read and write this location numerous times until it is no
longer needed. When the application is finished with the
memory, it returns the memory back to the heap, and the
memory location’s state transitions back into unallocated-
invalid. There are three memory states in Figure 1, of
which only the allocated-valid state contains valid data.
All memory transfers in the remaining two states transfer
invalid data. There are two causes of invalid memory traf-
fic: 1) An initializing store miss to allocated-invalid mem-
ory; 2) A writeback of allocated-invalid or unallocated-
invalid memory. It is also possible to load from allocated-
invalid memory, but reading uninitialized data is an unde-
fined operation.

Initializing stores may occur each time a program allo-
cates new memory. A data writeback occurs when a
dirty/modified cache line is evicted from a cache that is not
write-through. If the evicted line was deallocated by the
program before eviction, the writeback becomes invalid
memory traffic. If an invalid writeback occurs or an initial-
izing store misses all on-chip caches, an unnecessary and
avoidable bus transfer of invalid data is created to access
main memory.

This study focuses on invalid memory traffic that arises
from initializing stores to the heap. All dynamic memory
allocation activity is tracked in the SPEC CINT2000
benchmarks via the malloc() memory allocation rou-
tine. Using the memory states of Figure 1 (unallocated-in-
valid, allocated-invalid, and allocated-valid) heap data
traffic can be tracked and identified as either valid or in-
valid memory traffic. Note that this discussion is specific
to the semantics of C/C++ dynamic memory allocation;
other languages have differing semantics and must be
treated accordingly.

3. Related Work
Diwan et.al. [7] observe that heap allocation can have a

significant memory system cost if new objects cannot be
directly allocated into cache. They discover that by vary-
ing caching policies (sub-blocking) and increasing capac-
ity, the allocation space of programs can be captured in
cache, thus reducing initializing write misses. Similarly, in
Jouppi’s [12] investigation of cache write policies, he in-
troduces the “write-validate” policy, which performs
word-level sub-blocking [6]. With write-validate, the line
containing the write is not fetched. The data is written into
a cache line with valid bits turned off for all but the data
that is being written. A write validate policy would effec-
tively eliminate 100% of initializing write misses; howev-
er, the implementation overhead of this scheme is
significant.

Wulf and McKee [20] explore the exponential advance-
ment disparity between processor and memory system
speeds. They conclude that system speed will be dominat-
ed by memory performance in future-generation micropro-
cessors. To hurdle the imminent memory wall [20][7],
they propose the idea of reducing compulsory misses, aris-
ing from dynamic memory initialization, by possibly hav-
ing the compiler add a “first write” instruction that would
bypass cache miss stalls. Such instructions now exist, for
example dcbz in PowerPC [11]. These instructions allo-
cate entries directly into cache and initialize them without
incurring a miss penalty (cache installation). These instal-
lation instructions can be an extremely effective method
for eliminating initializing write misses.

The compiler is statically limited to using cache instal-
lation immediately after new memory is allocated because
it can not track memory use beyond the initial allocation.
The operating system, on the contrary, could potentially
make effective use of an installation instruction. Our work
proposes eliminating initializing write misses at a cache
block granularity, in contrast to the sub-blocking of write-
validate and the software-controlled page-granular cache
installation of uninitialized memory by an operating sys-
tem. In Section 7 we show that both cache block- and
page-granular cache installation can improve performance
dramatically. Moreover we will demonstrate instances
where block-granular installation performs significantly
better than page-granular installation by avoiding cache
pollution effects.

4. Methodology
This section outlines the full-system simulation envi-

ronment used to gather all data for this study.

Figure 1. Dynamic memory states and transitions

Allocated
Invalid

Allocated
Valid

malloc()

free()

initializing

read/

free()

write

Unallocated
Invalid

write

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

4.1. Simulation Environment
This work utilizes the PharmSim simulator, developed

at the University of Wisconsin-Madison. PharmSim incor-
porates a version of SimOS adapted for the 64-bit Power-
PC ISA that boots AIX 4.3.1. SimOS is the full-system
simulator originally developed at Stanford University
[15][16]. SimOS is a unique simulation environment that
simulates both application and operating system code, and
enables more accurate workload simulations by account-
ing for the interaction between the operating system and
applications. PharmSim incorporates with SimOS a de-
tailed, execution-driven out-of-order processor and mem-
ory subsystem model that precisely simulates all of the
semantics of the entire PowerPC instruction set. This in-
cludes speculative execution of supervisor-mode instruc-
tions, memory barrier semantics, all aspects of address
translation, including hardware page table walks, page
faults, external interrupts, and so on. We have found that
accurate modeling of all of these effects is vitally impor-
tant, even when studying SPEC benchmarks. For example,
we found that the AIX page fault handler already performs
page-granular cache installation for newly-mapped unini-
tialized memory using the dcbz instruction. Had we em-
ployed a user-mode-only simulation environment like
Simplescalar, this effect would have been hidden, and the
performance results presented in Section 7 would have
been overstated.

For the characterization data in Section 5 and Section 6,
all memory references are fed through a one-level data
cache model. Cache sizes of 512KB, 1MB, and 2MB are
simulated for block sizes of 64, 128, and 256 bytes. To re-
duce the design space, a fixed associativity of 4 was cho-
sen for each configuration. It is assumed that this single
cache will represent total on-die cache capacity, thus all
cache misses result in bus accesses. For the detailed timing
simulations presented in Section 7, the baseline machine is
configured as an 8-wide, 6-stage pipeline with an 8K com-
bining predictor, 128 RUU entries, 64 LSQ entries, 64
write buffers, 256KB 4-way associative L1D cache, 64KB
2-way associative L1I, and a 2MB 4-way associative L2
unified cache. All cache blocks are 64 bytes. L2 latency is
10 cycles; memory latency is fixed at 70 cycles. We pur-
posely chose an aggressive baseline machine to devaluate
the impact of store misses.

The SPEC CINT2000 integer benchmark suite is used
for all results presented in this paper. All benchmarks were
compiled with the IBM xlc compiler, except for the C++
eon code which was compiled using g++ version 2.95.2.
The first one billion instructions of each benchmark were
simulated under PharmSim for all characterization and
performance data. It is necessary to simulate from the very
beginning of these applications in order to capture all dy-

namic memory allocation and initialization. The input set,
memory instruction percentage, and miss rates for a 1MB
4-way set-associative cache with 64 byte blocks are sum-
marized for all benchmarks in Table 4-1.

4.2. Dynamic Memory Allocation Tracking
In order to study initialization cache misses to the heap

all dynamic memory allocation and initialization must be
tracked. Tracking dynamic memory behavior allows the
simulator to identify initializing stores that cause invalid
memory traffic. Dynamic memory behavior is easily iden-
tified through the C standard library memory allocation
function malloc(). The operating system maintains a
free list of available heap memory. During memory alloca-
tion, the free list is searched for sufficient memory to han-
dle the current request. If there is insufficient memory the
heap space is extended. When available memory is found,
a portion of the heap is removed from the free list and an
allocation block is created. By identifying the calls to
malloc() during simulation, the dynamic memory allo-
cation activity can be precisely quantified and analyzed.

5. Heap Initialization Analysis
Before any memory traffic activity results are presented

it is important to discuss dynamic memory allocation pat-
terns. As discussed in Section 2, dynamic memory alloca-
tion is the source of the invalid memory traffic this work
seeks to eliminate.

5.1. Dynamic Memory Allocation
All dynamic memory activity to the heap is tracked by

monitoring both user- and kernel-level invocations of the
malloc() memory allocation routine. Figure 2 itemizes
the raw number of dynamic procedure calls to malloc()
according to different allocation sizes. For example twolf

Table 4-1. Characteristics of benchmark programs

SPEC
CINT2000

Input
Sets

Memory
Instr%

Misses per
1000 Instr

bzip2 lgred.graphic 37.9% 0.683
crafty oneboard.in 39.3% 0.053
eon cook 55.9% 0.015
gap test.in 46.1% 0.335
gcc lgred.cp-decl.i 42.7% 0.159
gzip lgred.graphic 41.0% 0.156
mcf lgred.in 37.2% 7.533

parser lgred.in 39.5% 0.982
perlbmk lgred.makerand 55.1% 0.346

twolf lgred.in 42.8% 0.022
vortex lgred.raw 48.1% 0.164

vpr lgred.raw 34.2% 0.015

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

has 28,438 calls to malloc() that request less than 64
bytes of space. The raw number of allocations varies sig-
nificantly across the benchmarks and some benchmarks al-
locate very large single blocks of memory, e.g. gap, mcf,
and parser.

Figure 2 also quantifies the total dynamic memory allo-
cated according to allocation size as observed in each
benchmark. The total allocated memory represents all
memory space that is assigned from the heap through calls
to the malloc() routine. For example gcc has
7,199.8KB of its dynamically-allocated memory allocated
between 2KB and 256KB at a time. This data shows a
drastic difference in memory allocation behavior across
the SPEC CINT2000 benchmarks. Gap, mcf, and parser
allocate the bulk of their dynamic memory through 1 very
large allocation (100MB, 92MB, and 30MB respectively).
Although small allocations dominate the call distribution,
the larger less frequent allocations are responsible for the
bulk of allocated memory simply because they are so
large. In contrast, gcc, twolf, and vortex allocate most of
their dynamic memory through a large number of mal-
loc() calls that allocate less than 2KB of data at a time.

Even though these allocation patterns are significantly
different, we will show in Section 6 that the initialization
of these different allocation sizes demonstrate very similar
locality. Most allocations are initialized soon after they are
allocated, and they are often initialized by a sequential
walk through the memory. Therefore a similar mechanism
can be used to track small allocations just the same as very
large allocations. This fundamental observation will be
discussed more in Section 6.

5.2. Initialization of Allocated Memory
Since the cache block is the typical granularity of a bus

transfer, memory initialization is tracked by cache block
for all results. Once allocated, all blocks remain in the al-
located-invalid state until they are initialized. A store is re-
quired to move the allocated-invalid blocks to the
allocated-valid state. Figure 3 shows what percentage of
dynamically allocated memory (at a cache block granular-
ity) is initialized and if it is initialized by a store miss or a
store hit. Eon, parser, twolf, and vpr use 40% or less of
their allocated memory, while gap, mcf, perlbmk, and vor-
tex initialize most allocated cache blocks. Interestingly, on
average 88% of all blocks initialized (60% of all allocated
blocks) are initialized by a store miss. As discussed in

Dynamic memory allocation instances

<64
B

<2
KB

<256
KB

<16
MB

 ≥16
MB

bzip2 320 47 9 9 0

crafty 319 78 12 2 0

eon 1,948 145 28 0 0

gap 325 46 11 0 1

gcc 665 258 1,594 4 0

gzip 2,492 636 95 3 0

mcf 354 52 16 0 1

pars 390 46 59 0 1

perl 804 87 12 2 0

twolf 28,438 841 38 0 0

vortex 319 29,279 1,006 0 0

vpr 1865 93 22 0 0

Total dynamic memory allocated (in KB)

<64
B

<2
KB

<256
KB

<16
MB

 ≥16
MB

bzip2 6.3 19.1 295.8 13,198 0

crafty 6.4 22.1 631.8 512 0

eon 35.6 41.3 371.8 0 0

gap 6.3 18.1 362.8 0 100MB

gcc 13.9 63.7 7,199.8 1,654 0

gzip 65.9 212.4 640.5 3,372 0

mcf 6.9 21.5 639.4 0 92MB

pars 8.1 18.1 496.6 0 30MB

perl 17.9 32.1 311.7 8,192 0

twolf 742.6 234.5 420.3 0 0

vortex 6.4 3,798.5 8,157.4 0 0

vpr 23.9 35.8 416.5 0 0

Figure 2. Dynamic memory allocation activity for SPEC CINT2000 benchmarks.

Figure 3. Initialization of dynamic memory
Initialization is shown for a 2MB 4-way set-associative cache
with block sizes of 64, 128, and 256 bytes. On average, 60%
of allocated cache blocks are initialized on a cache miss.

��������

��
��
��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

���
���
���
���

���
���

���
���
�����

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
��
��

��
��

��
��
���
���

���
���

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip craf eon gap gcc gzip mcf pars perl twol vort vpr AVG

D
yn

am
ic

al
ly

 A
ll

oc
at

ed
 M

em
or

y

��
�� Hit-Initialize

Miss-Initialize

64B 128B 256B

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Section 2, these store misses are a source of invalid mem-
ory traffic. The miss rate of initializing stores gives insight
into the reallocation of heap memory. If a memory block is
initialized on a cache hit, and there is no prefetching, the
block must have been brought into the cache on an earlier
miss initialization from a previous allocation instance. The
miss rates in Figure 3 are very high, so there is very little
temporal reallocation of heap space. Section 5.3 will now
discuss initialization misses and quantify how much of this
cache miss traffic can be eliminated.

5.3. Invalid Cache Miss Traffic
Cache misses to the heap are references to memory al-

located through malloc(), while non-heap misses are
all other traffic, namely stack references and static vari-
ables. Store misses are distinguished as misses to either
heap or non-heap memory space. Figure 4 illustrates all
main memory accesses caused by stores initializing allo-
cated-invalid memory (Initialize), stores that modify allo-
cated-valid memory (Modify), and stores to non-heap
memory (Non-Heap). Load misses represent the differ-
ence between the top of the accumulated store miss bars
and 100% of cache misses. From Figure 4, 23% of all
misses in a 2MB cache with 64 byte blocks initialize allo-
cated-invalid memory space. All data fetches for these
misses can be eliminated because they are invalid memory
traffic that fetch invalid data just to initialize it when it
eventually reaches the cache. Therefore nearly 1/4 of all
incoming data traffic on the bus can be eliminated.

Figure 5 shows the sensitivity of the percentage of ini-
tializing stores to cache size and block size averaged
across the SPEC CINT2000 benchmarks. One noticeable
trend in this data is that the percentage of misses that ini-
tialize the heap (Initialize) increases with increasing cache

capacity. However, initialization misses decrease with
larger block sizes due to spatial locality prefetching from
the larger blocks.

Reducing bus traffic by avoiding initialization misses
can improve performance directly by reducing pressure on
store queues and cache hierarchies. Indirectly, avoiding in-
valid memory traffic will decrease bus bandwidth require-
ments, enabling bandwidth-hungry performance
optimizations such as prefetching and multi-threading to
consume more bandwidth.

5.4. Compulsory Miss Initialization
Compulsory miss initializations occur when portions of

the heap are initialized for the first time. Capacity miss ini-
tializations occur when data is evicted from cache and is
subsequently re-allocated and re-initialized. Figure 6 dem-
onstrates a semantic breakdown of all compulsory misses
for a range of cache block sizes. Compulsory misses are
categorized as initializing the heap (Initialize-Cold), non-
heap stores (Non-Heap-Cold), or loads (Load-Cold). Note
that compulsory misses, or cold-start misses, are caused by
the first access to a block that has never been in the cache.
Therefore the number of compulsory misses for any size
cache is proportional only to block size. Figure 6 shows
that for 2MB of cache, across all SPEC CINT2000 bench-
marks approximately 50% of all cache misses are compul-
sory misses, and 35% of compulsory misses are
initializing store misses. Thus 35% of compulsory misses
are avoidable invalid memory traffic. Over 1/3 of all
unique memory blocks cached are brought in as uninitial-
ized heap data. As an extreme, mcf shows 95% of compul-
sory misses are initializing heap memory. The elimination
of invalid compulsory miss traffic breaks the infinite cache

Figure 4. Cache miss breakdown
Misses are shown for cache sizes of 512KB, 1MB, and 2MB,
all with associativity 4 and block size 64 bytes. Up to 60%
and on average 23% of cache misses for 2MB of cache are
initializing the heap.

���������

��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��������

���
���

���
���

���
���
���

��
��

���
������
���

������������
������

���
���
���

���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���
���

���
���
������

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip craf eon gap gcc gzip mcf pars perl twol vort vpr AVG

P
er

ce
n

ta
ge

 o
f

T
ot

al
 C

ac
he

 M
is

se
s

���
���Non-Heap

Modify

Initialize

512KB 1MB 2MB

Figure 5. Initializing store miss percentage sensi-
tivity to cache size and block size
The relative percentage of cache misses that initialize the
heap (Initialize) increases with increasing cache capacity.
However, initializing store ratios decrease as block size
increases.

���������
���������
���������

����������
����������
����������

����������
����������
����������

����������
����������
����������

����������
����������
����������
����������

����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

0%

10%

20%

30%

40%

50%

60%

64 128 256 64 128 256 64 128 256

P
er

ce
nt

ag
e

of
 T

ot
al

 C
ac

h
e

M
is

se
s ��

Non-Heap

Modify

Initialize

512KB 4-way 1MB 4-way 2MB 4-way

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

miss limit, where the number of compulsory misses of a fi-
nite-sized cache is equal and bound by that of an infinite-
sized cache with the same block size [6]. Note that as block
size increases, both the percentage of compulsory misses
that initialize the heap (Initialize-Cold) and the percentage
of all misses that are compulsory decrease. Larger block
sizes perform spatial locality prefetches and reduce com-
pulsory misses.

5.5. Initialization Throughout Execution
Figure 7 shows an accumulated distribution of all ini-

tializing stores identified in the first one billion instruc-
tions in the SPEC CINT2000 benchmarks. This data gives
insight into the initialization of the heap throughout pro-
gram execution. Here, largely as a design artifact of the
SPEC benchmarks, most initializations of the heap occur
in the first 500 million instructions. From Figure 2 gap,
mcf, and parser are identified as having one very large dy-

namic memory allocation (100MB, 92MB, 30MB respec-
tively). Figure 7 shows that these programs initialize their
working set of dynamic memory rather quickly. Also from
Figure 2 bzip2, gcc, gzip, twolf, and vortex are observed to
allocate their memory in frequent, smaller chunks. Figure
7 shows these programs initialize their memory more
steadily throughout the first one billion instructions of
their execution. Note that although initializations are
shown here for the first billion instructions (due to finite
simulation time), dynamic memory allocation and initial-
ization can occur steadily throughout program execution,
depending on the application.

6. Identifying Initializing Stores
As discussed in Section 2, all initializing store misses in

a write-allocate memory system cause invalid memory
traffic (off-chip bus accesses) that can be eliminated. To
eliminate this traffic we must be able to identify a cache
miss as invalid before the cache miss handling procedure
begins, i.e. before allocating entries in miss queues and ar-
bitrating for the memory bus. A table structure that records
allocation ranges used by the program can be used for this
purpose. Each dynamic memory allocation creates a new
range in the table. Table entries track the store (initializa-
tion) activity within the recorded allocation ranges using a
base-bounds range summary technique. When a store miss
to uninitialized heap memory is detected the cache block is
automatically created in the cache hierarchy without a
fetch to main memory (cache installation), effectively
eliminating invalid memory traffic. In a cache coherent
system, a processor can issue a cache installation (e.g.
dcbz) as soon as write permission is granted for that
block. Once granted, the block is installed in the cache
with the value zero, thus realizing a zero-latency data
prefetch for the uninitialized heap memory.

Before an implementation such as this can be feasible
three main questions must be answered. (1) How can the
hardware detect a dynamic memory allocation call? (2) Is
the working set of allocation ranges small enough to cache
in a finite table? (3) How can a single table entry track the
behavior of potentially millions of cache blocks within a
single allocation range?

6.1. Identifying Allocations in Hardware
Again, this study is limited to programs written in C and

C++, but could easily extend to all programs that utilize
dynamic memory allocation, regardless of programming
language. Identifying memory allocation through mal-
loc() or any other construct can be accomplished with a
new special instruction. A simple instruction that writes
the address and size of the allocation into the base-bounds
tracking table can be added to the memory allocation rou-

Figure 6. Cache compulsory miss breakdown
Compulsory misses are shown for a 2MB 4-way set-
associative cache for 64, 128, and 256 byte blocks. The
narrow bars inside each stacked bar represent the percentage
of all cache misses that are compulsory for each program.

�������
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���������
���
���
���

���
���
���
��
��
�� ���

���
���

���
���
���
���

���
���

���
���
���
���

���������
���

���
���
���
���

���
��� ���

���
���
���
���
���

��
��
��
��
��

���
���
���
���
���

���
���
���

���
���
���

���
���
���
��� ���

���
���
���
���

���
���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���

���
���
���

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

������������
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip craf eon gap gcc gzip mcf pars perl twol vort vpr AVG

C
om

pu
ls

or
y

(C
ol

d)
 M

is
se

s

���
Load-Cold

���
Non-Heap-Cold
Initialize-Cold

64B 128B 256B

Figure 7. Initializing stores identified in the first one
billion instructions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100M 200M 300M 400M 500M 600M 700M 800M 900M <=1B

Initial One Billion Instructions

In
it

ia
liz

in
g

St
or

es
 O

b
se

rv
ed

bzip craf
eon gap
gcc gzip
mcf pars
perl twol
vort vpr

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

tine. In PowerPC a move to/from special register [11] can
be used to implement these new operations, making iden-
tification of memory allocation quite straightforward.

6.2. Allocation Working Set
Figure 2 shows there are anywhere between 300 and

30,000 dynamic memory allocations during the first one
billion instructions of the SPEC CINT2000 benchmarks.
However, the working set of uninitialized allocations is
much smaller. Figure 8 presents the number of allocations
(tracked with a first-in-first-out FIFO policy) required to
identify all initializing store misses to all allocations. This
data shows that the initialization of the heap is not separat-
ed far from its allocation. For all benchmarks (except pars-
er) it is necessary to track only the eight most recent
dynamic memory allocations to capture over 95% of all
initializing stores. Parser requires knowledge of the past
64 allocations. Even at 64 entries, a hardware allocation
tracking table could feasibly be implemented to track this
small subset of all allocations.

6.3. Tracking Cache Block Initializations
The next question that must be addressed is how to ef-

ficiently represent large allocated memory spaces in a fi-
nite allocation cache. As discussed in Section 5.1., a cache
block is the typical granularity of a bus transfer. Therefore
memory initialization must be tracked by cache block or
larger to identify invalid memory traffic. All cache blocks
within an allocation range must be tracked in order to de-
termine which pieces of the allocation space are valid and
invalid. If all cache blocks can not be tracked then it is not
possible to identify initializing stores at this granularity.
The straightforward approach of maintaining a valid bit for
each cache block in the allocated space is not feasible. The
largest allocation in gap (100 MB) would require 1.56MB
of valid bits in a single entry for 64 byte cache blocks. It

turns out the spatial and temporal locality of initializing
stores lends nicely to implementation.

6.3.1. Initialization Distance From Allocation
The temporal distance (the number of memory refer-

ences encountered between the time of allocation and the
dynamic memory initialization) and the spatial distance
(the distance from the beginning address of the allocation
space to the dynamic memory initialization address) of ini-
tializing store instructions is presented in Figure 9.

This figure illuminates the locality pattern of initializa-
tion for all dynamic memory allocations, averaged across
all SPEC CINT2000 benchmarks. A significant observa-
tion is that allocations tend to be initialized sequentially.
Blocks at the beginning of an allocation range are initial-
ized quickly and blocks toward the end of the range are ini-
tialized much later. This is shown by the diagonal bottom-
left to top-right trend in Figure 9. The trend indicates that
initializing stores that occur temporally early (to the left of
the graph) also occur spatially near (towards the bottom of
the graph) to the beginning of an allocation space. This ob-
servation coincides with Seidl and Zorn [18] who claim
there may exist a sequential initialization bias of heap
memory if large amounts of memory are allocated without
subsequent deallocations. Figure 9 illustrates this sequen-
tial behavior is present across all allocation sizes.

6.3.2. Exploiting Initialization Patterns
Although an approximate sequential initialization pat-

tern is shown in Figure 9, there are actually three main ini-
tialization patterns observed in the SPEC CINT2000
benchmarks: sequential, alternating, and striding as de-
picted in Figure 10. Three distinct heuristics for tracking
these initialization patterns can be employed. Forward

Figure 8. Memory allocation working set for
FIFO initialization tracking table

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256 >256

Number of Allocation Ranges Tracked (FIFO)

P
er

ce
nt

ag
e

of
 A

ll
In

it
ia

li
zi

n
g

S
to

re
 M

is
se

s
Id

en
ti

fi
ed

bzip craf
eon gap
gcc gzip
mcf pars
perl twol
vort vpr

Figure 9. Average temporal and spatial distance of
initializing stores from memory allocation
Dynamic instances of initializing stores are classified
according to the distance away from the beginning of the
allocation space (Spatial Distance) and the number of memory
references after the allocation occurred (Temporal Distance).

���

�����������
�����������
����������������������

�����������
�����������
�����������������������������������

��
��
���

�����������
�����������
�����������
���������������������

����������
����������
����������
����������������������������������

��
��
��
���

�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

����������
����������
����������
����������

�����������
�����������
����������������������

�����������

�����������
����������������������

�����������

�����������
�����������
�����������

�
�

���
���
��

�����������
�����������
����������������������

�����������
�����������

����������
����������
����������������������������������

��
��
��

��
����������
���������������������

�����������
�����������

�����������

�����������
�����������

�����������

�����������
�����������
����������������������������������

��
��

���
�����������
����������������������

�����������
�����������
����������������������

�����������
�����������

����������
����������

�����������
�����������
����������������������

�����������
�������������

��
��
���
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������

�����������
���������������������

����������

����������
���������������������

�����������
����������������������

�����������
����������������������

�����������
���������������������

����������
����������
����������

�
�

��
���

�����������
����������������������

�����������
�����������
�����������
���

��
��

���������������������������������

�����������
�����������
����������������������

�����������

�����������

�����������
�����������

�����������
�����������

�����������
�����������
����������������������

�����������
��

��
��
���

�����������

�����������
�����������
�����������

����������
����������

����������
����������

�����������
�����������

�����������
�����������
����������������������

�����������
����������������������

�����������
�����������
�����������

����������
����������
����������
����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

��
��

��
��
��
��

0%

5%

10%

10 100 1K 10K 100K 1M 10M 100M 1B >=1B

1KB

4KB

16KB

64KB

256KB

1MB

4MB

16MB

64MB

>=64MB

Temporal Distance (Memory References)

Percent of Initializing Stores

Sp
at

ia
l D

is
ta

nc
e

(B
yt

es
)

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

sweep tracks the first and last address limits for each allo-
cation, truncating the first address limit on initialization.
Bidirectional sweep also tracks the two address limits per
allocation, but truncates the first or last address limit de-
pending on the location of the initialization. Interleaving
maintains multiple address limit pairs for each allocation,
splitting the range into multiple discontinuous segments.
This scheme is extremely effective at capturing striding
reference patterns. Writes are routed to an interleaved en-
try based on the write address, the interleaving granularity
and the number of interleaves per range (address/granular-
ity modulo interleaves). Forward or bidirectional sweep-
ing is performed on each interleave entry. The idea is to
route striding initializations to the same interleave entry so
that each stride does not truncate the allocation range for
all future store addresses; the range is only truncated for
addresses that map to the same interleave entry. Thus fu-
ture initializations to addresses between strides will route
to a different interleave entry and can be correctly identi-
fied as initializing.

6.3.3. Allocation Range Cache
Figure 10 illustrates the tracking schemes that capture

multiple initialization patterns in allocation ranges. The
base and bound address limits representing the uninitial-
ized portion of an allocation range are used to identify ini-
tialization activity into a single allocation. To identify
writes to allocated-invalid memory in an allocation range,
it is sufficient to determine if the write falls within the cur-
rent address limits of the uninitialized portion of the range.

Figure 8 shows that the maximum working set of dy-
namic memory allocations for the SPEC CINT2000
benchmarks is typically 8 and at most 64 allocations.
Tracking the 64 most recent allocations is sufficient to cap-
ture nearly all initializations. Therefore we propose a
structure called the Allocation Range Cache to track the
initialization of dynamic memory allocation ranges and
identify initializing stores. Since the physical mapping for
newly allocated space may not always exist, the Allocation
Range Cache will track initializations by virtual address-
es. To illustrate the operation of this structure we will walk
through a simple allocation and initialization example. The
example in Figure 11 shows an allocation of addresses A
through F with initializing stores to addresses A, C, and B.

We will now demonstrate how the Allocation Range
Cache can track allocation A-F and identify the initializing
stores to A, C, and B.

(1) To capture this activity the Allocation Range Cache
represents the uninitialized allocation range A-F with two
base-bound pairs as shown in Figure 12. This is two-way
interleaving. The Start-End and Base-Bound values for
both interleave entries are initialized to A-F.

(2) The write of address A occurs and a fully-associa-
tive search is performed on all Start-End pairs for a range
that encompasses address A. When range A-F is found, ad-
dress A is routed to interleave entry i=0 of this range. The
Base and Bound values for this entry are referenced to de-
termine if address A is to uninitialized memory. As this is
the first write to this range, the Base-Bound pair still holds
the initial value of A-F. Therefore, this write of address A
is identified as an initializing store and the address is
placed in the Initializing Store Table. The Initializing
Store Table is simply a list of write addresses that have
been identified as initializing stores by the Allocation
Range Cache. To record this initialization, the Allocation
Range Cache truncates the Base value of the referenced
entry so that the Base-Bound values are now B-F. This is
forward range sweeping.

(3) The write of address C is handled similarly to the
previous write of address A. The write is identified as ini-
tializing by interleave entry i=0, address C is sent to the
Initializing Store Table, and the Base value is truncated to
address D.

Figure 10. Tracking initialization patterns of
dynamic memory allocations
Three main initialization patterns of dynamic memory ranges
are observed in the SPEC CINT2000 benchmarks: sequential,
alternating, and striding. Forward sweeping, bidirectional
sweeping, and interleaving are effective range tracking
schemes for capturing these unique initialization patterns.

�����
�����
�����

A B C D E F

����
����
����
����

B C D E F

A
�����
�����
�����

C D E F

A B

A

B

C E
�����
�����
�����
�����

D F

�����
�����
�����
�����

A B C D E F

B C D E
�����
�����
�����F

A C D E F

A B

A

����
����
����
����

B

C
����
����
����ED F

�����
�����
�����
�����

A B C D E F

B
����
����
����C D E F

A C D
����
����
����
����

E F

A
����
����
����

B

A

B

C ED F

1. Sequential

2. Alternating

3. Striding

B C D E F

C D E F

�����
�����
�����

A D E F

�����
�����
�����
�����

A
����
����
����
����

B

�����
�����
�����
�����

A

����
����
����

B

�����
�����
�����
�����

C E F

B C D E F

B C D E

�����
�����
�����
�����

A C D E
�����
�����
�����
�����

F

�����
�����
�����A

����
����
����B

�����
�����
�����A

C D
�����
�����
�����F

BC DE F

B DE F

�����
�����
�����
�����

A
�����
�����
�����
�����

C D F

�����
�����
�����

A
�����
�����
�����

B

�����
�����
�����

A

B

�����
�����
�����

C
����
����
����

E D F

1. Forward Sweep

2. Bidirectional Sweep

3. Interleaving

�����
�����
�����

A

����
����
����
����

B

�����
�����
�����

C

�����
�����
�����
�����

D

�����
�����
�����
�����

A

�����
�����
�����F

����
����
����
����

B

����
����
����E

�����
�����
�����
�����

A

�����
�����
�����C

����
����
����
����

E

Initialization
Pattern

Tracking
Scheme

Allocated-Invalid
Initialized���

���

Unknown
���
���

Figure 11. Initializing store example

A B C D E F

B C D E F

����
����
����
����

A D E F

1. malloc() A-F

2. write A

3. write C

����
����
����

A D E F4. write B

B

����
����
����

C

����
����
����A

����
����
����
����

C

����
����
����

B

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

(4) The write of address B is routed to interleave entry
i=1 for range A-F. Since this is the first reference to inter-
leave i=1, the Base-Bound pair has the initial value A-F.
Therefore this write of address B is identified as initializ-
ing, sent to the Initializing Store Table, and the Base value
is truncated to address C. Note that if address B had been
routed to interleave i=0, it would not have been identified
as initializing because the previous write of address C trun-
cated the Base value to address D. There would have been
a lost opportunity to correctly identify an initializing store.
This is an example of how range interleaving can track
striding initialization patterns effectively.

The effectiveness of identifying initializing store miss-
es dynamically with simple forward sweep and bidirec-
tional sweep tracking policies is presented in Figure 13.
Simple range sweeping, with one base-bound pair per al-
location, captures nearly 100% of all initializations for ten
benchmarks. Most benchmarks adhere strictly to sequen-
tial initializations. Perl exhibits alternating initialization;
therefore a bidirectional policy is more effective than for-
ward sweep.

Initializations in bzip2 and gzip are not captured well
with forward or bidirectional range sweeping. These pro-
grams often initialize memory in strides of 128, 256, and
1024 bytes. Range interleaving as shown in Figure 10 is re-
quired to effectively capture striding initializations. Figure
14 shows that maintaining multiple base-bound pairs for

each allocation can significantly improve the effectiveness
of range sweeping at identifying initializing stores. Note
that only 60% of all initializations in bzip2 can be captured
by range sweeping. Bzip2 has one large allocation that is
initialized at random locations at random times. Random
initialization patterns are not captured with any range
sweeping scheme proposed in Figure 10.

7. Implementation and Performance
Initializing store misses cause invalid memory traffic,

real data traffic between memory and caches that transfers
invalid data from the heap. To avoid this traffic, store
misses must be identified as invalid before the cache hier-
archy initiates a bus request to fetch missed data from
memory. The block written by the store can then be in-
stalled directly into the cache without fetching invalid data

Figure 12. Allocation Range Cache
The Allocation Range Cache represents address range A-F with
2 base-bound pairs (2-way interleaving) as shown above.
Assume that we interleave with a granularity such that
addresses A,C, and E will be routed to interleave entry i=0, and
addresses B,D, and F will be routed to entry i=1. The
Initializing Store Table holds store addresses that have been
identified as initializing stores by the Allocation Range Cache.

Initializing Store TableAllocation Range Cache

Start: First address in range
End: Last address in range
V: Valid range

Addr: Initializing store address
V: Valid address

-- -- -- --0-- -- 0

i: Interleave entry
Base: First uninitialized address
Bound: Last uninitialized address

End

F

i

1

Base

A

Bound

F

V

1

Start

A

V

0

Addr

--

 2. write A

-- -- -- --0-- -- 0

End

F

i

1

Base

A

Bound

F

V

1

Start

A

V
1

Addr
A 3. write C

-- -- -- --0-- -- 0

End
F

i
0

Base
D

Bound
F

V
1

Start
A

V
1

1

Addr
A

C 4. write B
-- -- -- --0--

F 0 B F1A 1A

F 0 D F1A

1C

F 1 C F1A

B 1

1. malloc A-F

End
F

F

i
0

1

Base
A

A

Bound
F

F

V
1

1

Start
A

A

V
0

0

Addr
--

--

Figure 13. Identifying initializing stores with for-
ward and bidirectional range sweeping
The percentage of all initializing stores that can be identified
by range sweeping for a 1MB 4-way set-associative cache
with 64 byte blocks is shown above.

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 00%

bzip craf eon gap gcc gzip mcf pars perl tw ol vort vpr

P
er

ce
nt

ag
e

of
 I

ni
ti

al
iz

in
g

St
or

e
M

is
se

s
Id

en
ti

fi
ed

Forward
���

Bidirectional

Figure 14. Improving identification of initializa-
tions with range sweeping by interleaving ranges
The percentage of all initializing stores that can be identified
by range interleaving and sweeping, for a 1MB 4-way set-
associative cache with 64 byte blocks, is shown above.
Forward (FW) and bidirectional (BD) sweeping is performed
at an interleave granularity of 128 bytes on two (2/128) and
eight (8/128) interleaves per allocation.

��������
��������
��������
��������
��������

��������
��������

���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 00%

bzip2 gzip

P
er

ce
nt

ag
e

of
 I

ni
ti

al
iz

in
g

St
or

e
M

is
se

s
Id

en
ti

fi
ed Forw ard

���
Bidirectional

���
FW 2/128

��
BD 2/128

��
FW 8/128

���
BD 8/128

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

over the bus. This is block-granular cache installation. Ini-
tializing store miss identification can be done anytime af-
ter the store address is generated and before the store
enters miss handling hardware. These relaxed timing con-
straints allow multiple cycles for an identification to re-
solve. Therefore the mechanism that identifies initializing
stores, e.g. the Allocation Range Cache, is not latency sen-
sitive and could be implemented as a small, fully-associa-
tive cache of base-bound pairs. This structure could
effectively reduce bus bandwidth requirements at a mini-
mal implementation cost. We now propose an integration
of the Allocation Range Cache that can effectively identify
and smash initializing store misses.

7.1. Smashing Invalid Memory Traffic
Figure 15 demonstrates a conceptual example of how

an Allocation Range Cache and Initializing Store Table
can be integrated into a typical cache hierarchy to smash
invalid memory traffic. The identification of an initializing
store in the Allocation Range Cache is accomplished using
the virtual address of store instructions. When a store is
presented to the cache hierarchy, the translation look-aside
buffer (TLB) and Allocation Range Cache (ARC) are ac-
cessed in parallel. The TLB translates the store address tag
from virtual to physical, sends the tag to the Level-1 cache
for tag comparison, and also sends the physical tag to the
ARC. Meanwhile the ARC uses the virtual store address to
reference into its base-bound pairs to determine if the store
is initializing, as described in Figure 12. If the store is iden-
tified as an initializing store to heap space, the Allocation
Range Cache takes the physical tag (supplied by the TLB)
and inserts the complete physical address of the store in-
struction into the Initializing Store Table.

If a store address misses in the Level-1 and Level-2
caches, and at least one cache employs a write-allocate
policy, a data fetch request is queued in the outgoing mem-
ory request queue. The address is also sent to the Initializ-
ing Store Table (IST). The IST performs a fully-
associative search for a matching physical address. A
match implies this store has been identified as an initializ-
ing store by the Allocation Range Cache. Since initializa-
tions are tracked on cache block granularity, we know that
the entire cache block encompassing an initializing store
address contains invalid data. Therefore we can install the
entire block directly into cache and avoid fetching the data
from memory. To accomplish this, the Initializing Store
Table invalidates (smashes) the store address entry in the
outgoing memory request queue and sends a response to
the Level-1 cache queue, or whichever cache allocates on
writes, to install the cache block with the value zero. Final-
ly, the store address is removed from the Initializing Store
Table. This demonstrates how the Allocation Range Cache
can smash invalid memory traffic using cache installation.

7.2. Alternative Implementations
As discussed in Section 3, there are other methods for

avoiding invalid memory traffic: sub-blocking and soft-
ware-controlled cache installation. Sub-blocking has obvi-
ous limitations. First, sub-block valid bits cause significant
storage overhead, especially in systems that allow un-
aligned word writes or byte writes. In practice, fetch-on-
write must be provided for un-aligned word writes. Sec-
ond, sub-blocking requires that lower levels in the memory
system support writes of partial cache lines. This can be-
come a significant problem in a multi-processor environ-
ment with coherent caches, since the owner of a line may
possess only a partially valid line, and cannot respond di-
rectly to the requestor.

Software-controlled cache installation (on a page gran-
ularity) can be accomplished by an operating system’s
page fault handler. When a mapping is created for a new
page, the operating system can issue a cache installation
(e.g. dcbz) for the entire page. This will install the entire
page directly into cache, effectively prefetching all initial-
ization misses to that page. However, this scheme can
cause excessive cache pollution, e.g. given a 64 byte block
size, 64 valid blocks could be evicted when a 4KB page is
installed. This problem gets worse when the page size
grows, as in the presence of superpages [13]. Given page
sizes of 4MB or 16MB, directly installing an entire page
into cache is not feasible. Page-granular installing is inef-
ficient for large striding initialization patterns and this
scheme cannot optimize capacity miss initializations to
pages that have already been mapped. If heap space is re-

Figure 15. Integration of Allocation Range Cache

TLB
L1$

L2$

Initializing
Store
Table

ARC
Allocation
Range
Cache

in
st

al
l b

lo
ck

 to
 z

er
o

vi
rt

ua
l a

dd
re

ss

CPU

IST

ph
ys

ic
al

 ta
g

memory address

sm
ash

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

used, initializing store misses will occur if that heap space
has fallen out of cache.

Tracking and eliminating initializing store miss data
transfers at the cache block granularity can alleviate sub-
blocking overhead and avoid excessive cache pollution
from page-granular cache installation. We now evaluate
the performance benefits of smashing invalid memory
traffic via cache installation.

7.3. Performance Speedup via Cache Installation
Figure 16 presents performance results for smashing

initializing store misses via cache installation by an Allo-
cation Range Cache. This structure triggers cache block-
granular installation instructions (dcbz) when an initializ-
ing store miss is identified. The entire cache block is in-
stalled directly into the Level-1 data cache, thus
performing a zero-latency prefetch. The store instruction
will now hit in cache. Note that coherence permission must
be received before installing a cache block. The perfor-

mance of a page-granular installation scheme (Page) as
performed by the AIX page fault handler is compared
against our block-granular scheme (Block). Results are re-
ported relative to a baseline machine configuration (Base)
as described in Section 4.1. The dcbz cache installation
instruction is disabled in this baseline. For most programs,
smashing invalid memory traffic results in a direct perfor-
mance improvement. In bzip2, gap, mcf, parser, and perlb-
mk using the Allocation Range Cache to trigger block-
granular cache installations outperforms the page-granular
installation scheme. Figure 6 shows that mcf and gap have
the largest percentage of compulsory misses that are ini-
tialization misses, 95% and 92% respectively. Figure 16
demonstrates that avoiding these compulsory misses can
have significant performance benefits.

Bzip2 and gzip exhibits striding initialization patterns
with observed strides of 1024 bytes as discussed in
Section 6.3.2. With this large stride, a new 4KB page is en-
countered every fourth stride. From Figure 16, installing
the entire 4KB page after the first initialization is causing
significant cache pollution since block-granular installa-
tions provide larger performance gains. The Allocation
Range Cache does not excessively pollute the cache with
extraneous prefetching. Rather, blocks are installed on de-
mand, eliminating cache pollution effects for striding ini-
tializations.

8. Conclusion
This paper introduces the concept of invalid memory

traffic - real data traffic that transfers invalid data. Such
traffic arises from fetching uninitialized heap data on
cache misses. We find that initializing store misses are re-
sponsible for approximately 23% of all cache miss activity
across the SPEC CINT2000 benchmarks for a 2MB cache.
By smashing invalid memory traffic, 35% of compulsory
misses and 23% of all cache miss data traffic on the bus
can be avoided. This is an encouraging result, since com-
pulsory misses, unlike capacity and conflict misses, cannot
be eliminated by improvements in cache locality, replace-
ment policy, size, or associativity. Eliminating invalid
compulsory miss traffic breaks the infinite cache limit,
where compulsory misses of a finite-sized cache are finite
and bound by that of an infinite-sized cache [6].

We propose a hardware mechanism, the Allocation
Range Cache, that tracks initialization of dynamic memory
allocation regions on a cache block granularity. By main-
taining multiple base-bound representations of an alloca-
tion range (interleaving), this structure can identify nearly
100% of all initializing store misses with minimal storage
overhead. By directly allocating and initializing a block
into cache (cache installing) when an initializing store
miss is identified, it is possible to avoid transferring in-

Figure 16. Performance speedup via block- and
page-granular cache installation
Instructions per cycle (IPC) comparisons for page-granular
(Page) and block-granular (Block) cache installation
schemes using dcbz are shown on the top. Execution
speedups are presented on the bottom graph. All programs
were simulated for one billion instructions.

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

0.0

0.5

1.0

1.5

2.0

2.5

3.0

bzip craf gap gcc gzip mcf pars perl twol vort vpr

In
st

uc
ti

on
s

pe
r

C
yc

le ���
��� Base Block

���
���Page

���� ����

���
���
���
���
���
���
���
���
���
��� ���

����
����
����
����

���
��� ��� ���� ���� ����

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

bzip craf gap gcc gzip mcf pars perl twol vort vpr

E
xe

cu
ti

on
 S

pe
ed

up

Block

���
��� Page

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

valid memory over the bus. This is essentially a zero-laten-
cy prefetch of a cache miss. Reducing bus traffic via cache
installation can directly improve performance by reducing
pressure on store queues and cache hierarchies. We quan-
tify a direct performance improvement from avoiding ini-
tialization misses to the heap. Speedups of up to 41% can
be achieved by smashing invalid memory traffic with the
Allocation Range Cache triggering cache block installa-
tions. Indirectly, smashing invalid memory traffic will de-
crease bus bandwidth requirements, enabling bandwidth-
hungry performance optimizations such as prefetching and
multi-threading to consume more bandwidth and improve
performance even further.

9. Future Work
There are issues to be addressed for avoiding invalid

memory traffic in a multi-processor environment, includ-
ing coherence of the Allocation Range Cache. For correct-
ness, all ARC entries must be coherent across multiple
threads or processors. The ARC can be kept coherent
among multiple threads in the same address space by ar-
chitecting the cache entries as part of coherent physical
memory. Thus updates to an ARC entry by one thread will
be seen by other threads through the existing coherence
mechanisms. Coherence is more challenging when virtual
address aliasing to shared physical memory exists. These
issues are subject of continued research.

10. References
[1] AIX Version 4.3 Base Operating System and Extensions
Technical Reference, Volume 1,
http://www.unet.univie.ac.at/aix/libs/basetrf1/malloc.htm

[2] Barrett David A., Zorn, Benjamin G. Using lifetime predic-
tors to improve memory allocation performance. ACM SIG-
PLAN Notices, v.28 n.6, p.187-196, June 1993.

[3] Burger, D., Goodman, J.R., Kägi, A. Memory Bandwidth
Limitations of Future Microprocessors. Proceeding of the 23rd
Annual International Symposium on Computer Architecture,
pages 78-89, PA, USA, May 1996.

[4] Chen, T.-J., Baer, J.-L. Reducing Memory Latency via Non-
blocking and Prefetching Caches. Proceedings of the 5th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 51-61, Boston, MA,
October, 1992.

[5] Chen, T.-J., Baer, J.-L. A Performance Study of Software and
Hardware Data Prefetching Schemes. Proceedings of the 21st
annual International Symposium on Computer Architecture, pp.
223 - 232 Chicago, IL, 1994.

[6] Cragon, H.G. Memory Systems and Pipelined Processors.
Jones and Bartlett Publishers, Inc., Sudbury, ME, 1996.

[7] Diwan, A., Tarditi, D., Moss, E. Memory System Perfor-
mance of Programs with Intensive Heap Allocation. ACM Trans-
actions on Computer Systems, Vol13, No 3, pp. 244-273, August
1995.

[8] Dubois, M., Skeppstedt, J., Ricciulli, L., Ramamurthy, K.,
Stenström, P. The Detection and Elimination of Useless Misses in
Multiprocessors. Proceedings of the 20th Annual International
Symposium on Computer Architecture, pp. 88-97, May 1993.

[9] Gonzalez, J., Gonzales, A. Speculative execution via address
prediction and data prefetching. Proceed-ings of the 11th Inter-
national Conference on Supercomputing, pp. 196-203, June
1997. [10]

[10] Grunwald, D., Zorn, B., Henderson, R. Improving the Cache
Locality of Memory Allocation. ACM SIGPLAN PLDI’93, pp.
177-186, Albuquerque, N.M., June 1993.

[11] IBM Microelectronics, Motorola Corporation. PowerPC
Microprocessor Family: The Programming Environments.
Motorola, Inc., 1994.

[12] Jouppi, Norman P. Cache write policies and performance.
ACM SIGARCH Computer Architecture News, v.21 n.2, p.191-
201, May 1993.

[13] Talluri, M., Hill, Mark D. Surpassing the TLB performance
of superpages with less operating system support. ACM SIG-
PLAN Notices, v.29 n.11, p.171-182, Nov. 1994.

[14] Peng, C.J., Sohi, G. Cache memory design considerations to
support languages with dynamic heap allocation. Technical
Report 860, University of Wisconsin-Madison, Dept. of Com-
puter Science, July 1989.

[15] Rosenblum, M., Herrod, S., Witchel, E., Gupta, A. Complete
Computer Simulation: The SimOS Approach. IEEE Parallel and
Distributed Technology, Fall 1995.

[16] Rosenblum, M., Bugnion, E., Devine, S., Herrod, S. Using
the SimOS Machine Simulator to Study Complex Computer Sys-
tems. ACM Transactions on Modeling and Computer Simulation,
vol. 7, no. 1, pp.78-103, January 1997.

[17] Saulsbury, A., Pong, F., Nowatzyk, A. Missing the Memory
Wall: The Case for Processor/Memory Integration. Proceedings
of the 23rd Annual International Symposium on Computer
Architecture, pages 90-101, PA, USA, May 1996.

[18] Seidl, Matthew L., Zorn, Benjamin G. Segregating heap
objects by reference behavior and lifetime. ACM SIGPLAN
Notices, v.33 n.11, p.12-23, Nov. 1998.

[19] Tullsen, D.M., Eggers, S.J. Limitation of cache prefetching
on a bus-based multiprocessor. Proceedings of the 20th Annual
International Symposium on Computer Architecture, 1993.

[20] Wulf, Wm.A. and McKee, S.A. Hitting the Memory Wall:
Implications of the Obvious. ACM Computer Architecture News.
Vol. 23, No.1 March 1995.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

