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Abstract

Meeting deadlines is a key requirement in safe real-
time systems. Worst-case execution times (WCET) of tasks
are needed for safe planning. Contemporary worst-case
timing analysis tools can safely and tightly bound execu-
tion time on in-order single-issue pipelines with caches
and static branch prediction. However, this simple pipeline
appears to be a complexity limit, due to the need for ana-
lyzability. This excludes a whole class of high-perfor-
mance processors from many embedded systems.

We reconcile the complexity/safety trade-off by decou-
pling worst-case timing analysis from the processor imple-
mentation, through a virtual simple architecture (VISA). A
VISA is the timing specification of a hypothetical simple
pipeline and is the basis for worst-case timing analysis.
However, the underlying microarchitecture can be arbi-
trarily complex. A task is divided into multiple sub-tasks
which provide a means to gauge progress on the complex
pipeline. Each sub-task is assigned an interim deadline, or
checkpoint, based on the latest allowable completion time
of the sub-task on the hypothetical simple pipeline. If no
checkpoints are missed, then the complex pipeline is as
timely as the safe pipeline. If a checkpoint is missed, the
pipeline switches to a simple mode of operation that
directly implements the VISA so that execution time of
unfinished sub-tasks is safely bounded. The significance of
our approach is that we circumvent worst-case timing
analysis of the complex pipeline, by dynamically confirm-
ing its behavior is bounded by worst-case timing analysis
of a simpler proxy pipeline.

The benefit of using a high-performance processor is
that tasks finish much sooner than they would have on an
explicitly-safe processor. The new slack in the schedule
can be exploited for higher throughput or lower power.
With the VISA approach, an arbitrarily complex SMT pro-
cessor can safely run non-real-time tasks at the same time
as a real-time task. Alternatively, frequency/voltage can be
safely lowered to take up slack. We explore the latter appli-
cation and show a VISA-compliant complex pipeline con-
sumes 43-61% less power than an explicitly-safe pipeline.

1. Introduction

In safe real-time systems (also known as hard real-
time systems), correct operation depends on meeting dead-

lines [19]. Static worst-case timing analysis is vital to
ensuring safe operation. The output of worst-case timing
analysis is an upper bound on the execution time of a task,
called the worst-case execution time (WCET). This bound
is guaranteed never to be exceeded (safe bound) but is as
close as possible to typical execution times (tight bound).
Having WCET estimates is crucial for designing safe real-
time systems, because they enable the system designer to
budget enough processing power to handle worst-case
computational requirements and safely meet deadlines
under any circumstance.

Sophisticated timing analyzers can calculate safe,
tight WCET bounds for tasks executing on single-issue in-
order pipelines with instruction and data caches
[2,11,12,14,15,16,17,18,26,34,42]. However, the level of
sophistication needed to safely and accurately analyze
more complex architectures is formidable. Currently, there
is no way to precisely specify microarchitectures with a
full complement of high-performance techniques (com-
plex dynamic branch predictors, caches, deep speculation,
dynamic scheduling, and multiple instruction issue), let
alone safely and accurately predict WCET of tasks with
variable control flow and data flow on these highly
dynamic substrates. In fact, so far the simple pipeline
described above is a complexity limit and simplicity may
be fundamental to the design of safe real-time systems
[4,8,28,32], because of the need for analyzability.

The complexity limit excludes an entire class of high-
performance microprocessors from safe real-time systems.
This has long-term implications in terms of expanding the
scope of embedded systems in the future. Excluding high-
performance microprocessors perpetuates the performance
gap between general-purpose and embedded systems. As
we will show, high-performance microprocessors can be
exploited to increase throughput of multiprogrammed
workloads and/or reduce power in safe real-time systems.

This paper presents a novel approach for reconciling
the complexity/safety trade-off. We propose the notion of
a virtual simple architecture (VISA) to decouple worst-
case timing analysis from the underlying processor imple-
mentation. A VISA is the pipeline timing specification for
a hypothetical, simple processor architecture. This hypo-
thetical pipeline is the basis for worst-case timing analysis.
However, the actual pipeline can be arbitrarily complex as
long as progress of a task is continuously monitored and



shown to be no slower than the slowest progress on the
hypothetical pipeline, as bounded by WCET of the hypo-
thetical pipeline. Continuous monitoring is achieved by
dividing the task into multiple smaller sub-tasks. Sub-
tasks provide a mechanism to gauge progress of the task as
it executes on the complex pipeline. An artificial interim
deadline (called a checkpoint) is set for each sub-task. The
checkpoint of a sub-task is based on the latest allowable
completion time of the sub-task on the hypothetical pipe-
line. If sub-tasks complete before their respective check-
points (as monitored by a watchdog timer), then it appears
as if the hypothetical pipeline was used throughout. So, the
task executed safely on the complex pipeline.

In the unlikely event that a sub-task does not complete
before its checkpoint, then the overall task deadline may
be missed unless steps are taken to bound execution time
of the unfinished sub-task and all remaining sub-tasks. To
address this, the complex pipeline is reconfigured to oper-
ate in a simple mode that directly implements the VISA,
e.g., out-of-order (OOO) execution is disabled, gshare is
replaced with static prediction, etc. The unfinished sub-
task and all remaining sub-tasks are executed in simple
mode, bounding execution time and thereby guaranteeing
the task finishes before its hard deadline.

Disabling complex hardware features has been pro-
posed before, e.g., disabling the cache or pinning critical
cache lines [4,9]. Our approach differs fundamentally in
that the real-time task is attempted on the complex pipe-
line even though it is unsafe to do so, and the run-time sys-
tem dynamically and continuously verifies that the
complex pipeline’s execution time is bounded by WCET
of the hypothetical simple pipeline. The simple mode is
rarely or never used. Other approaches disable complex
features for the duration of the real-time task, failing to
exploit the high-performance microarchitecture. Another
difference is that most disabling techniques target specific
components, whereas we define a virtual simple architec-
ture as a whole.

The significance of our approach is that we eliminate
the need to do explicit WCET analysis of the complex
pipeline, by confirming dynamically that its execution
time is bounded by WCET of a hypothetical simple pipe-
line. This approach is analogous to the DIVA verification
paradigm [3], in which proving correctness of a complex
microarchitecture is avoided by dynamically confirming
equivalence between the complex microarchitecture and a
verified checker pipeline.

1.1. Exploiting unsafe processors in safe systems

In our experiments, tasks complete much sooner on
the complex pipeline than on the hypothetical simple pipe-
line. In terms of safety, finishing earlier provides no bene-
fit. However, the slack created by higher instruction-level

parallelism (ILP) can be exploited to improve throughput
of a multiprogrammed workload or reduce power con-
sumption. We have identified at least three applications.

® Conventional concurrency. Typically, there is a mix of
non-real-time, soft real-time, and hard real-time tasks
in an embedded system. Finishing the hard real-time
task earlier means non-real-time and soft real-time
tasks can be scheduled during the slack following the
hard real-time task.

®  Simultaneous multithreading (SMT). In an SMT pro-
cessor [37,41], slack can be exploited by executing
non-real-time and soft real-time tasks at the same time
as the hard real-time task. The hard real-time task only
needs as much bandwidth as the hypothetical simple
pipeline to meet sub-task checkpoints. On a highly-
parallel microarchitecture, checkpoints are unlikely to
be compromised by other tasks. However, if a check-
point is missed, the complex pipeline is reconfigured to
operate in simple mode, which now includes “idling”
the other SMT threads (they are not context-switched
out, but no new instructions are fetched).

® Dynamic voltage scaling (DVS). In a processor with
DVS support, slack can be exploited by scaling down
frequency and voltage, reducing power. Because it has
higher ILP, the complex pipeline can meet its check-
points at a lower frequency than the hypothetical sim-
ple pipeline. If a checkpoint is missed, the complex
pipeline is reconfigured to operate in simple mode at a
higher, safe frequency.

In this paper, we focus on the power savings applica-
tion (dynamic voltage scaling). Experiments with 6 hard
real-time benchmarks show that a VISA-compliant com-
plex pipeline consumes 43% to 61% less power than an
explicitly-safe pipeline.

The SMT application has major potential. Embedded
systems have many threads, especially as dedicated hard-
ware components are re-implemented in software threads
(a trend called hardware-to-software migration) [7]. This
environment is ripe for SMT processors. SMT can achieve
significantly higher throughput than conventional concur-
rency. On the other hand, SMT poses new challenges for
worst-case timing analysis. We may not know beforehand
which threads will execute at the same time as the hard
real-time task. And bounding WCET while other threads
are executing — each with their own flow of control — is
intractable. Our VISA approach would enable SMT pro-
cessors to be used for higher throughput without compro-
mising safety of critical tasks. The SMT application is
beyond the scope of this paper and we leave it for future
work.



1.2. Broader implications of VISA

The VISA is like another abstraction, the instruction-
set architecture (ISA). In addition to providing a simple
interface between software and hardware, the ISA pro-
vides a means for interoperability among different proces-
sors. Processors that conform to the same ISA are binary
compatible, i.e., they correctly execute the same binaries.
With VISA, the notion of binary compatibility could be
extended to include timing safety. We could design differ-
ent processors that conform to the same VISA. Parameter-
ized WCET information for a task would be appended to
the task’s binary, and the task will execute safely within
any system that complies with the VISA for which the
WCET information was calculated (WCET would be
expressed in cycles for frequency scaling, divided into
components that scale and do not scale with frequency,
and parameterized in terms of worst-case memory latency
since the memory sub-system is outside the influence of
processor design). The VISA could be formally appended
to the ISA manual, with compliance optional. The broader
implications of a VISA are left for future research.

2. General methodology for safe operation

In this section, we describe a general methodology for
guaranteeing safe operation when using an unsafe, high-
performance microarchitecture.

2.1. Setting checkpoints

To gauge progress on the unsafe pipeline, the task is
divided into sub-tasks (by the programmer or timing ana-
lyzer) and each sub-task is assigned a soft deadline called
a checkpoint. The sub-task is expected to complete before
its checkpoint. If it does not, then the complex pipeline is
re-configured to operate in a simple mode that directly
implements the VISA. This way, the combined execution
time of the unfinished sub-task and all remaining sub-tasks
is safely bounded by worst-case timing analysis.

Checkpoints are the key to safe operation. For a sub-
task i that misses its checkpoint, there must be just enough
time between the checkpoint and the final deadline to (1)
re-configure the complex pipeline to operate in simple
mode (and switch frequency/voltage in the case of DVS),
(2) execute the remainder of sub-task i, and (3) execute all
remaining sub-tasks. Item 1 is a fixed implementation-
dependent overhead. Item 3 is safely bounded by totaling
the WCETSs of remaining sub-tasks. Regarding item 2, it is
hard to know how much time it will take to finish the
remainder of sub-task i, because worst-case timing analy-
sis is done for the sub-task as a whole. Fortunately, the
remaining execution time is safely (although not tightly)
bounded by WCET of the whole sub-task. That is, to be
safe, we have to assume no work got done for sub-task i on

the complex pipeline. Therefore, the checkpoint for sub-
task 7 (relative to the beginning of the task) is calculated as
follows:
checkpoint; = [deadline—ovhd— z WCETk’f] (EQD
k=i
Equation 1 corresponds to what was stated earlier,
that the time between the checkpoint (checkpoint;) and the

final deadline (deadline) includes switching overhead
(ovhd) plus the maximum time to execute the unfinished
sub-task i and all remaining sub-tasks on the hypothetical
simple pipeline. There are s sub-tasks in the task, so the
WCETs of sub-tasks i through s are summed. For proces-
sors that support frequency/voltage scaling, there is a dif-
ferent WCET for each frequency setting. WCET), fis the

worst-case execution time for sub-task k at frequency f on
the hypothetical simple pipeline.

2.2. Watchdog counter

A hardware cycle counter, called the watchdog
counter, is used to detect missed checkpoints. The watch-
dog counter is memory-mapped so that it can be read and
written via load and store instructions, respectively.

A code snippet at the beginning of the first sub-task
initializes the watchdog counter to the number of cycles
between the start of the task and the first checkpoint. Thus,
the initial value of the watchdog counter is
| checkpoint, - f |, where fis the processor frequency. A

code snippet at the beginning of each new sub-task i incre-
ments the watchdog counter by the number of cycles
between the previous checkpoint (checkpoint; ;) and the
next one (checkpoint;). Thus, sub-task i adds
| (checkpoint;—checkpoint; ) f | cycles to the watch-

dog counter. This effectively advances the interim deadline
enforced by the watchdog counter to the next checkpoint.

Meanwhile, hardware autonomously decrements the
watchdog counter by one every cycle. If the watchdog
counter reaches zero, it means the current sub-task missed
its checkpoint. In this case, an exception is raised indicat-
ing that a checkpoint was missed.

Missed-checkpoint exceptions are masked if the pro-
cessor is not running a hard real-time task, or if it is run-
ning a hard real-time task in simple mode. If a missed-
checkpoint exception occurs and the processor is running a
hard real-time task on the complex pipeline, then the pipe-
line is drained and re-configured to operate in simple
mode.

3. System design

System design involves defining a VISA, and imple-
menting a static timing analyzer on the one hand and a



complex processor on the other that comply with the
VISA. In defining the VISA, we considered the capabili-
ties of current timing analysis tools. We also considered
how a simple mode of operation is likely to be accommo-
dated within a typical dynamically scheduled superscalar
processor, and in particular the complex processor used in
this paper. The three layers — VISA, processor, and tim-
ing analyzer — are described in this section.

3.1. Virtual simple architecture

The VISA used in this paper is a six-stage, scalar
(peak throughput is 1 instruction/cycle in all pipeline
stages), in-order pipeline. The six pipeline stages are fetch,
decode, register read, execute, memory, and writeback.
The instruction fetch stage can fetch 1 instruction in a
cycle. There is an instruction cache but no dynamic branch
predictor. Conditional branches are predicted using a static
heuristic: backward branches are predicted taken and for-
ward branches are predicted not-taken. Branch target
addresses are assumed to be cached with the branches in
the instruction cache, i.e., the instruction cache and branch
target buffer are merged. This simplifies static worst-case
timing analysis since only the instruction cache needs to
be analyzed. Targets of indirect branches are not predicted.
Instruction fetch stalls until the indirect branch executes.
There are four stages between fetch and execute. There-
fore, the conditional branch misprediction penalty and
indirect branch stall time are both four cycles.

The instruction decode stage decodes 1 instruction per
cycle. There is no register renaming, because WAW haz-
ards are handled by in-order completion and WAR hazards
are handled by early-reads/late-writes. The register read
stage checks for RAW hazards and reads source operands
from the register file. There is a single, unpipelined, uni-
versal function unit in the execute stage, and all the usual
data bypasses to the function unit from later pipeline
stages. The universal function unit handles address genera-
tion and all integer and floating-point ALU instructions.
There are only two causes for stalling an instruction in the
register read stage. First, an instruction stalls in the register
read stage if other instructions ahead of it in the pipeline
are not advancing, due to a multiple-cycle operation in the
execute stage or a data cache miss in the memory stage.
Second, an instruction stalls in the register read stage if it
depends on a load and the load is directly ahead of it in the
pipeline (it must stall at least one cycle).

The VISA must also include specific cache configura-
tion information, instruction execution latencies, and the
worst-case memory stall time in the case of an instruction
or data cache miss. The parameters used in this paper are
shown in Table 1. Worst-case memory stall time is given
in nanoseconds instead of cycles, because the number of
cycles depends on the processor frequency.

TABLE 1. VISA caches and latencies.

component parameters

64KB, 4-way set-assoc.,

L1 I-cache & D-cache 64B block, 1 cycle hit

worst-case memory stall time | 100 ns

execution latencies MIPS R10K latencies

3.2. Pipeline alterations for simple mode

The complex processor used in this paper is a dynam-
ically scheduled 4-way superscalar processor with a 128-
entry reorder buffer, 64-entry issue queue, 64-entry load/
store queue, 4 pipelined universal function units, and 2
ports to both the load/store queue and data cache. The
pipeline has seven stages. These are fetch, dispatch, issue,
register read, execute/memory, writeback, and retire. The
caches and execution latencies are the same as for the
VISA, shown in Table 1. The memory stall time can be
worse than the stall time indicated in Table 1, due to con-
tention in the memory system among multiple outstanding
memory requests. However, without contention, the worst-

case memory stall time is the same as for the VISA. A 216,
entry gshare predictor is used to predict conditional

branches [21]. A separate 216-entry table indexed the same
way as the gshare predictor is used to predict indirect
branch targets.

Simple mode uses the existing datapath of the com-
plex processor. The following alterations are needed.

® The fetch unit disables the gshare conditional branch
predictor and indirect target predictor. Instead, as spec-
ified in the VISA, forward conditional branches are
predicted not-taken, backward conditional branches are
predicted taken, and the fetch unit stalls until indirect
branches execute.

® The fetch unit still retrieves a full fetch block from the
instruction cache, as before, but the fetch block is buff-
ered and its constituent instructions are passed down
the pipeline at a maximum rate of one per cycle to
comply with the VISA.

® A pipeline stage does not accept a new instruction from
the previous stage if it already has an instruction and
the instruction is not advancing in the next cycle.

® Renaming is still performed, but only to locate source
and destination operands in the physical register file.
Logical-to-physical mappings are never changed.
Therefore, a new physical register does not need to be
popped from the freelist and assigned to the destination
operand, the rename map table does not need to be
updated with a new mapping, and the rename map
table does not need to be checkpointed at branches. In
addition to disabling these three functions, the destina-



tion operand needs to be renamed like a source operand
to locate it in the physical register file. Fortunately, a
read port already exists for the destination operand,
since the complex pipeline reads out previous map-
pings of destination operands and saves them in the
active list for freelist maintenance. In simple mode, the
previous mapping is used to rename the destination
operand.

® An instruction in the dispatch stage advances directly
to the register read stage, bypassing the issue queue.
This removes the issue stage, conforming to the VISA
pipeline stages. The instruction in the register read
stage stalls if another instruction is tying up the execu-
tion stage or if it depends on an immediately-preceding
load instruction, as specified in the VISA.

® Only one function unit is active at a time. An active
function unit does not accept new instructions while in
use, i.e., pipelining within function units is disabled.
Note that the complex processor does not require a uni-
versal function unit as specified in the VISA, since any
of its function units can be used just as long as only
one is used at a time.

® ] .oads and stores do not access the load/store queue.
Memory disambiguation is not needed because loads
and stores access the data cache in program order.
Stores issue to the data cache in the memory stage
instead of waiting until commit, since all prior
branches have already been resolved and stores are
guaranteed to be non-speculative by the time they
reach the memory stage.

® Instructions are not placed in the active list in the dis-
patch stage and they are removed from the pipeline
after the writeback stage, bypassing retirement.

Some of these alterations are not strictly required for
VISA-compliance. Specifically, the dispatch and retire
stages (renaming, checkpointing, active list and freelist
management, etc.) do not need alterations to get the same
timing as the VISA. We did so in order to be explicit. It
may also conserve power in simple mode.

The bypasses, bypass muxes, and bypass control logic
do not need modifications. Complex mode and simple
mode use the same hazard checking logic to detect when a
value needs to be bypassed from the execute, memory, or
writeback stage, to a dependent instruction as it begins
execution.

Earlier we said that memory stall time may exceed the
VISA worst-case memory stall time, due to contention
among multiple outstanding memory requests. However,
in simple mode, a load or store that misses in the cache
stalls in the memory stage, ensuring there is only one out-
standing memory request. So, worst-case memory stall
time conforms to the VISA.

3.3. Static worst-case timing analysis

Dynamic timing analysis based on experimental or
trace-driven approaches cannot be guaranteed to yield safe
bounds of the worst-case execution time (WCET), mainly
for two reasons. First, it is difficult to determine the worst-
case input of real-time tasks with moderately complex
input spaces. In most cases, exhaustive testing over the
entire input space is simply not feasible. Second, even if
the worst-case input with respect to the algorithmic prop-
erties of a program is known, hardware complexities, such
as caching and pipelining, may cause the application to
exhibit its worst-case behavior for a different input.

An alternative to dynamic timing analysis is given by
static timing analysis. Static timing analysis provides the
means to derive safe WCET estimates, i.e., the estimates
provide a guaranteed upper bound on the computation
time of a task. These bounds are a fundamental prerequi-
site for ensuring temporal correctness of applications
according to schedulability tests, such as rate-monotone
and earliest-deadline-first scheduling [19].

Static timing analysis performs the equivalent of a tra-
versal over all execution paths to determine timing infor-
mation independent of a program trace and without
tracking values or program variables. Most significantly,
loop bodies only require a few traversals to bound the
WCET for the entire loop. We capture the worst-case
behavior of architectural components along execution
paths and compose these paths for loops, functions, and,
ultimately, the entire application, to derive cycle counts
that bound the WCET [1,2,11,23,24,25,26,27,38,39,40].

Figure 1 shows the organization of the timing analysis
environment, which has been adapted to model the VISA
and the Simplescalar instruction set (PISA) [6]. The appli-
cation is compiled to assembly code using the gcc PISA
compiler. Control flow and instruction/data memory refer-
ences are extracted from the assembly code. In addition,
upper bounds on the number of iterations for loops are
provided.

Gee (PISA)
Compiler

Control Flow &
I/D-References

Source J—
Files

VISA
Specification|

WCET

Prediction

Categorization

FIGURE 1. Static timing analysis toolset.

A static cache simulator uses the control flow infor-
mation to construct a control-flow graph of the program
that consists of the call graph and the control-flow graph of
each function [2,23]. The program’s control-flow graph is



then analyzed, and caching categorizations are derived for
each instruction and data reference in the program [23].
Caching categorizations are described in Table 2. A sepa-
rate categorization is given for each loop level in which the
instruction and data references are contained, which sig-
nificantly improves the derived bounds for loop nests. Cat-
egorizations are derived from the abstract cache state,
which describes possible cache states before and after the
execution of a basic block. Abstract cache states are calcu-
lated through iterative data-flow analysis. At joins in the
control flow, abstract cache states are composed (as set
unions), thereby providing may-analysis, which yields
information about memory blocks that may be cached at
execution points. In this manner, exponential overhead of
modeling all possible cache states is avoided, and the
approach has been shown to yield sufficiently tight worst-
case bounds [26].

TABLE 2. Categorization of memory references.

always miss (m) [Reference not guaranteed to be in cache when accessed
always hit (h) |Reference guaranteed to be in cache when accessed
first miss (fm) [Reference not guaranteed to be in cache on its first ref-
erence for each loop execution, but guaranteed to be in
cache on subsequent accesses

Reference guaranteed to be in cache on its first access
for each loop execution, but not guaranteed to be in
cache on subsequent accesses

first hit (fh)

Our tool has separate modules for static I-cache and
D-cache analysis. The D-cache module has not been con-
tinuously maintained like the I-cache module. Our priority
in this paper is modifying the timing analyzer (described
next) with respect to the VISA specification and PISA
instruction set. As such, for the time being, data cache
misses are modeled by manually padding WCET based on
data cache miss information from the dynamic trace.
Future work includes re-integrating the D-cache module
into the modified static timing framework.

The next component, the timing analyzer, uses the
control flow information and loop bounds, caching catego-
rizations, and pipeline description (the VISA) to derive
timing predictions [2,11,12,39,40]. The pipeline simulator
considers the effect of structural hazards (an instruction
occupying the universal function unit for multiple cycles),
data hazards (a load-dependent instruction stalls for at
least one cycle if it immediately follows the load), branch
prediction (backward-taken/forward-not-taken), and cache
misses (derived from caching categorizations) for alterna-
tive execution paths through a loop body or a function.
Static branch prediction is easily accommodated by worst-
case analysis: the misprediction penalty is added to the
non-predicted path (not-taken path for backward branches
and taken path for forward branches) and path analysis
(below) selects the longest path as usual.

Once timings for alternate paths in a loop are
obtained, a fix-point algorithm (iterative solution that con-

verges) is employed to safely bound the time of the loop
based on the cycle counts of the loop body. Typically, the
approach requires path analysis for only a few iterations.
Given the longest path for the first iteration, the next-long-
est path is determined for the second iteration, which may
differ from the original path due to caching effects. The
lengths of these paths are monotonically decreasing due to
cache effects, and once we reach a fix-point, subsequent
loop iterations can be safely approximated by this fix-
point timing value. Note, when the longest paths of con-
secutive iterations are combined, we account for the pipe-
line overlap between the tail of the earlier path and the
head of the path that follows (the alternative - no overlap -
is tantamount to draining the pipeline between iterations).

Using this fix-point approach, the timing analyzer
then derives WCET bounds, first for each path, then for
loops, and finally for functions within the program. A tim-
ing analysis tree is constructed, where each node of the
tree corresponds to a loop or function. Nodes in the tree
are processed in a bottom-up manner. In other words, the
WCET for an outer loop / function is not calculated until
the times for all of its inner loops / called functions are
known. This means that the timing analyzer predicts the
WCET for programs by first analyzing the innermost
loops and functions before proceeding to higher level
loops and functions until it reaches the top level (e.g.,
main()). For our purposes, the timing analysis tree pro-
vides a convenient method for obtaining WCET for a spe-
cific scope, and sub-tasks in particular.

From the description in this section, it becomes more
evident that static timing analysis is non-trivial even for
simple pipelines. This provides further evidence of the
need for a VISA to build safe real-time systems from com-
plex components.

4. Exploiting slack for power savings

To exploit slack for power savings, we adapt the fre-
quency speculation technique developed by Rotenberg
[35] to our framework. Frequency speculation was initially
proposed as a way to reconcile the potentially large gap
between worst-case execution time and typical execution
time. Rotenberg conjectured that it may be possible to do
safe worst-case timing analysis of complex pipelines in the
future, but that the bounds would not be tight. The result is
that the processor runs at a much higher frequency than
needed. Frequency speculation addresses this problem, as
follows. A task is divided into multiple sub-tasks. Off-line
simulation is used to find a tight but unsafe bound on the
number of cycles for a sub-task. This bound is the basis for
a low speculative frequency. As long as sub-tasks do not
exceed their bounds, the overall deadline is met in spite of
running at an unsafe frequency. If a sub-task exceeds its



bound (called a misprediction), then the processor
switches to a higher recovery frequency. The recovery fre-
quency is based on a safe bound on the number of cycles
for remaining sub-tasks, thereby guaranteeing the overall
deadline is met in spite of the interim misprediction.

Frequency speculation successfully reduces fre-
quency. However, a crucial limitation is that safe worst-
case timing analysis of the complex microarchitecture is
still required to guarantee the deadline [35]. Yet, this may
not be possible. The VISA abstraction eliminates this
requirement. We begin by reviewing conventional fre-
quency speculation, and then adapt it to the VISA frame-
work.

4.1. Conventional frequency speculation

Frequency speculation uses two sets of execution
times for each sub-task: worst-case execution times
(WCET) and predicted execution times (PET) at all fre-
quencies. WCET is computed by static worst-case timing
analysis and PET is based on measurements (e.g., off-line
simulation [35]). WCET is always greater than PET for a
given frequency. Frequency speculation, as originally pro-
posed, is summarized by the following expression.

i-1
Y PET jofo* WCET; ; +ovhd + (EQ2)

spe

j=1
s

2 WCET, Froe <deadline
k=i+1

The first term in Equation 2 indicates that sub-tasks 1
through i-1 are not mispredicted, because their combined
execution time is bounded by the sum of their PETs at the
speculative frequency. The second term indicates that sub-
task i is mispredicted, because its execution time is
bounded by WCET at the speculative frequency, not PET.
At this point, continuing at the speculative frequency is
unsafe. To guarantee the overall deadline, the processor
switches to a higher recovery frequency and remaining
sub-tasks are not speculated, i.e., WCETs are used instead
of PETs to safely bound their combined execution time.
The third term charges a fixed overhead to change the fre-
quency/voltage and the fourth term safely bounds the exe-
cution time of remaining sub-tasks at the recovery
frequency. The sum of the four terms must fit within the
deadline. Equation 2 actually represents s different equa-
tions, since any one of the sub-tasks may be mispredicted.
A simple iterative technique solves for the lowest {f,,.,

Srec) pair that satisfies all s equations [35].

4.2. Adapting speculation to the VISA framework

We now adapt frequency speculation to our frame-
work. A key benefit of our framework is that static worst-
case timing analysis does not need to be done for the com-

plex microarchitecture. Recovery involves switching to a
safe recovery frequency and switching to the simple mode
of operation. By also switching to the simple mode, the
combined execution time of remaining sub-tasks is safely
bounded without having to analyze the complex microar-
chitecture.

The second term in Equation 2 has to be modified. It
assumes the execution time of the mispredicted sub-task i
can be safely bounded on the complex processor. This is
not the case in our framework. The watchdog counter indi-
cates that sub-task 7 is mispredicted. Attempting to finish
the mispredicted sub-task before switching to simple
mode is unsafe, because we cannot bound how much
longer it will take to finish it on the complex processor.
Yet, if the processor is switched to simple mode as soon as
the misprediction is detected, we can bound how much
longer sub-task i will take to finish: it cannot take longer
than its worst-case execution time on the VISA. Accord-
ingly, the second term in Equation 2 is split into two terms
to handle sub-task i before and after switching to simple
mode. The two terms are highlighted in bold in Equation 3
below.

i-1
Y PET, foo t PET;
j=1

+ovhd + WCET, + (EQ3)
g f.xpec L frec

N
2 WCET, Froe <deadline
k=i+1
The second, third, and fourth terms indicate that sub-
task i is mispredicted. The second term is the predicted
execution time of sub-task i at the speculative frequency.
This is the amount of time that elapses before detecting
that more time is needed to finish sub-task i. At that point,
the watchdog counter raises an exception, the frequency is
switched to the recovery frequency, and simple mode is
initiated. The third term accounts for the time needed to
switch frequency and mode. The fourth term safely
bounds the execution time of the unfinished portion of
sub-task i at the recovery frequency. The tightest bound we
can safely use is the WCET for the entire sub-task i,
because worst-case analysis is done for the sub-task as a
whole (as explained earlier in Section 2.1). Equation 3 is
simplified by merging the speculation and recovery terms
for sub-task 7 into the corresponding sum terms, as shown
in Equation 4 below.
i s
Yy PET; ;  +ovhd+ Y WCET,, s, Sdeadline (EQ4)
j=1 k=i
The same iterative method developed for frequency
speculation [35] is used to find the minimum {f,.., frec}
pair. With these two frequencies, we can set the sub-task
checkpoints and determine how many cycles each sub-task
adds to the watchdog counter, using the procedures out-
lined in Section 2. Checkpoints are set as explained in



Section 2.1, using the recovery frequency f,,. for the fre-
quency fin Equation 1. Section 2.2 explains how to com-
pute the number of cycles each sub-task adds to the
watchdog counter. In this case, the speculative frequency
Jfspec 18 used for the frequency f.

4.3. Selecting predicted execution times

Previously, off-line simulation was used to select pre-
dicted execution times (PET) of sub-tasks [35]. We use
run-time profiling in this paper.

Another memory-mapped cycle counter is provided
by the processor to measure the number of cycles for sub-
tasks. The counter increments by one every cycle. A code
snippet at the beginning of a sub-task resets the cycle
counter. A code snippet at the end of the sub-task queries
the cycle counter to obtain the actual execution time
(AET). Each sub-task records its own AET history.

We conceived of two ways to record AET history. In
the first approach, AETs are recorded in a histogram. In
the second approach, AETs of only the last N instances of
a sub-task are recorded.

AET of a mispredicted sub-task cannot be recorded
precisely because the unfinished portion is executed in
simple mode, artificially inflating AET. A solution is to
scale down the number of cycles spent in simple mode by
some factor, based on the relative performance of the com-
plex and simple modes.

PET: for sub-tasks are re-evaluated periodically based
on AET histories. In this paper, we re-evaluate PETs every
tenth time a task is executed. For the last-N approach, PET
is set to the maximum of the last 10 AETs. The histogram
approach provides a probabilistic method for targeting a
certain misprediction rate. For example, if we want to tar-
get zero mispredictions for a particular sub-task, PET is
set such that 0% of the recorded AETs are higher. If we
want to target a 10% probability of mispredicting, PET is
set such that 10% of the recorded AETsS are higher. Target-
ing a non-zero misprediction rate may result in a lower
speculative frequency. However, this must be weighed
against running in high-power recovery mode more often.

After PETs are re-evaluated, the speculative and
recovery frequencies for the task are re-computed using
the procedure outlined in Section 4.2. Likewise, new
checkpoints are set and watchdog increment values are re-
computed for each sub-task, as outlined in Section 2.

5. Experimental method

5.1. Cycle-accurate simulator

A detailed cycle-accurate simulator models the com-
plex processor, including its simple mode of operation.
Processor parameters were given in Section 3.2. The Sim-
plescalar ISA (PISA) [6] is used. Memory-mapped

counters (watchdog counter, cycle counter) and registers
(current frequency register, recovery frequency register)
are modeled in the processor simulator.

5.2. Power modeling

We integrated the Wattch power models [5] into our
simulator to measure power and energy. The models were
modified to closely match the structures in a contemporary
superscalar microarchitecture (separate physical register
file, active list, issue queue, and load/store queue) instead
of the default RUU-based microarchitecture. Support was
also added for dynamic voltage scaling. The frequency/
voltage settings used for DVS are loosely based on Intel
Xscale, which is reported to have 5 settings ranging from
150 MHz /0.76 V to 1 GHz / 1.8 V [43]. From the Xscale,
we extrapolated 37 settings ranging from 100 MHz / 0.70
Vto1GHz/1.8Vin25MHz/0.03 V increments.

Wattch power numbers are reported using perfect
(proportional) clock gating, with and without 10% standby
power [5]. In Wattch, standby power accounts for power
that may still be consumed in an otherwise completely idle
unit.

The base processor used for power comparisons is a
literal implementation of the VISA. The base case is called
simple-fixed to distinguish it from the simple mode of
operation in the complex processor. For the same fre-
quency and voltage, simple-fixed is more power-efficient
than simple mode because its structures are sized exactly
according to the VISA and it has no extraneous structures.
For example, the integer register file of simple-fixed con-
tains only 32 registers. On the other hand, simple mode
accesses a large physical register file even though only 32
integer registers are actually used, and a limited form of
renaming is still needed to locate the registers in the physi-
cal register file.

In Wattch, dimensions of the die affect a few of the
power models (e.g., die length is used to estimate the
lengths of global clock wires). Although the caches con-
sume a lot of die area in both the complex and simple-fixed
processors, we halved both die dimensions for simple-
fixed since it has fewer structures and a scalar pipeline.

Another aspect we consider is the possible frequency
advantage of simple-fixed. For the same voltage, it might
be possible to clock simple-fixed faster than the complex
processor. This aspect is difficult to ascertain. If the caches
are as critical as the rename logic, wakeup/select logic,
superscalar bypasses, etc., then simple-fixed does not have
a frequency advantage over the complex processor. In any
case, it is beyond the scope of this paper to quantify cycle
time differences. But, to model the potential frequency
advantage, we do some experiments in which simple-fixed
has 1.5 times the frequency of the complex processor for a
given voltage.



Power overhead of code snippets added before and
after sub-tasks is accounted for. These snippets advance
the watchdog counter and maintain the execution time his-
tories. Also included in the power measurement is the
DVS software that executes every tenth task. This software
re-evaluates PETs based on the execution time histories
(the last-N approach is used in all experiments), re-com-
putes the speculative and recovery frequencies, and re-
computes checkpoints and watchdog increments.

For both the complex processor and simple-fixed, if a
task completes before its deadline, the frequency is low-
ered to 100 MHz (lowest setting) to conserve power until
the deadline is reached.

5.3. Benchmarks and sub-task selection

We use six different benchmarks from the C-lab real-
time benchmark suite [44], shown in Table 3. The C-lab
benchmarks are used extensively in WCET research, in
particular because irregular program features that foil
static timing analysis are explicitly avoided, which is typi-
cal of hard real-time code. The benchmarks are compiled

with -O3 optimization enabled.
TABLE 3. C-lab benchmarks.
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Two deadlines are used for each benchmark, one tight
and one loose, shown in Table 3. The tight deadline is the
tightest that can be guaranteed with frequency speculation
(which introduces overheads), hence it typically yields fre-
quencies over 800MHz for simple-fixed. The basis for the
loose deadline is an intermediate frequency of around
600MHz for simple-fixed.

Sub-task selection is done manually. Typically, a suf-
ficient number of balanced sub-tasks can be achieved by
peeling off chunks of iterations from the outermost loop.
Code segments before and after the outermost loop are
merged into the first and last sub-tasks, respectively.
Table 3 shows the number of sub-tasks in each benchmark.

In each experiment, a task is executed 200 consecu-
tive times as if to model a periodic real-time task.

6. Results

6.1. Static timing analysis results

Table 3 shows various execution times for a single
task at 1 GHz. The “WCET” row is the worst-case execu-
tion time bound calculated by the timing analyzer. The
“simple” and “complex” rows are actual execution times
on the simple-fixed and complex processors, respectively.
The bounds from the timing analyzer are close to actual
execution times on the simple-fixed processor for all but
srt and adpcm. Excluding srt and adpcm, the timing ana-
lyzer over-estimates execution time by at most a factor of
1.16 (Table 3, row labeled “WCET/simple”).

The srt task is an implementation of the bubblesort
algorithm. There are two sources of over-estimation. First,
there are many forward branches that test whether ele-
ments should be swapped or not. Worst-case analysis
always assumes the longest control-dependent path. Sec-
ond, the sub-tasks get progressively smaller as the array
gradually becomes sorted. This is manifested as an early
exit from the loop kernel. Worst-case analysis assumes the
loop is not exited early.

As expected, the complex processor is much faster
than simple-fixed, by a factor of about 3 to 6 (Table 3, row
labeled “simple/complex”). The slack can be exploited for
low power, while VISA-compliance ensures safety.

6.2. Safe operation with low power

We now compare the power of the VISA-compliant
complex processor and the explicitly-safe processor (sim-
ple-fixed). Note that simple-fixed can also benefit from fre-
quency speculation, in particular for the three benchmarks
for which WCET is inflated (adpcm, fft, srt). On the other
hand, for the three benchmarks for which WCET is tight
(cnt, Ims, mm), frequency speculation actually increases
frequency with respect to not using frequency speculation
because misprediction overhead must be budgeted. There-
fore, frequency speculation is only used by the simple-
fixed processor when it reduces frequency.

Figure 2 shows the power savings of the complex pro-
cessor relative to simple-fixed, for both tight (T) and loose
(L) deadlines. As expected, the complex processor saves
power, ranging from 43-61% less power than simple-fixed
for tight deadlines and no standby power. (Savings are
even higher with 10% standby power.) This is due to the
fact that simple-fixed runs between 800 and 900 MHz
whereas the complex processor runs between 150 and 325
MHz, depending on the benchmark. Also, the complex
processor spends no time in simple mode because there is
little variation in execution time which means PETs are
accurate and no checkpoints are missed. Power savings are
less for the loose deadline than the tight deadline, but still
substantial, ranging from 22-48% without standby power.



As deadlines are loosened, power decreases more rapidly
for simple-fixed than the complex processor, because sim-
ple-fixed requires a much higher frequency to begin with.
For the loose deadline, simple-fixed runs between 375 and
600 MHz and the complex processor runs between 125
and 225 MHz, depending on the benchmark.
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FIGURE 2. Power savings of the VISA-compliant
complex processor relative to simple-fixed.

Figure 3 shows results for the case in which simple-
fixed can run at 1.5 times the frequency of the complex
processor for a given voltage. The tight deadline is used.
As expected, power savings are less than before, but still
substantial. The complex processor consumes 10-38% less
power than simple-fixed (without standby power).
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FIGURE 3. Comparison in which simple-fixed
processor has 1.5x frequency.

Finally, results with 10%, 20%, and 30% of the tasks
mispredicted are shown in Figure 4. The tight deadline is
used. To induce missed checkpoints, we flushed the caches
and branch predictor at the beginning of 20, 40, or 60 of
the tasks (out of 200 tasks total). For the same deadlines
used previously, checkpoints were missed in only three of
the benchmarks using this method (cnt, Ims, srt). (There
was residual slack in the other three benchmarks.) As seen,
the decline in power savings is proportional to the mispre-
diction rate, since the complex processor executes mispre-

dicted tasks almost entirely in simple mode. Note that even
though mispredictions occur, all deadlines are safely met.
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FIGURE 4. Power savings of the VISA-compliant
complex processor with mispredicted tasks.

7. Related work

Simplicity is often cited as a prerequisite for safe real-
time systems [e.g.,4,8,28,32]. It has also been noted that
complex architectural features are allowable as long as
they are disabled based on analyzability requirements
[4,9]. While our VISA approach also involves disabling
complexity, this aspect is rarely used because the complex
pipeline is usually safe although it cannot be statically
proven. Timeliness is verified dynamically which allows
critical tasks to run safely on what are considered to be
unsafe components. As pointed out earlier, the dynamic
verification aspect is related to the DIVA verification para-
digm [3], except that we dynamically verify timeliness
instead of functionality. As such, the simple mode of oper-
ation is a subset of the complex pipeline rather than a ded-
icated processor.

Over the past decade, various research groups have
investigated static approaches for bounding WCET of real-
time programs. Static analysis has been extended from
unoptimized programs on simple CISC processors
[10,29,30,33] to optimized programs on pipelined RISC
processors [12,18,42], and from uncached architectures to
architectures with instruction caches [2,14,16,26] and data
caches [11,15,17,34]. Lundqvist and Stenstrom modified
an architectural simulator to determine WCET bounds by
considering alternate execution paths in parallel (instead
of following a trace) combined with pruning techniques to
reduce the search space [20]. We fully leverage all of the
above work with respect to deriving WCET for tasks on
the hypothetical simple pipeline. While we expect contin-
ued success in extending timing analysis to increasingly
complex processors, this effort will always lag behind
microprocessor technology. The VISA framework may
expedite the use of complex processors in safe systems, at
the same time fully leveraging the significant investment
in timing analysis tools.



Recently, a method has been proposed to bound the
number of branch mispredictions for two-level dynamic
predictors [22]. Even if analyzing complex pipelines
remains intractable, techniques for bounding mispredic-
tions are very useful in the context of a VISA.

Hughes, Srinivasan, and Adve [13] explore the
energy-savings potential of architectural adaptations and
DVS, separately and in combination. One of their key
results is that complex microarchitectures are often more
energy-efficient than simpler microarchitectures in the
context of DVS, because the same performance can be
achieved with lower frequency. Their work is a motivating
factor for exploiting slack for power savings in this paper.

We borrowed and adapted the frequency speculation
technique proposed by Rotenberg [35] to achieve power
savings. A key limitation of that work is that static worst-
case timing analysis is still required for the complex pro-
cessor. Our VISA framework is an ideal match to alleviate
this requirement. With our simple adaptation of the algo-
rithm, worst-case analysis of the complex processor is no
longer needed.

VLIW and delay slots are other examples of architect-
ing pipeline timing.

8. Summary and future work

Worst-case timing analysis is a key component in safe
real-time systems. Due to analyzability requirements,
complex processors are either excluded altogether or their
complex features are disabled during the execution of hard
real-time tasks. This has implications in terms of expand-
ing the scope of embedded systems in the future.

We proposed a novel approach for reconciling the
complexity/safety trade-off that leverages the significant
investment in static worst-case timing analysis, but, at the
same time, represents a departure from this direct
approach to guaranteeing safety. Namely, worst-case tim-
ing analysis is decoupled from the underlying processor
implementation through a virtual simple architecture
(VISA). The VISA is the basis for worst-case timing anal-
ysis but the underlying implementation can be arbitrarily
complex. The key innovation is dynamically and continu-
ously monitoring progress of a task on the unsafe pipeline,
thereby confirming that the unsafe pipeline is as timely as
the hypothetical simple pipeline (the VISA), as bounded
by worst-case timing analysis of the VISA proxy. Sub-
tasks provide a mechanism for gauging progress. If sub-
tasks meet their checkpoints (interim deadlines based on
latest allowable completion time on the hypothetical sim-
ple pipeline), then overall task safety is ensured in spite of
executing on an unsafe pipeline. If any sub-task misses its
checkpoint, the complex pipeline switches to a simple
mode of operation that directly implements the VISA,
safely bounding execution time of remaining sub-tasks.

The VISA approach provides a general framework for
safe operation on unsafe processors, and sets up various
opportunities for exploiting higher performance. We
showed that the high ILP of the complex processor can be
leveraged to lower frequency and voltage, resulting in
power savings of 43% to 61% compared to an explicitly-
safe pipeline. In future work, we plan to leverage high ILP
for higher throughput via simultaneous multithreading.
The idea is to exploit newly-created slack in the schedule
of the critical task by simultaneously executing other soft
real-time and non-real-time tasks. The VISA framework
ensures overall safety. Usually, the critical task will have
sufficient resources to meet its checkpoints, otherwise the
simple mode of operation idles non-critical tasks (relin-
quishing bandwidth without swapping them out of the pro-
cessor). Embedded systems tend to have a lot of
concurrency, so enabling the unrestricted use of arbitrarily
complex SMT processors in safe real-time systems has
major potential.

Crafting a VISA that is easily accommodated within a
wide variety of microarchitectures is an area of future
research. We will also investigate other methods for ensur-
ing VISA-compliance that do not require a simple mode of
operation, such as the notion of compliance-by-design.
Finally, the VISA abstraction may have broader implica-
tions with further research. Parameterized WCET infor-
mation could be appended to a task’s binary, and the task
will execute safely within any system that complies with
the VISA for which WCET was calculated — extending
the notion of binary compatibility to include timing safety.
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