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Abstract

As quantum computing moves closer to reality the need for
basic architectural studies becomes more pressing. Quan-
tum wires, which transport quantum data, will be a fun-
damental component in all anticipated silicon quantum ar-
chitectures. In this paper, we introduce a quantum wire ar-
chitecture based upon quantum teleportation. We compare
this teleportation channel with the traditional approach to
transporting quantum data, which we refer to as the swap-
ping channel. We characterize the latency and bandwidth
of these two alternatives in a device-independent way and
describe how the advanced architecture of the teleporta-
tion channel overcomes a basic limit to the maximum com-
munication distance of the swapping channel. In addition,
we discover a fundamental tension between the scale of
quantum effects and the scale of the classical logic needed
to control them. This “pitch-matching” problem imposes
constraints on minimum wire lengths and wire intersec-
tions, which in turn imply a sparsely connected architec-
ture of coarse-grained quantum computational elements.
This is in direct contrast to the “sea of gates” architectures
presently assumed by most quantum computing studies.

1 Introduction

Many important problems seem to require exponential re-
sources on a classical computer. Quantum computers can
solve some of these problems with polynomial resources,
leading a great number of researchers to explore quantum
information processing technologies [28, 31, 13, 15, 41, 9,
17, 42]. Early-stage quantum computers have involved a
small number of components (less than 10) and have uti-
lized molecules in solution and trapped ions [47, 25, 35].
To exploit our tremendous historical investment in silicon,
however, solid-state silicon quantum computers are desir-
able. Promising proposals along these lines have begun
to appear [22, 50]; these even include ideas that merge
atomic physics and silicon micromachining[24]. However,
as the number of components grows, quantum computing
systems will begin to require the same level of engineer-
ing as current computing systems. The same process we as
computer architects do for classical silicon-based systems,
of building abstractions and optimizing structure, needs to
be applied to quantum technologies.

Even at this early stage, a general architectural study of
quantum computation is important. By investigating the
potential costs and fundamental challenges of quantum de-
vices, we can help illuminate previously unforeseen obsta-
cles of constructing a scalable quantum processor. We may
also anticipate and specify important subsystems and tech-
niques common to all implementations. Identifying these
practical challenges early will help focus the ongoing de-
velopment of fabrication and device technology. Develop-
ing abstractions for quantum technology and basic archi-
tectural concepts for it has proven to be quite fascinating.

This paper is about a seemingly mundane subject: a
wire. To be clear, we define a wire in the quantum world
as a mechanism for moving quantum data from one spa-
tial location to another. Any optimistic view of the future
of quantum computing includes enough interacting devices
to introduce a spatial extent to the layout of those devices.
This spatial dimension, in turn, introduces a need for wires.
As we will show, a quantum wire is a very different crea-
ture from a classical one. One of the most important dis-
tinctions between quantum and classical wires arises from
the fact that quantum information (composed of quantum
bits or qubits) cannot be copied [31]. Instead, it must be
transported from source to destination – destroying the in-
formation at the source and re-creating it at the destination.
This fact changes our normal intuitions about the use of
buffers to drive wires, repeaters to amplify signals, and fan-
out to distribute information. In particular, all wires must
be point-to-point and can only protect information rather
that amplifying it.

Quantum information can be encoded in a number of
ways, such as the spin component of basic particles like
protons or electrons, or in the polarization of photons.
Thus, there are several ways in which we might transfer
information. First, we might physically transport particles
from one point to another. In a large solid-state system, the
logical candidate for information carriers would be elec-
trons, since they are highly mobile. Unfortunately, elec-
trons are also highly interactive with the environment and
hence subject to corruption of their quantum state, a pro-
cess known as decoherence. Second, we might consider
passing information along a line of quantum devices. This
swapping channel is, in fact, a viable option for short dis-
tances (as discussed in Section 4), but tends to accumu-
late errors over long distances. In some ways, this solution
resembles a quantum-cellular automata (QCA) [32] wire,
except without duplication of data capabilities.
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Over longer distances, we need something fundamen-
tally different. We propose to use a technique called tele-
portation [7] and to call the resulting long-distance quan-
tum wire a teleportation channel to distinguish from a
swapping channel. Teleportation uses an unusual quantum
property called entanglement, which allows quantum bits
to interact instantaneously at a distance1. To understand
the mathematical details and practical implications of tele-
portation, we will need to cover some background and prior
art before returning to the subject in Section 2.3.

In the remainder of this paper, we will quantify the ad-
vantages and disadvantages of swapping channels versus
teleportation channels. Realistic concerns such as quan-
tum error-correction [43] for protecting information data
errors and entropy exchange [37] for generating zeros and
entangled pairs, greatly complicate things. Also important
is an often-neglected facet of quantum computing systems
— the fact that they depend upon classical signals for con-
trol of quantum operations. We will explore the fundamen-
tal tension between the scale at which quantum effects oc-
cur and the scale at which classical signals can be reliably
routed. The architectural implications of this tension man-
ifest themselves as a pitch-matching problem.

Overall, the contributions of this research are:

• We define the basic building blocks required to con-
struct long and short quantum wires.

• We discover that the interface between classical con-
trol and quantum devices requires minimum wire
lengths between fanout sites. We generalize these lim-
itations in terms of the ratio of quantum and classical
devices in a given technology and discuss the archi-
tectural implications of these limitations.

• We find that the latency and bandwidth of swapping
channels are extremely sensitive to the length of the
channel, but that teleportation channels do not exhibit
the same sensitivity.

The remainder of this paper continues with a brief in-
troduction to quantum computing in Sections 2 and 3. Sec-
tion 4 introduces the swapping channels that can be con-
structed from solid-state technologies and presents an anal-
ysis of the scalability problems with these channels. Sec-
tion 5 presents teleportation channels, our architectural so-
lution to scalable quantum data transport. Section 6 dis-
cusses our future work in system bandwidth issues and in
Section 7 we conclude.

2 Quantum Computing

We begin with a brief overview of the basic terminology
and constructs of quantum computation. Our purpose is to

1Although this property sounds suspiciously like “faster-than-light”
communication, we shall see that the interaction is ambiguous without the
additional transmission of two bits of classical information, which must
travel at a subluminal velocity.

introduce the language necessary for subsequent sections;
in-depth treatments of these subjects are available in the
literature [31].

2.1 Quantum states: qubits

The state of a classical digital system X can be specified
by a binary string x composed of a number of bits xi, each
of which uniquely characterizes one elementary piece of
the system. For n bits, there are 2n unique possible states.
The state of an analogous quantum system ψ is described
by a complex-valued vector |ψ〉 =

∑
x cx|x〉, a weighted

combination (a “superposition”) of the basis vectors |x〉,
where the probability amplitudes cx are complex numbers
whose modulus squared sums to one, i.e.

∑
x |cx|2 = 1.

A single quantum bit is commonly referred to as a qubit
and is described by the equation |ψ〉 = c0|0〉 + c1|1〉.
Such a qubit might be represented, for example, by the
nuclear spin of an atom. Legal qubit states include pure
states, such as |0〉 and |1〉, and states in superposition,
such as 1√

2
|0〉 + 1√

2
|1〉. Also valid are 1√

2
(|0〉 − |1〉) and

1√
2
(|0〉 + i|1〉), which are other equal superpositions, but

with different relative phases between the basis states.
Larger quantum systems can be composed from multi-

ple qubits. For example, |00〉 is a valid two-qubit state, and
so is 1

2 |00〉+ 1
2 |01〉− 1√

2
|11〉. An n-qubit state is described

by 2n basis vectors, each with its own complex probability
amplitude, so an n-qubit system can exist in an arbitrary
superposition of the possible 2n classical states of the sys-
tem. To compose multiple independent quantum systems
together, the tensor product operator ⊗ is used, e.g., a⊗ b.

Unlike the classical case, however, where the total can
be completely characterized by its parts, the state of larger
quantum systems cannot be described simply by giving the
individual states of its component qubits. This property,
known as entanglement, is best illustrated with an exam-
ple: there exist no single qubit states |ψA〉 and |ψB〉 such
that the two-qubit state |Ψ〉 = 1√

2
|00〉+ 1√

2
|11〉 can be ex-

pressed as the composite state |ψA〉 ⊗ |ψB〉. Entanglement
does not exist classically, and the unique properties of en-
tangled states are widely believed to be at the heart of what
gives quantum computers their computational powers.

Another non-intuitive property of quantum states is their
behavior when measured. Upon observation, a quantum
state collapses into one of a number of possible classi-
cal states, the set of possibilities being determined by the
measurement apparatus. Specifically, it is conventional (in
the quantum computation and quantum information com-
munity) to adopt the computational basis states |0 . . . 00〉,
|0 . . . 01〉, |0 . . . 10〉, . . ., |1 . . . 11〉, and choose measure-
ments to collapse states into this basis. The probability that
a particular basis state x results is |cx|2, the modulus square
of the probability amplitude for the basis vector x. For ex-
ample, when 1√

2
(|0〉+i|1〉) is measured, the outcome is |0〉

or |1〉 with equal probability. Similarly, when the state |Ψ〉,
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Figure 1. Basic Quantum Gates and their matrix representations.

above, is measured, the result is either |00〉 or |11〉, with
equal probability; the outcomes |01〉 or |10〉 never occur.

Due to the probabilistic nature of measurement, design-
ers of quantum algorithms must be very clever about how to
get useful answers out of their computations. One method
is to iteratively skew probability amplitudes in a qubit vec-
tor until the desired value is near |1〉 and the other values
are close to |0〉. This technique is used in Grover’s algo-
rithm for searching an unordered list of n elements [18].
The algorithm goes through

√
n iterations, at which point

a qubit vector representing the keys can be measured. The
desired element is found with high probability.

Another option in a quantum algorithm is to arrange the
computation such that it does not matter which of many
random results is measured from a qubit vector. This
method is used in Shor’s algorithm for factoring the prod-
uct of two large primes [40], which is built upon the quan-
tum Fourier transform, an exponentially fast version of the
classical discrete Fourier transform. Essentially, the factor-
ization is encoded within the period of a set of highly prob-
able values, from which the desired result can be obtained
no matter what value is measured. Since the tractability
of factoring the product of two large primes is the ba-
sis of nearly all public-key cryptographic security systems,
Shor’s algorithm has received much attention.

For the interested reader, quantum algorithms for a vari-
ety of problems other than search and factoring have been
developed: adiabatic solution of optimization problems
(the quantum analogue of simulated annealing) [11], pre-
cise clock synchronization (using EPR pairs to synchronize
GPS satellites) [21, 12], quantum key distribution (prov-
ably secure distribution of classical cryptographic keys)
[6], and very recently, Gauss sums [46], testing of matrix
multiplication (inO(n1.75) steps versus theO(n2) required
classically) [20], and Pell’s equation [19].

2.2 Quantum gates and circuits

Just as bits can be flipped using a NOT gate, and interact
with each other via multi-bit logic gates such as the XOR,
qubits can be operated on by gates such as those shown in
Figure 1. In the quantum realm, the role of the classical
truth table is played by a unitary operator U . The output

|a

|c

H
source

target
|a

|b

ZX

EPR
Pair
(CAT)

CNOT

Figure 2. Quantum Teleportation of state |a〉 over dis-
tance. First, entangled qubits |b〉 and |c〉 are exchanged.
Then, |a〉 is combined with |b〉 after which measure-
ments produce two classical bits of information (double
lines). After transport, these bits are used to manipu-
late |c〉 to regenerate state |a〉 at destination.

state vector is the operator applied to the input vector; that
is, |ψout〉 = U |ψin〉. The X gate is analogous to the clas-
sical NOT gate: it flips |0〉 and |1〉. The Z gate is some-
thing new to the quantum realm: it flips the phase of the
|1〉 state, thus exchanging 1√

2
(|0〉+ |1〉) and 1√

2
(|0〉− |1〉).

The Hadamard gateH is another unusual single-qubit gate:
it turns |0〉 into 1√

2
(|0〉 + |1〉) and |1〉 into 1√

2
(|0〉 − |1〉);

it can be thought of as performing a radix-2 Fourier trans-
form. Another important single-qubit gate, T , leaves |0〉
unchanged but multiplies |1〉 by

√
i. And analogous to

the classical XOR gate is the quantum controlled-NOT (or
CNOT) gate.

Together, these gates form a universal set: just as any
Boolean circuit can be composed from AND and NOT gates,
any polynomially describable multi-qubit quantum trans-
form U can be efficiently approximated by composing
these quantum gates into a circuit. In addition to these
universal gates, one more important operator is the SWAP

gate. SWAP can be implemented as three CNOTs. However,
SWAP is often available as a basic gate for a given tech-
nology, which is a valuable thing, given its importance to
quantum communication.

In quantum circuits, time goes from left to right, where
single lines represent qubits, and double lines represent
classical bits. A meter is used to represent measurement.
By convention, black dots represent control terminals for
quantum-controlled gates. The ⊕ symbol is shorthand for
the target qubit of the CNOT gate (Figure 2).
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2.3 Quantum teleportation

Quantum teleportation is the re-creation of a quantum state
at a distance. Contrary to its science fiction counterpart,
quantum teleportation is not instantaneous transmission of
information. Rather, it uses an entangled EPR pair, |Ψ〉 =
1√
2
(|00〉 + |11〉) [4].
Figure 2 gives an overview of the teleportation process.

We start by generating an EPR pair. We separate the pair,
keeping one qubit, |b〉, at the source and transporting the
other, |c〉, to the destination. When we want to send a
qubit, |a〉, we first interact |a〉 with |b〉 using a CNOT gate.
We then measure |a〉 and |b〉 in the computational basis,
and send the two one-bit classical results to the destination,
and use those results to re-create the correct phase and am-
plitude in |c〉 such that it takes on the original state of |a〉.
The re-creation of phase and amplitude is done withX and
Z gates, whose application is contingent on the outcome of
the measurements of |a〉 and |b〉. Intuitively, since |c〉 has a
special relationship with |b〉, interacting |a〉 with |b〉 makes
|c〉 resemble |a〉, modulo a phase and/or amplitude error.
The two measurements allow us to correct these errors and
re-create |a〉 at the destination. Note that the original state
of |a〉 is destroyed when we take our two measurements.
This is consistent with the “no-cloning” theorem, which
states that a quantum state cannot be copied.

Why bother with teleportation when we end up trans-
porting |c〉 anyway? Why not just transport |a〉 directly?
First, we can pre-communicate EPR pairs with extensive
pipelining without stalling computations. Second, it is eas-
ier to transport EPR pairs than real data. Since |b〉 and |c〉
have known properties, we can employ a specialized pro-
cedure known as purification to turn a collection of pairs
partially damaged from transport into a smaller collection
of asymptotically perfect pairs. Third, transmitting the two
classical bits resulting from the measurements is more re-
liable than transmitting quantum data.

3 Solid-State Technologies

With some basics of quantum operations in mind, we turn
our attention to the technologies available to implement
these operations. Experimentalists have examined several
technologies for quantum computation, including Joseph-
son junctions [30, 50], trapped ions [29], photons [45],
bulk spin NMR [48], and phosphorus impurities in sili-
con [22]. Of these proposals, only those building on a
solid-state platform are expected to provide the scalabil-
ity required to achieve a useful computational substrate.
The Kane [22, 42] schemes of phosphorus in silicon builds
upon modern semiconductor fabrication and transistor de-
sign, drawing upon understood physical properties. To fo-
cus the presentation in this paper we begin our calculations
with the Kane proposal, and then generalize to consider
limits imposed by any solid-state technology. This quan-
tum analysis proceeds in precisely the same manner that

A S S A

20nm

20nm 15-100nm

Ground plane

Classical control gates

P
31
+

P
31
+

Figure 3. The basic quantum bit technology pro-
posed by Kane [42]. Qubits are embodied by the
nuclear spin of a phosphorus atom coupled with
an electron embedded in silicon under high mag-
netic field at low temperature.

it would in the classical domain—by characterizing device
technologies with a few underlying parameters.

Kane proposes that the nuclear spin of a phosphorus
atom coupled with an electron embedded in silicon under
a high magnetic field and low temperature can be used as a
quantum bit, much as nuclear spins in molecules have been
shown to be good quantum bits for quantum computation
with nuclear magnetic resonance [15]. This quantum bit
is classically controlled by a local electric field. The pro-
cess is illustrated in Figure 3. Shown are two phosphorus
atoms spaced 15-100 nm apart. This inter-qubit spacing is
currently a topic of debate within the physics community,
with conservative estimates of 15nm, and more aggressive
estimations of 100nm. What is being traded off is noise im-
munity versus difficulty of manufacturing. For our study,
we will use a figure (60nm) that lies between these two. We
parameterize our work, however, to generalize for changes
in the underlying technology.

Twenty nanometers above the phosphorus atoms lie
three classical wires that are spaced 20 nm apart. By ap-
plying precisely timed pulses to these electrodes Kane de-
scribes how arbitrary one- and two-qubit quantum gates
can be realized. Four different sets of pulse signals must
be routed to each electrode to implement a universal set of
quantum operations. The details of the pulses and quantum
mechanics of this technique are beyond the scope of this
paper and are described in [42].

The Kane proposal, like all quantum computing pro-
posals, uses classical signals to control the timing and se-
quence of operations. All known quantum algorithms, in-
cluding basic error correction for quantum data, require the
determinism and reliability of classical control. Without ef-
ficient classical control, fundamental results demonstrating
the feasibility of quantum computation do not apply (such
as the Threshold Theorem used in Section 4.2.3).

Quantum computing systems display a characteristic
tension between computation and communication. Funda-
mentally, technologies that transport data well do so be-
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Figure 4. Short wires are constructed from suc-
cessive qubits (phosphorus atoms). Information
in the quantum data path is swapped from atom to
atom by classical control. This localized control
produces swapping behavior through a repeated
series of three back-to-back CNOT operations.

Figure 5. Quantization of electron states overcome
by increasing the physical dimension of the con-
trol lines beyond 100 nm. The states propagate
quantum-mechanically downward through access
vias to control the magnetic field around the phos-
phorus atoms.

cause they are resistant to interaction with the environ-
ment or other quantum bits; on the other hand technologies
that compute well do so precisely because they do inter-
act. Thus, computation and communication are somewhat
at odds.

In particular, atomic-based solid-state technologies are
good at providing scalable computation but complicate
communication, because their information carriers have
nonzero mass. The Kane proposal, for example, repre-
sents a quantum bit with the nuclear spin of a phosphorus
atom implanted in silicon. The phosphorus atom does not
move, thus transporting this state to another part of the chip
is laborious and requires carefully controlled swapping
of the states of neighboring atoms. In contrast, photon-
based proposals that use polarization to represent quantum
states can easily transport data over long distances through
fiber. It is very difficult, however, to get photons to in-
teract and achieve any useful computation. Further, trans-
ferring quantum states between atomic and photon-based
technologies is extremely difficult.

Optimizing these tensions, between communication and
computation, between classical control and quantum ef-
fects, imply a structure to quantum systems. Rather than
cover the gamut of quantum architecture we instead will fo-
cus on a very crucial architectural concept: a wire. Specif-
ically, we begin by examining a short wire.

4 Short Wires

We begin by examining a “short” quantum wire. Sec-
tion 4.2 shows that the basic short wire does not scale well,
hence a more scalable approach appears Section 5.

In solid-state technologies, a line of qubits is one plau-
sible approach to transporting quantum data. Figure 4 pro-

vides a schematic of a swapping channel in which informa-
tion is progressively swapped between pairs of qubits in the
quantum datapath—somewhat like a bubble sort2. Swap-
ping channels require active control from classical logic,
illustrated by the classical control plane of Figure 4.

4.1 Technical Challenges

As simple as it might appear, a quantum swapping channel
presents significant technical challenges. The first hurdle
is the placement of the phosphorus atoms themselves. The
leading work in this area has involved precise ion implan-
tation through masks, and manipulation of single atoms on
the surface of silicon [23]. For applications where substan-
tial monetary investment is not an issue, slowly placing a
few hundred thousand phosphorus atoms with a probe de-
vice [16] may be possible. For bulk manufacturing the ad-
vancement of DNA or other chemical self-assembly tech-
niques [1] may need to be developed. Note, while new
technologies may be developed to enable precise place-
ment, the key for our work is only the spacing (60 nm)
of the phosphorus atoms themselves, and the number of
control lines (3) per qubit. The relative scale of quantum
interaction and the classical control of these interactions is
what will lead our analysis to the fundamental constraints
on quantum computing architectures.

A second challenge is the scale of classical control.
Each control line into the quantum datapath is roughly 10
nm in width. While such wires are difficult to fabricate, we
expect that either electron beam lithography [3], or phase-
shifted masks [36] will make such scales possible.

2For technologies that do not have an intrinsic swap operation, one can
be implemented by three controlled-not gates performed in succession.
This is a widely known result in the quantum computing field and we
refer the interested reader to [31].
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Figure 6. A linear row of quantum bits: In this figure (not drawn to scale) we depict access control for a
line of quantum bits. On the left, we depict a “top down” view. On the right is a vertical cross-section
which more clearly depicts the narrow-tipped control lines that quickly expand to classical dimensions.

A remaining challenge is the temperature of the device.
In order for the quantum bits to remain stable for a reason-
able period of time the device must be cooled to less than
one degree Kelvin. The cooling itself is straightforward,
but the effect of the cooling on the classical logic is a prob-
lem. Two issues arise: first conventional transistors stop
working as the electrons become trapped near their dopant
atoms, which fail to ionize. Second, the 10 nm classical
control lines begin to exhibit quantum-mechanical behav-
ior such as conductance quantization and interference from
ballistic transport [14].

Fortunately, many researchers are already working on
low-temperature transistors. For instance, single-electron
transistors (SET’s) [27] are the focus of intense research
due to their high density and low power properties. SET’s,
however, have been problematic for conventional comput-
ing because they are sensitive to noise and operate best at
low temperatures. For quantum computing, this predilec-
tion for low temperatures is exactly what is needed! Tucker
and Shen describe this complementary relationship and
propose several fabrication methods in [44].

On the other hand, the quantum-mechanical behavior of
the control lines presents a subtle challenge that has been
mostly ignored to-date. At low temperatures, and in narrow
wires, the quantum nature of electrons begins to dominate
over normal classical behavior. For example, in 100 nm
wide polysilicon wires at 100 millikelvin, electrons propa-
gate ballistically like waves, through only one conductance
channel, which has an impedance given by the quantum of
resistance, h/e2 ≈ 25 kΩ. Impedance mismatches to these
and similar metallic wires make it impossible to properly
drive the AC current necessary to perform qubit operations.

Avoiding such limitations mandates a geometric design
constraint: narrow wires must be short and locally driven
by nearby wide wires. Using 100 nm as a rule of thumb3

for a minimum metallic wire width sufficient to avoid un-
desired quantum behavior at these low temperatures, we

3This value is based on typical electron mean free path distances, given
known scattering rates and the electron Fermi wavelength in metals.

Figure 7. Intersection of quantum bits. In this sim-
plified view, we depict a four-way intersection of
quantum bits. An diamond shaped junction is also
needed to densely pack junction cells.

obtain a control gate structure such as that depicted in Fig-
ure 5. Here, wide wires terminate in 10 nm vias that act as
local gates above individual phosphorus atoms.

Producing a line of quantum bits that overcomes all of
the above challenges is possible. We illustrate a design in
Figure 6. Note how access lines quickly taper into upper
layers of metal and into control areas of a classical scale.
These control areas can then be routed to access transistors
that can gate on and off the frequencies (in the 10’s to 100’s
of MHz) required to apply specific quantum gates.

Of course, any solution for data transport must also sup-
port routing. Routing is not possible without fanout pro-
vided by wire intersections. We can extend our linear row
of quantum bits to a four-way intersection capable of sup-
porting sparsely intersecting topologies of quantum bits.
We illustrate the quantum intersection in Figure 7. This
configuration is similar to Figure 6 except that the intersec-
tion creates a more challenging tapering.
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4.2 Analysis

We now analyze this short wire to derive two important
architectural constraints: the classical-quantum interface
boundary and the latency/bandwidth characteristics. We
strive to achieve a loose lower bound on these constraints
for a given quantum device technology. While future quan-
tum technologies may have different precise numbers, it
is almost certain they will continue to be classically con-
trolled, and thus also obey similar constraints based upon
this classical-quantum interface.

4.2.1 Pitch Matching

Our first constraint is derived from the need to have classi-
cal control of our quantum operations. As previously dis-
cussed, we need a minimum wire width to avoid quantum
effects in our classical control lines. Referring back to Fig-
ure 7, we can see that each quadrant of our four-way inter-
section will need to be some minimum size to accommo-
date access to our control signals.

Recall from Figure 3 that each qubit has three associated
control signals (one A and two S gates). Each of these con-
trol lines must expand from a thin 10 nm tip into a 100 nm
access point in an upper metal layer to avoid charge quan-
tization effects at low temperatures (Figure 5). Given this
structure, it is possible to analytically derive the minimum
width of a line qubits and its control lines, as well as the
size of a four-way intersection. For this minimum size cal-
culation, we assume all classical control lines are routed in
parallel, albeit spread across the various metal layers. This
parallel nature makes this calculation trivial under nor-
mal circumstances (sufficiently “large” lithographic feature
size λc), with the minimum line segment being equal in
length to twice the classical pitching, 150nm in our case,
and the junction size equal to four times the classical pitch-
ing, 400nm, in size. However, we illustrate the detailed
computation to make the description of the generalization
clearer. We begin with a line of qubits.

Let N be the number of qubits along the line segment.
Since there are three gates (an A and two S lines) we need
to fit in 3N classical access points of 100 nm in dimension
each, in the line width. We accomplish this by offsetting
the access points in the x and y dimensions (Figure 6) by
20nm. The total size of these offsets will be 100nm divided
by the qubit spacing 60nm times the number of control
lines 3 per qubit, times the offset distance of 20nm. This
number 100nm/60nm× 3 × 20nm = 100nm is divided
by 2 because the access lines lines are spread out on each
side of the wire. Hence, the minimum line segment will
be 100 + 50nm. Shorter line segments within larger, more
specialized cells are possible.

Turning our attention to an intersection (Figure 7), let
N be the number of qubits along each “spoke” of the junc-
tion. We need to fit 3N classical access points in a space
of (60 nm × N)2, where each access point is at least
100 nm on a side. As with the case of a linear row of

bits, a 20 nm x and y shift in access point positioning be-
tween layers is used for via access. Starting with a sin-
gle access pad of 100nm, we must fit 100nm/60nm× 3
additional pads shifted in x and y within the single quad-
rant of our intersection. This leads to a quadrant size of
100 + 100nm/60nm× 3 × 20nm = 200nm. Therefore,
the minimum size four way intersection is 8 (rounding up)
qubits in each direction.

In this construction we have assumed a densely packed
edge to each spoke, however, this is easily “unpacked” with
a specialized line segment, or by joining to another junction
that is constructed inversely from that shown in Figure 7.
Obviously, the specific sizes will vary according to tech-
nological parameters and assumptions about control logic,
but this calculation illustrates the approximate effect of
what appears to be a fundamental tension between quantum
operations and the classical signals that control them. A
minimum intersection size implies minimum wire lengths,
which imply a minimum size for computation units.

4.2.2 Technology Independent Limits

Thus far we have focused our discussion on a particular
quantum device technology. This has been useful to make
the calculations concrete. Nevertheless, it is useful to gen-
eralize these calculations to future quantum device tech-
nologies. Therefore we parameterize our discussion based
on a few device characteristics:

Assuming two-dimensional devices (i.e. not a cube of
quantum bits), let pc be the classical pitching required, and
pq the quantum one. Furthermore, let R be the ratio pc/pq

of the classical to quantum distance for the device technol-
ogy,m be the number of classical control lines required per
quantum bit, and finally λc be the feature size of the litho-
graphic technology. We use two separate variables pc and
λc to characterize the “classical” technology because they
arise from different physical constraints. The parameter λc

comes from the lithographic feature size, while pc (which is
a function of λc) is related to the charge quantization effect
of electrons in gold. With the Kane technology we assume
a spacing pq of 60nm between qubits, three control lines
per bit of 100nm (pc) each, and a λc of 5nm. We can use
these to generalize our pitch matching equations. Here we
find that the minimum line segment is simply equivalent to
R(1 + 2λcm/pq) qubits in length.

Examining our junction structure (Figure 7), we note
that it is simply four line segments, similar to those cal-
culated above, except that the control lines must be on
the same side. Therefore the minimum crossing size of
quantum bits in a two-dimensional device is of size ≈
2R(1 + 4λcm/pq) on a side.

4.2.3 Latency and Bandwidth

Calculating the latency and bandwidth of quantum wires
is similar but slightly different than it is for classical sys-
tems. The primary difficulty is decoherence—i.e. quan-
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tum noise. Unlike classical systems, if you want to per-
form a quantum computation, you cannot simply re-send
quantum data when an error is detected. The “no-cloning”
theorem [31], according to which quantum states cannot
be perfectly copied, prohibits transmission by duplication,
thereby making it impossible to re-transmit quantum data
if it is corrupted. Once the data is destroyed by the noisy
channel, you have to start the entire computation over. To
avoid this loss, quantum data is encoded in a sufficiently
strong error-correcting code that, with high probability, the
data will remain coherent for the entire length of the quan-
tum algorithm. Unfortunately, quantum systems will be so
error-prone that they will execute right at the limits of their
error tolerance [33].

Our goal is to provide a quantum communication layer
which sits below higher level error correction schemes. We
will discuss our future work, which is the interaction of this
layer with quantum error correction and algorithms in Sec-
tion 6. Consequently, we start our calculation by assuming
a channel with no error correction. Then we factor in the
effects of decoherence and derive a maximum wire length
for our line of qubits.

Recall that data traverses the line of qubits with swap
gates, each of which takes approximately 1 µs to execute
in the Kane technology. Thus, a single row of quantum bits
has latency:

latency = 1 µs × distance/60 nm (1)

This latency can be quite large. A short 1 µm has a la-
tency of 0.000017 seconds! On the plus side, the wire
can be fully pipelined and has a sustained bandwidth of
1/1 µs = 1M qbps (quantum bits per second). This may
seem small compared to a classical wire, but keep in mind
that quantum bits hold an exponential amount of informa-
tion and can enable algorithms with exponential power.

The number of error-free qubits is actually lower than
this physical bandwidth. Noise, or decoherence, degrades
quantum state and makes the true bandwidth of our wire
less than the physical quantum bits per second. Bits deco-
here over time, so longer wires will have a lower bandwidth
than shorter ones.

The stability of a quantum bit over time decays (exactly
like an un-error corrected classical bit) as a function e−k×t.
Usually, a normalized form of this equation is used, e−λ×t,
where t in this new equation is the number of operations
and λ is related to the time per operation and the original
k. As quantum bits traverse through our wire they arrive
with a fidelity proportional to the latency, namely:

fidelity = e−k×latency (2)

The true bandwidth is then proportional to the fidelity:

bandwidthtrue = bandwidthphysical × fidelity (3)

Choosing a reasonable 4 value of λ ≈ 10−6, we find the

4This value for λ is calculated from a decoherence rate of 10−6 per

true bandwidth of a wire to be:

1/1 µs × e−10−6×distance/60 nm (4)

which for a 1 µm wire is close to ideal (999,983 qbps).
This does not seem to be a major effect, until you con-

sider an entire quantum algorithm. Data may traverse back
and forth across a quantum wire millions of times. It is cur-
rently estimated [2] that a degradation of fidelity more than
10−4 makes arbitrarily long quantum computation theo-
retically unsustainable, with the practical limit being far
higher [33]. This limit is derived from the Threshold The-
orem, which relates the decoherence of a quantum bit to
the complexity of correcting this decoherence [26, 34, 2].5

Given our assumptions about λ, the maximum theoretical
wire distance is about 6µm, and again the practical wire
distance is about two orders of magnitude less than this.

4.2.4 Technology Independent Metrics

Our latency and bandwidth calculations require slightly
more device parameters. Let T be the time per basic swap
operation. Some technologies will have an intrinsic SWAP,
and others will require synthesizing the swap from 3 CNOT

operations. Let λ be the decoherence rate, which for small
λ and T is equivalent to the decoherence a quantum bit
undergoes in a unit of operation time T . This makes the
latency of a swapping channel wire equal to:

latency = T ×D (5)

Where distance D is expressed in the number of qubits.
The bandwidth is proportional to the fidelity or:

bandwidthtrue =
1
T
e−λD (6)

This bandwidth calculation is correct so long as the fidelity
remains above the critical thresholdC ≈ 10−4 required for
fault tolerant computation. Finally, the maximum distance
of this swapping channel is the distance when the fidelity
drops below the critical threshold:

distancemax = loge(1 − C)/ − λ (7)

Realize that no amount of error correction will be ro-
bust enough to support a longer wire, while still supporting
arbitrarily long quantum computation. For this we need a
more advanced architecture. One obvious option is to break
the wire into segments and insert “repeaters” in the middle.
These quantum repeaters are effectively performing state
restoration (error correction). However, we can do better,
which is the subject of the next section.

operation, where each operation requires 1 µs. It is aggressive, but not
too unreasonable for phosphorus atoms in silicon. We refer the interested
reader to [31].

5By “practical” we mean without an undue amount of error correc-
tion. The threshold theorem ensures that theoretically we can compute
arbitrarily long quantum computations, but the practical overhead of error
correction makes the real limit 2-3 orders of magnitude higher [33].
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5 Long Wires

In this section, we introduce an architecture for long quan-
tum wires, shown in Figure 8. These wires make use of the
quantum primitive of teleportation. Teleportation involves
pre-communication of EPR pairs, followed by a combina-
tion of quantum measurement and classical communication
to destroy a quantum state at one end of a wire and re-create
it on the other end. The key is that the pre-communication
can be pipelined. Furthermore, teleportation allows quan-
tum wires to convert quantum data between components
that use different error correction codes, a conversion that
is impractical without teleportation. In the next few sec-
tions, we provide a brief introduction to the core architec-
tural components of this wire.

5.1 Basic Building Blocks

Although teleportation and the mechanisms described in
this section are known in the literature, what has been miss-
ing is the identification and analysis of which mechanisms
form fundamental building blocks of a realistic system.
In this section, we highlight three important architectural
building blocks: the entropy exchange unit, the EPR gen-
erator, and the purification unit. Note that the descrip-
tion of theses blocks is quasi-classical in that it involves
input and output ports. Keep in mind, however, that all
operations (except measurement) are inherently reversible,
and the specification of input and output ports merely pro-
vides a convention for understanding the forward direction
of computation.

5.1.1 Entropy exchange unit

The physics of quantum computation requires that opera-
tions be reversible and conserve energy. The initial state of
the system, however, must be created somehow. We need

to be able to create zero states, denoted as “|0〉”. Further-
more, errors cause qubits to become randomized; stated
equivalently, entropy enters the system through decoher-
ence caused by coupling with the external environment.

Where do these zero states come from? The process can
be viewed as one of thermodynamic cooling. Distributed
throughout a quantum processor are “cool” quantum bits in
a nearly zero state. These can be created by pulling spin-
polarized electrons (created, for example, using a standard
technique known as optical pumping [23] [49] or directly
using spintronics methods, with ferromagnetic materials
and spin filters [23]) over the phosphorus atoms.

To arbitrarily increase this probability (and make an ex-
tremely cold zero state) we can use a variant of the purifi-
cation technique described in Section 5.1.3. Specifically,
we employ an efficient algorithm for data compression [38]
[39] that gathers entropy across a number of qubits into a
small subset of highly random qubits. As a result, the re-
maining quantum bits are reinitialized to the desired pure
zero state |0〉.

5.1.2 EPR Generator

Constructing an EPR pair of quantum bits is straightfor-
ward. We start with two |0〉 state bits from our entropy
exchange unit. A Hadamard gate is applied to the first of
these quantum bits. We then take this transformed quantum
bit that is in a half-way superposition of a zero and a one
state and use it as the control bit for a controlled-NOT gate.
The target bit that is to be inverted is the other fresh |0〉
quantum bit from the entropy exchange unit. A controlled-
NOT gate is a bit like a classical inverter except the target
bit is inverted if the control bit is in the |1〉 state. Using a
control bit of (|0〉 + |1〉)/√2 and a target bit of |0〉 we end
up with a two bit entangled state of (|00〉+ |11〉)/√2. The
quantum bits in this state are called an EPR pair.

The overall process of EPR generation is depicted in
Figure 9. Schematically the EPR generator has a single
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Figure 9. Quantum EPR generator: Solid double
lines represent classical communication (or con-
trol), while single lines depict quantum wires.

Figure 10. Quantum purification unit: EPR States
are sufficiently regular that they can be purified at
the ends of a teleportation channel.

quantum input and two quantum outputs. The input is di-
rectly piped from the entropy exchange unit and the output
is the entangled EPR pair.

5.1.3 Purification unit

The final building block we require is the purification unit.
This unit takes as input n EPR pairs which have been par-
tially corrupted by errors, and outputs nE asymptotically
perfect EPR pairs. E is the entropy of entanglement, a
measure of the number of quantum errors which the pairs
suffered. The details of this entanglement purification pro-
cedure are beyond the scope of this paper but the interested
reader can see [10, 5, 8].

Figure 10 depicts a purification block. The quantum in-
puts to this block are the input EPR states and a supply of
|0〉 bits. The outputs are pure EPR states. Note that the
block is carefully designed to correct only up to a certain
number of errors; if more errors than this threshold occur,
then the unit fails with increasing probability.

5.2 Analysis

Figure 8 illustrates how we use these basic building blocks
and protocols for constructing a long wire. The EPR gen-
erator is placed in the middle of the wire and “pumps” en-
tangled quantum bits to each end (via a pipelined swap-
ping channel). These bits are then purified such that only
the error-free qubits remain. Purification and teleportation
consume zero-state qubits that are supplied by the entropy
exchange unit. Finally, the coded-teleportation unit trans-
mits quantum data from one end of the wire to the other
using the protocol described in Section 2.3. Our goal now
is to analyze this architecture and derive its bandwidth and
latency characteristics.

The bandwidth is proportional to the speed with which
reliable EPR pairs are communicated. Since we are com-
municating unreliable pairs we must purify them, so the
efficiency of the purification process must be taken into ac-
count. Purification has an efficiency roughly proportional
to the fidelity of the incoming, unpurified qubits [38]:

purificationefficiency ≈ fidelity2 (8)

Entropy exchange is a sufficiently parallel process that we
assume enough zero qubits can always be supplied. There-
fore, the overall bandwidth of this long quantum wire is:

1/1 µs × e−2×10−6×distance/60 nm (9)

which for a 1 µm wire is 999,967 qbps. Note this re-
sult is less than for the simple wiring scheme, but the de-
coherence introduced on the logical quantum bits is only
O(e−λ×10). It is this latter number that does not change
with wire length which makes an important difference. In
the previous short-wire scheme we could not make a wire
longer than 6µm. Here we can make a wire of nearly arbi-
trary length. For example a wire that is 10 mm long has a
bandwidth of 716,531 qbps, while a simple wire has an ef-
fective bandwidth of zero at this length (for computational
purposes).

The situation is even better when we consider latency.
Unlike the simple wire, the wire architecture we propose
allows for the pre-communication of EPR pairs at the sus-
tainable bandwidth of the wire. These pre-communicated
EPR pairs can then be used for transmission with a constant
latency. This latency is roughly the time it takes to per-
form teleportation, or about ≈ 20 µs. Note this latency is
much improved compared to the distance-dependent sim-
ple wiring scheme.

5.2.1 Technology Independent Metrics

Using the same constants defined above for the swapping
channel, we can generalize our analysis of teleportation
channels. The latency is simply:

latency ≈ 10T (10)

The bandwidth is:

bandwidthtrue =
1
T
e−2λD (11)

Unlike the short wire, this bandwidth is not constrained
by a maximum distance related to the threshold theorem
since teleportation is unaffected by distance. The commu-
nication of EPR pairs before teleportation, however, can be
affected by distance, but at a very slow rate. While purifi-
cation must discard more corrupted EPR pairs as distance
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increases, this effect is orders-of-magnitude smaller than
direct data transmission over short wires and is not a fac-
tor in an practical silicon of up to 10’s of millimeters on a
side.

6 System Bandwidth

Our goal has been to design a reliable, scalable quantum
communication layer that will support higher-level quan-
tum error correction and algorithms functioning on top of
this layer. A full description of error correction and quan-
tum algorithms is beyond the scope of this paper. A key
issue for future evaluation, however, is that the lower la-
tency of our teleportation channel actually translates to
even higher bandwidth when the upper layers of a quantum
computation are considered. It is for this reason that long
wires should not be constructed from chained swapping-
channels and quantum “repeaters”.

The intuition behind this phenomenon is as follows.
Quantum computations are less reliable than any compu-
tation technology that we are accustomed to. In fact, quan-
tum error correction consumes an enormous amount of
overhead both in terms of redundant qubits and time spent
correcting errors. This overhead is so large that the relia-
bility of a computation must be tailored specifically to the
run length of an algorithm. The key is that, the longer a
computation runs, the stronger the error correction needed
to allow the data to survive to the end of the computation.
The stronger the error correction, the more bandwidth con-
sumed transporting redundant qubits. Thus, lower latency
on each quantum wire translates directly into greater effec-
tive bandwidth of logical quantum bits. For more informa-
tion on quantum error correction and algorithms, we refer
the reader to [31].

7 Conclusion

Our study has focused on a critical aspect of any quantum
computing architecture, quantum wires to transport quan-
tum data. Building upon key pieces of quantum technol-
ogy, we have provided an end-to-end look at a quantum
wire architecture. We have shown that our teleportation
channel scales with distance and that swapping channels
do not. We have also discovered fundamental architectural
pressures not previously considered. These pressures arise
from the need to co-locate physical phenomena at both the
quantum and classical scale. Our analysis indicates that
these pressures will force architectures to be sparsely con-
nected, resulting in coarser-grain computational compo-
nents than generally assumed by previous quantum com-
puting studies. We believe that further architectural studies
of this nature will be valuable in identifying the research
challenges facing quantum technologies of the future.
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