
In Proceedings of the 31st Annual International Symposium on Computer Architecture, June 2004

A Formal Approach to Frequent Energy Adaptations for
Multimedia Applications

�

Christopher J. Hughes
Intel Corporation

Architecture Research Lab
christopher.j.hughes@intel.com

Sarita V. Adve
University of Illinois at Urbana-Champaign

Department of Computer Science
sadve@cs.uiuc.edu

Abstract

Much research has recently been done on adapting ar-
chitectural resources of general-purpose processors to save
energy at the cost of increased execution time. This work
examines adaptation control algorithms for such processors
running real-time multimedia applications. The best previ-
ous algorithms are mostly heuristics-based and ad hoc, re-
quiring an impractically large amount of application- and
resource-specific tuning.

We take a more formal approach that does not require the
large tuning effort of previous approaches, and yet obtains
average energy savings comparable to the best previous ap-
proach. We pose control algorithm design as a constrained
optimization problem: what configuration should be used at
each point in the program to minimize energy for a targeted
performance given that each configuration has a different
energy-performance tradeoff at each point? We solve this
with the method of Lagrange multipliers, which assumes
knowledge of the energy-performance tradeoffs. We develop
a technique to estimate these tradeoffs using properties of
multimedia applications. Our technique is likely extendible
to other application domains.

We compare our algorithm to the best previous algorithm
for real-time multimedia applications, which is heuristics-
based. We demonstrate the practical difficulty of the tun-
ing process for the previous algorithm. Compared to a
painstakingly hand-tuned version of that algorithm, our
new algorithm provides similar energy savings through a
more formal approach that does not need such heroic tun-
ing, making it practical to implement.

�

This work is supported in part by a gift from Intel Corp., and the Na-
tional Science Foundation under Grant No. CCR-0096126, EIA-0103645,
CCR-0209198, CCR-0205638, EIA-0224453, and CCR-0313286. Sarita
V. Adve was also supported by an Alfred P. Sloan Research Fellowship and
Christopher J. Hughes was supported by an Intel Ph.D. Fellowship.

1 Introduction

Energy consumption is a key design consideration for
general-purpose processors, especially for mobile systems.
This paper focuses on reducing energy consumption of
general-purpose processors when running multimedia ap-
plications for mobile systems.

One way to reduce energy consumption is to leverage
variability in some aspect of the execution (e.g., resource
usage) and adapt. Many such techniques have been pro-
posed (e.g., [6, 9, 26]), and some adaptation techniques have
been implemented in real systems (e.g., Pentium M).

Ideally, we would like to adapt frequently to fully exploit
any variability. However, existing techniques for adapting
frequently are ad hoc and require an impractically large
amount of tuning effort. We propose a new, more formal
method for controlling frequent adaptations. Relative to
previous techniques, the new technique shows comparable
energy savings, but requires very little tuning and is practi-
cal to implement.

This work is part of the broader Illinois GRACE project
exploring adaptations at multiple granularities and across
different system layers [29, 33]. Although here we focus on
multimedia applications, we believe our techniques can be
extended to other domains as well.

1.1 Previous Adaptation Algorithms

Current processor adaptation techniques target two types
of variability. First, the processor sometimes runs faster
than needed, incurring higher power dissipitation than nec-
essary; thus, we can slow it down to save energy. We refer
to this as exploiting temporal slack. For real-time multime-
dia applications, temporal slack is inherent. These applica-
tions need to process discrete units of data, generally called
frames, within a deadline; they need only meet the dead-
line, not beat it. The difference between the required and
the actual execution time is temporal slack, which varies

from frame to frame. For other applications, the allowed
slowdown could be a user-specified target.

The second type of variability exploited through adapta-
tion is in the usage of microarchitectural resources. Some-
times reducing the amount of a resource for a while does
not affect performance. We refer to this as resource slack.
Resource slack varies with the type of computation being
performed, and typically changes rapidly.

A key to effective adaptation is the control algorithm,
which must determine when to adapt (adaptation time scale)
and what to adapt (adaptation scope). Our previous work
has referred to the former as the temporal granularity and
the latter as the spatial granularity of adaptation [30].

There is usually a conflict between the temporal and spa-
tial granularity of adaptation [29]. Ideally, we would like to
adapt frequently (i.e., temporally local granularity) and we
would like to consider all of the resources together when
adapting (i.e., spatially global granularity). Previous algo-
rithms typically do one or the other.

Many previously proposed algorithms exploit temporally
local variability (e.g., [1, 2, 3, 5, 6, 9, 25, 26, 28]). However,
they typically have the following four limitations. 1) It can
be hard to predict the impact of adaptations at this temporal
granularity; thus, to avoid accidental slowdowns, they do
not exploit temporal slack. 2) To simplify predicting adap-
tation behavior, they operate at a spatially local granularity.
3) Due to their unpredictability, they require a large tuning
effort to achieve best energy savings with a “small” slow-
down. This effort grows exponentially with the number of
adaptations. 4) Due to their frequent adaptation, they cannot
control high overhead adaptations. Since these algorithms
adapt in a fine-grained manner, or locally, in both a temporal
and spatial sense, we refer to them as LL (for local-local).

We believe that the tuning effort required makes LL al-
gorithms impractical for real systems. For example, in the
systems we evaluate here, which adapt only three microar-
chitectural resources, there are

�����
possible design points in

the tuning process, and simple search strategies are unlikely
to find a reasonable one.

Some previous work on multimedia applications has
looked at more coarse-grained temporal variability. For
multimedia applications, we can predict the performance
and energy of all architecture (resource) configurations at
the frame granularity [18, 20]. Therefore, frame-level, or
temporally global, algorithms can exploit temporal slack,
can adapt in a spatially global manner, require little tuning,
and can control high overhead adaptations; thus, they do not
suffer from any of the above limitations of LL algorithms.
However, these algorithms must use a single configuration
for an entire frame. Since these algorithms adapt globally
in both a temporal and spatial sense, we refer to them as GG
(for global-global).

Previously, we combined the above two classes of algo-

rithms to get the benefits of both [30]. Our Global+Local
algorithm, which we refer to here as GG+LL, uses perfor-
mance and energy prediction to pick a spatially global con-
figuration for each frame to exploit temporal slack, and lets
LL algorithms react during a frame to exploit remaining re-
source slack. However, GG+LL still requires an extensive
tuning effort for the LL part.

1.2 Our Contribution

The limitations of the GG+LL algorithm motivate ask-
ing: 1) Can we get the benefits of GG+LL without so much
tuning? 2) Is there a way to exploit both temporal and re-
source slack in an integrated manner? If so, how much ben-
efit does this give?

We propose a new algorithm that addresses both of the
above questions. Our algorithm decouples the temporal
granularity of adaptation from the type of slack that is ex-
ploited. The temporal granularity for adapting a resource is
now determined only by the adaptation overhead, the abil-
ity to predict performance and energy impact of adaptation,
and the variability exhibited. Furthermore, if there are mul-
tiple adaptations with largely different overheads, our algo-
rithm allows operating at multiple time scales, but exploits
temporal slack at all time scales. For example, we resize
architectural resources every 1024 instructions and the volt-
age and frequency at the granularity of a frame, and both
adaptations consider temporal slack.

Our approach for controlling small overhead adaptations
at a specific time scale (i.e., a certain interval size) is as
follows. For a given interval, each hardware configuration
uses up a certain amount of temporal slack and consumes a
certain amount of energy. We want to pick a single config-
uration for each interval such that the total temporal slack
used is no more than that available for the frame, and the
total frame energy is minimized. This approach allows for
temporal slack to be traded off, or “spread,” between inter-
vals in an optimal manner. In contrast, for GG+LL, the GG
part chooses a single configuration for a whole frame (so it
cannot spread temporal slack optimally), and the LL part of
GG+LL is not intended to exploit temporal slack. Choos-
ing the best set of configurations can be viewed as solving
a constrained optimization problem. We apply a previously
known optimization method to choose the best mapping of
interval to configuration.

However, solving this problem requires perfect infor-
mation about the temporal slack used and the energy con-
sumption for each configuration, for each interval, for each
frame. We show how to predict this information, indepen-
dent of input, from profiled information for a single frame.

To incorporate large overhead adaptations (at the frame
granularity), we solve the constrained optimization prob-
lem for different temporal slacks. We then split the tem-

poral slack between temporally local and global adaptation,
choosing the split that provides the most energy savings.

Since our algorithm can operate at temporally local and
spatially global granularities, we refer to it as LG.

Compared to GG+LL, our formal approach results in
only four independent parameters which took little effort to
tune, one of which is common to GG+LL. GG+LL needs
six more parameters for the system evaluated here (with
three adaptive microarchitectural resources), and this num-
ber will grow as more resources are made adaptive. More
importantly, the resource-specific parameters are difficult to
tune even individually, and are not independent, necessitat-
ing a joint tuning process for best results. To our knowl-
edge, nobody has proposed a technique to automatically
search the GG+LL parameter space; therefore, we develop
our own. These systematic methods of tuning fail to find ac-
ceptable design points (far too many deadlines are missed).
Therefore, we rely on hand-tuning, which is extremely time
consuming. Furthermore, GG+LL needs to be re-tuned if
new resources are made adaptive, or if new applications are
added to the test set, unlike for our LG algorithm.

The other possible advantage of LG over GG+LL is its
ability to spread temporal slack more intelligently through-
out each frame. However, we find the energy benefits of our
new algorithm are marginal relative to GG+LL. Exploring
this further, we find that the LL part of GG+LL unintention-
ally exploits temporal slack in addition to the intentional
exploitation of resource slack. Further, it exploits tempo-
ral slack in different ways across different intervals, and
the large tuning effort results in a serendipitous close-to-
optimal spreading of temporal slack across the frame. Thus,
GG+LL already sees the majority of the benefits from this
technique, albeit it extracts these benefits in a very ad hoc
manner (reflected in the great effort to tune GG+LL). Our
LG algorithm spreads temporal slack in a more formal man-
ner, and so is much simpler to implement in practice, while
providing as much energy savings as GG+LL.

2 Design Space and Previous Algorithms

This section describes previously proposed GG, LL, and
GG+LL adaptation control algorithms. We consider two
classes of adaptations. The first, dynamic voltage and fre-
quency scaling (DVS), is a high overhead adaptation. With
DVS, the voltage of the processor is lowered to save en-
ergy, necessitating a frequency drop and increasing exe-
cution time. The second class of adaptations, architecture
adaptation, is usually low overhead. Typically, part of the
architectural resource being adapted is deactivated or reacti-
vated. These adaptations may or may not impact execution
time, depending on the amount of resource slack. Below, we
use the term architecture configuration to refer to the con-
figuration of all architecture resources and we use hardware

configuration to refer to the combination of the architecture
configuration and the voltage and frequency.

2.1 Previous GG Algorithm

Previously, we proposed (to our knowledge) the only GG
algorithm for multimedia applications that integrates DVS
and architecture adaptation [20]. At the beginning of a
frame, it predicts the hardware configuration that will min-
imize energy for that frame without missing the deadline.
The frame is run with this configuration.

The algorithm consists of two phases: a profiling phase
at the start of the application and an adaptation phase. The
profiling phase profiles one frame of each type1 for each
architecture configuration � , at some base voltage and fre-
quency. For each � , the algorithm collects the instructions
per cycle (�������) and average power (���) for each frame.

We previously showed that for several multimedia appli-
cations and systems, for a given frame type, average IPC
and power for a configuration are roughly constant for all
frames [18, 20]. Thus, �����	� and �
� values from the pro-
filing phase can be used to predict �����	� and ��� of all other
frames of that type. Previous work also showed that IPC is
almost independent of frequency for these applications [18],
so ������� can be used to predict the IPC for architecture �
at all frequencies. Similarly, ��� and the voltage for each
frequency can be used to predict the power for architecture
� at all frequencies (��
��������������).

For each hardware configuration, � , with architecture
��� , frequency ��� , and voltage � � , the algorithm computes
the most instructions � can execute within the deadline as
�"!$#"%'&)(*���+�*�,.-0/1�324�����$�5&627��� . It also computes
the energy consumed per instruction (EPI) for each � as
8 �9���:�<;�= &�>@? &BAC

;1DE= &
. It then constructs a table with an en-

try for each � containing its ��!$#"% and EPI, sorted in order
of increasing EPI.

After profiling is complete, the algorithm enters the
adaptation phase. Before executing a frame, it predicts the
number of instructions the frame will execute, using a sim-
ple history-based predictor (takes the maximum of the last
five frames of the same type and adds some leeway). It then
searches the table (starting at lowest EPI) for the first entry
with �"!�#F%HG4IJ�K��*K-MLONP��*Q-0/BR"NM��STLUNM-M
�/BR . It predicts this to be
the lowest energy configuration that will meet the deadline,
and so chooses it.

2.2 Previous LL Algorithms

A number of researchers have studied algorithms to
control individual adaptive architecture resources, although

1Two applications in our suite have multiple frame types (i.e., I, P, and
B frames for MPEG-2 encoder and decoder). For these, the algorithm
profiles and adapts for each frame type separately.

most of this work has been done for general applica-
tions (e.g., SPEC). Adaptations considered include chang-
ing the instruction window size (or issue queue and re-
order buffer sizes) [5, 6, 9, 28, 30], changing the number
of functional units and/or issue width [2, 26, 30], and oth-
ers [1, 3, 10, 15, 25]. In this study, we focus on changing
the instruction window size and the number of active func-
tional units (and issue width). We do not consider control-
ling DVS with an LL algorithm because DVS is a high over-
head adaptation – it takes a relatively long time to change
the frequency (about 10 � s [13]).

Previously, we proposed the best current LL algorithms
for adapting the instruction window size and the number
of active functional units evaluated for multimedia applica-
tions [30]. These algorithms operate at fixed time intervals
(every 256 cycles in [30]). During an interval, each algo-
rithm independently collects and computes statistics (e.g.,
the number of issue hazards) which serve as proxies for per-
formance loss from adaptation. At the end of each interval
it compares the statistics to a set of thresholds. The out-
come of these comparisons determines the configuration for
the next interval – resources are reactivated if the estimated
performance loss is high, or deactivated if low.

2.2.1 Tuning

Although the LL algorithms ideally do not use temporal
slack, in practice they are permitted to reduce performance
by a “small” amount, since most of the time this leads to
much larger energy savings. The thresholds of the LL al-
gorithms (each algorithm we consider has two thresholds)
must be carefully tuned to achieve the right tradeoff be-
tween energy and performance. It is difficult to tune the
thresholds for even one resource since they are based on
heuristics and the design space is large – the algorithms for
each of the three resources we consider have a design space
of

�����
points each.

Each set of thresholds gives a different tradeoff between
performance and energy (which may vary across applica-
tions). Our work considers a fixed performance target in
terms of a maximum fraction of missed deadlines (5% in
our experiments). Therefore, the process of tuning the
thresholds involves running experiments with various com-
binations of thresholds and picking one which meets the
performance target with lowest energy. Given the large de-
sign space, it is infeasible to test all points; therefore, we
need to carefully search the space. Such a search is com-
plicated by a number of factors. First, the relationship be-
tween energy and any one threshold is hard to predict be-
cause energy depends both on power and execution time.
Sometimes, deactivating part of a resource increases energy
consumption. Second, the experiments in the search will be
on only a small set of applications. For a given set of thresh-

olds, the heuristics may behave differently for other applica-
tions than for the test set. Third, the instruction window and
functional unit algorithms each have two thresholds that are
dependent on one another; thus, finding the optimal design
point likely requires tuning two thresholds simultaneously.
Similarly, for a system with multiple adaptive resources, the
adaptive resources may interact. For example, if the instruc-
tion window algorithm reduces the size of the window, the
ALU utilization may drop. Therefore, the thresholds for all
such resources may need to be tuned simultaneously. For
the system modeled here, there are

� � �
total design points.

In general, if all thresholds are tuned together, the tuning
effort grows exponentially with the number of resources.

Another disadvantage of this type of LL algorithm is the
effort required to make a new resource adaptive. In addition
to having to develop new heuristics for it, much of the previ-
ous tuning work may be useless, making it time consuming
to extend an existing design.

One possible way to reduce the amount of tuning neces-
sary for LL algorithms is to design more formal ones based
on control theory. To our knowledge, no such algorithm has
been proposed for the resources considered here. Such an
algorithm would need to handle the complicated response
of energy savings to adaptation while maintaining perfor-
mance. Further, the task of obtaining a feedback signal is
difficult since energy savings and slowdown (relative to the
base system) are not known during execution. Nevertheless,
this is a promising direction and we leave its exploration to
future work.

2.3 Previous GG+LL Algorithm

Sasanka et al. also propose a combined GG+LL algo-
rithm [30]. The LL algorithms always run while the GG al-
gorithm runs, including during both the profiling and adap-
tation phases. GG sets the maximum amount of each re-
source; LL cannot increase beyond these limits. Running
LL during the profiling phase allows GG to account for
the energy and performance impact of the local adapta-
tions. This combined approach exploits both temporal and
resource slack, but separates them into different temporal
granularities. It also requires tuning due to the use of LL
algorithms. In addition, the LL algorithms may need to be
re-tuned once integrated with GG.

3 LG Algorithm

We now present our new LG algorithm for exploiting
both temporal and resource slack in an integrated manner.
Our LG algorithm also relies on more formal methods, re-
sulting in a drastically reduced tuning effort compared to
GG+LL, and making LG much more practical.

2

3
4

E
ne

rg
y

Sa
ve

d

Interval 0 Interval 1 Interval 2 Interval 3

(b)

1

5 345

3
2

5

5 1

Temporal Slack Used

4

Time Interval 0 Interval 1 Interval 2 Interval 3

(a)

1

2
3

4
2 1

Figure 1. (a) Example frame composed of four
intervals. (b) Energy-performance tradeoffs
for the intervals. The numbers correspond to
different architecture configurations.

We decouple the use of low and high overhead adapta-
tions, (close-to-optimally) splitting the available temporal
slack between them. Section 3.1 first presents the method
for controlling low overhead adaptations (which are invoked
frequently within a frame), focusing on architecture adapta-
tion. Section 3.2 explains how we control high overhead
adaptations (which are invoked once per frame), focusing
specifically on DVS. It also describes how we split the tem-
poral slack between low and high overhead adaptations.
Section 3.3 gives the overheads of the LG algorithm, and
Section 3.4 describes the design parameters for it. Finally,
Section 3.5 discusses how our LG algorithm might apply to
other application domains.

3.1 Controlling Low Overhead Architecture
Adaptation

The Optimization Problem
We use the term interval to refer to the granularity at which
low overhead adaptations are invoked. In this work, we di-
vide each frame into multiple intervals, each with the same
number of instructions (1024 in our system). Each interval
can be run with one of several architecture configurations,
each with a different energy/performance tradeoff. Figure 1
shows an example set of intervals, with the energy saved vs.
temporal slack used data for each architecture configuration
(with respect to the base configuration). Our goal is to de-
termine the best configuration (���) for each interval - such
that together these configurations result in the most energy
saved while using no more than the target slack for archi-
tecture adaptation for the frame. In other words, we want to
find the best way to “spread” the temporal slack across the
frame.

Our problem can be stated as a constrained optimization
problem:

�������	�
�	���
� �� � �����
���	���	� ��� ��!#" �%$'&(&*)
� �� � �+�-,

�.�	���#�0/
,2143'5�687#1

where 9 is the number of intervals in the frame,
8 �8:0�;�.<

and =>�8:0�;�.< are respectively the average energy saved per
instruction (EPI-saved) and the average temporal slack used
per instruction (SPI-used), by using ��� vs. the base configu-
ration for interval - . =>?.#%@8ACB.? is the available target slack per
instruction for the frame (Section 3.2 describes how this is
determined).
The Solution
There are many methods for solving constrained optimiza-
tion problems. Our approach is inspired by work on an
equivalent problem in the wireless communications do-
main, where the method of Lagrange multipliers is ap-
plied [22]. Details on our solution are in [17]. The key
idea is that the best configurations for the different intervals
must have the same tradeoff between (ratio of) EPI-saved to
SPI-used. This assumes that the configurations, if plotted to
create an EPI-saved vs. SPI-used curve (as shown in Fig-
ure 1(b)), must form a convex curve. If this is not the case
for an interval, we disregard some configurations to force
this condition, possibly leading to a suboptimal solution.
Obtaining Energy-Slack Tradeoffs
Our solution to the constrained optimization problem as-
sumes that we have perfect EPI-saved and SPI-used infor-
mation for all configurations, for all intervals, for all frames.
This is infeasible since it requires profiling all frames once
per configuration before adapting. Instead, we profile to
collect this perfect information for a single frame of a sin-
gle input at application installation time, and find the opti-
mal configurations for that frame. At run-time, no further
profiling is done. Instead, we map the solution found at in-
stallation time to all other frames using some insights about
real-time multimedia applications. Our technique is likely
extendible to other application domains.

We define some property of each interval as its mapping
key – for an interval with key value D , we use the same
configuration as an interval in the profiled frame with key
value D . We chose the program counter (PC) value of the
first instruction in an interval as the key. While this works
reasonably well for us, for reasons given below, one avenue
of future work is to leverage recent research on program
phase detection and prediction to develop a more sophisti-
cated key [7, 31].

Using PC as the key means that for a given PC, the al-
gorithm will choose the same configuration for all inter-
vals that start with that PC. For this configuration to be
close to the best for all of those intervals, two properties
should hold: 1) intervals with the same starting PC value
should have similar tradeoffs between slack and energy for
each configuration, and 2) the fraction of intervals with each
starting PC value should be the same across all frames. Both
properties are generally exhibited by multimedia applica-
tions. Their repetitive nature leads to the first property hold-
ing. The second property holds due to the following. Previ-
ously, it was reported that the per frame IPC (and EPI) for

real-time multimedia applications is almost constant across
different frames [18]. The intuition for this is that while
different frames may do a different amount of work, the na-
ture of the work is the same. This implies that the fraction
of intervals with each starting PC value is almost the same
across different frames.

Nevertheless, PC is not a perfect key, and sometimes
multiple intervals from the profiled frame have the same PC,
but different optimal configurations, necessitating a com-
promise between the configurations for those intervals (this
would be true for other choices for a key as well). For each
PC value, for each resource, the algorithm computes the
mean of the optimal configuration (e.g., instruction window
size) for the intervals of the profiled frame with that PC. It
then chooses the supported configuration closest to that.

The algorithm builds a table that maps PC to a chosen
configuration. While running the application, at each in-
terval, the algorithm uses its starting PC value to select the
configuration to use for it. To reduce aliasing effects in the
finite table, rather than using one entry per instruction it
uses one entry per block of consecutive instructions (256 in
our experiments).

The above table needs to be built for each =�?.#%@'A B.? as ex-
plained below.

3.2 Controlling High Overhead Adaptation and
Integration with Low Overhead Adaptation

As mentioned earlier, LG can integrate the control of
high overhead adaptations performed at the frame granu-
larity with low overhead adaptations performed during a
frame. We use DVS at the frame granularity as an exam-
ple of a high overhead adaptation. To control DVS alone,
or when controlling DVS in conjunction with architecture
adaptation, LG proceeds much like GG. Before the start of
each frame, LG examines all configurations to determine
which will meet the deadline with minimum energy. How-
ever, instead of considering the low overhead adaptations
individually, LG treats all of those adaptations together as
a single “resource” whose “configurations” consist of dif-
ferent amounts of temporal slack (i.e., different values of= ?.#%@8ACB.?).

At application installation time, LG runs the (low over-
head) architecture adaptation optimization algorithm for a
set of = ?.#%@8ACB.? values (we choose multiples of 0.01 between
0 and 1 cycle per instruction). For each = ?.#C@'A B ? value, it
estimates the resulting per frame IPC and EPI and records
this information to use at run-time. LG estimates EPI by
determining which architecture configuration it would use
for each interval of the profiled frame, and summing the
corresponding EPI-saved across all intervals. IPC is esti-
mated in an analogous way. For each combination of volt-
age/frequency and = ?.#%@'A B.? , LG computes �"!�#F% and EPI us-

1. Compute optimal configuration
for each interval for S target

3. Estimate per frame EPI & IPC

2. Create table of PC to configuration

For each S ,target

For each combination of f & S ,

1. Compute EPI & Imax
target

At start of frame,

1. Predict instructions, I

2. Pick f and S with
Imax >= I and minimum EPI

target

S target

At beginning of each interval,

1. Get new configuration from

table (index with PC)

2. Switch to new configuration

Installation Time

PC to configuration
tables

EPI&IPC
estimates

EPI &
Imax

Run−time

Profiling information

1. Profile the first frame (of each

type) once for each arch. configuration

Figure 2. The new LG algorithm.

ing the above estimates and taking into account the impact
of DVS. At run-time, before each frame, LG uses the same
instruction count predictor as GG (Section 2.1) to choose
the combination of voltage/frequency and =�?.#%@'A B.? that can
make the deadline with least energy.

Figure 2 summarizes the complete algorithm.
A system with other high overhead adaptations may re-

quire a profiling phase at application installation to account
for their interaction with low overhead adaptations.

For systems with many possible frequencies, the number
of combinations of voltage/frequency and = ?.#%@8ACB.? may be
too large to store and search through the ��!�#F% and EPI val-
ues. Previously, we developed a variation of GG for such
systems [20]. It chooses a single architecture configuration
for all frames by computing a frequency-independent mea-
sure of EPI for each. It is straightforward to extend LG to
incorporate this idea. We omit a description here for lack of
space.

3.3 Required Support and Overhead

Our LG algorithm requires some special support for both
the installation time and run-time portions. At installation
time, LG profiles one frame (the same one) per architec-
ture configuration considered. Applications can be restarted
for each architecture to avoid modifying them. This is
done only once ever for each application and the number of
frames profiled is likely to be small compared to the num-
ber of frames processed during a single run of the applica-
tion. Nevertheless, we have considered ways to reduce the
profiling effort. One simple way is to consider only a sub-
set of the possible architecture configurations, at the cost
of some energy savings. This can be done strategically to
minimize the lost savings. We have developed a technique
along these lines [17], but omit a description here for lack of
space. We also run the optimization algorithm at installation
time. Its complexity is relatively small,

� :	9������	� < , where9 is the number of intervals in the profiled frame and � is

the number of architecture configurations considered. The
installation time portion of LG needs to be implemented in
software. Besides the ability to adapt the hardware, this re-
quires no special hardware support.

At run-time, once per frame, the LG algorithm pre-
dicts the instruction count and chooses the = ?.#C@'A B ? and volt-
age/frequency, for which the required support is small. LG
also chooses a configuration once per interval. It does this
with a lookup into a PC-indexed table. We found that for
these applications, a small table for each = ?.#C@'A B ? is suffi-
cient (128 entries). Thus, this lookup is very fast, and since
it is performed only once per interval, we expect the energy
overhead to be negligible (as long as the interval size is suf-
ficiently large).

3.4 Design Parameters

As opposed to the LL algorithms, LG does not use
heuristics-based thresholds to help control adaptation, and
thus avoids the enormous tuning effort required for those
algorithms. However, LG still has the following design pa-
rameters: the PC to configuration table size, the block size
used when indexing the table, the interval length, and the
per frame instruction count predictor. We use the same in-
struction count predictor as for GG. It performs well for all
our applications, but could be made adaptive, if necessary
(e.g., be more conservative if we detect too many missed
deadlines). Finding good values for the other parameters is
simple for the following reasons.

These parameters are all independent of one another and
the table and block size are independent of the adaptive re-
sources in the system. All are also relatively insensitive to
the application (for those considered here). Finally, assum-
ing we restrict their values to powers of two, there are few
choices for each. The above factors combine to make the
design space for the parameters very small, especially com-
pared to that for the LL algorithms.

The table size (128 entries), block size (256), and inter-
val length (1024) were chosen independently through eval-
uation of less than 10 design points using only a subset of
our applications. The results are relatively insensitive to the
table and block size. We choose to exploit as much variabil-
ity as possible; thus, we choose as small an interval size as
possible to maximize energy savings. However, we are con-
strained by the fact that if the interval size is too small then
adjacent intervals interact and we miss too many deadlines.

3.5 Using LG for Other Application Domains

While LG targets multimedia applications, we believe it
could be extended for use with other application domains as
well. The key to LG working well is its ability to map the
profiled frame to all other frames. While non-multimedia

Base Processor Parameters
Processor speed 1GHz
Fetch/retire rate 8 per cycle
Functional units 6 Int, 4 FP, 2 Add. gen.
Integer FU latencies 1/7/12 add/multiply/divide (pipelined)
FP FU latencies 4 default, 12 div. (all but div. pipelined)
Instruction window 128 entries
(reorder buffer) size
Register file size 192 integer and 192 FP
Memory queue size 32 entries
Branch prediction 2KB bimodal agree, 32 entry RAS

Base Memory Hierarchy Parameters
L1 (Data) 64KB, 2-way associative,

64B line, 2 ports, 12 MSHRs
L1 (Instr) 32KB, 2-way associative
L2 (Unified) 1MB, 4-way associative,

64B line, 1 port, 12 MSHRs
Main Memory 16B/cycle, 4-way interleaved

Base Contentionless Memory Latencies
L1 (Data) hit time (on-chip) 2 cycles
L2 hit time (off-chip) 20 cycles
Main memory (off-chip) 102 cycles

Table 1. Base (default) system parameters.

App. Frames Base Tight % Slack on Base
IPC Deadline Tight Loose

GSMdec 1000 3.7 15 � s 9.8 54.9
GSMenc 1000 4.6 45 � s 8.9 54.4
G728dec 250 2.3 51 � s 10.2 55.1
G728enc 250 2.1 65 � s 9.2 54.6
H263dec 150 3.4 450 � s 15.6 57.8
H263enc 150 2.3 18.78ms 25.1 62.5
MPGdec 250 3.6 2.11ms 31.2 65.6
MPGenc 250 3.0 55.3ms 38.7 69.4
MP3dec 1000 3.0 495 � s 22.3 61.1

Table 2. Workload, deadlines, and temporal
slack (% of deadline) on the base proces-
sor. Base IPC is the mean per frame IPC on
the base processor. The loose deadlines are
twice the tight ones.

applications may not have frames, recent work has shown
that many applications do exhibit phased and predictable
behavior [7, 31]. It seems likely that a combination of
a phase detection/prediction algorithm and LG would ap-
ply to these applications. The former would predict phase
changes and the type of phase that was about to start and
feed this information into LG, which would use knowledge
about the phase type to spread the slack across the phase.
We leave exploration of this idea to future work.

4 Experimental Methodology

4.1 Systems Modeled

We use the execution driven RSIM simulator [19] for
performance evaluation and the Wattch tool [4] integrated
with RSIM for energy measurement.

Table 1 summarizes the base, non-adaptive, processor
studied. In this work, the architecture resources we adapt
are the instruction window and the integer and floating point
ALUs. We model a centralized instruction window with a
unified reorder buffer and issue queue, composed of eight
entry segments (the physical register file is a separate struc-
ture). For instruction window adaptation, at least two seg-
ments must always be active. For functional unit adapta-
tion, we assume that the issue width is equal to the sum of
all active functional units and hence changes with the num-
ber of active functional units. Consequently, when a func-
tional unit is deactivated, the corresponding instruction se-
lection logic is also deactivated. Similarly, the correspond-
ing parts of the result bus, the wake-up ports of the instruc-
tion window, and ports of the register file (including decod-
ing logic) are also deactivated. Experiments with DVS as-
sume a frequency range from 100MHz to 1GHz with 1MHz
steps and corresponding voltage levels derived from infor-
mation available for Intel’s XScale processor [21] as further
discussed in [20].

We assume clock gating for all processor resources. If
a resource is not accessed in a given cycle, Wattch charges
10% of its maximum power to approximate the energy con-
sumed by logic within the resource that cannot be gated (or
cannot always be gated when unused). To represent the
state-of-the-art, we also gate the wake-up logic for empty
and ready entries in the instruction window as proposed
in [9]. We assume that resources that are deactivated by
the adaptive algorithms do not consume any power. In our
model, due to clock gating, deactivating an unused resource
saves only 10% of the maximum power of the resource.

We evaluate all of the above adaptation control algo-
rithms. Since GG+LL was previously found to be better
than GG or LL alone [30], we evaluate GG and LL for ref-
erence only, using the algorithm in [20] for GG and “Local”
in [30] for LL. For GG+LL, we use the “Global+Local” al-
gorithm from [30]. Tuning of the LL algorithms for LL and
GG+LL is discussed in Section 5.1. For LG, we use the
algorithm described in Section 3.

For GG and GG+LL, we profile all possible combina-
tions of the following architecture configurations (54 to-
tal): instruction window size � �

128,96,64,48,32,16 � , num-
ber of ALUs � �

6,4,2 � , and number of FPUs � �
4,2,1 � .

GG+LL, due to its incorporation of LL, can choose any sup-
ported architecture configuration during a frame (i.e., it is
not restricted to the 54 profiled ones). As discussed in Sec-
tion 3.3, for LG, we profile configurations according to the
pruning algorithm given in [17]. We also evaluated LG’s
sensitivity to profiling. Although not shown here for lack
of space, the results (available in [17]) indicate that LG is
relatively insensitive to both the amount of profiling and the
profiling input. For example, when profiling with the same
54 configurations as GG, the energy savings are reduced by

1%-2% on average (maximum 4%).
For adaptation done once per frame, we ignore time and

energy overheads for both architecture adaptation and DVS
since they are very small compared to the time and energy
for a frame. For temporally local adaptation, we model a
delay of 5 cycles to activate any deactivated resource. The
results are not very sensitive to this parameter. We also
model the energy impact of the extra bits required in each
instruction window entry for LL instruction window size
adaptation (four bits, as in [30]). Other energy overheads
for controlling temporally local adaptation are likely to be
small, and so are ignored as explained in detail in [30].

4.2 Workload and Experiments

Table 2 summarizes the applications and inputs we use.
These were also used in [18, 20, 30] and are described in
more detail in [18] (for some applications, we use fewer
frames, and for G728 codecs we use only one frame type
– we combine one frame of each type from [18] for each
frame here). We do not use multimedia instructions because
most of our applications see little benefit from those avail-
able in the SPARC v9 ISA our simulator uses and we lack a
power model for multimedia enhanced functional units.

In our experiments, we assume a soft real-time system
where each application has frames arrive with a fixed pe-
riod. We assume an operating system scheduler allocates
a fixed amount of time to process each frame (the dead-
line).2 This deadline depends on the system load; thus, for
our experiments we use two sets of deadlines. The first set
is the tightest deadlines for which the base processor still
makes the deadline for all frames. We refer to this as the
tight set. For the second, loose set, we double each of the
tight deadlines. Table 2 gives the tight deadlines and mean
temporal slack on the base processor for both sets of dead-
lines. The table shows that some applications have a lot of
temporal slack even with the tight deadlines. This is due
to per frame execution time variability, and also, for MPG
codecs, to multiple frame types, with some requiring less
execution time. If the execution time exceeds the deadline,
the deadline is missed. We allow up to 5% of deadlines to
be missed.

We evaluate the algorithms both with and without DVS
support (all experiments have architecture adaptation sup-
port). With DVS, we use only the loose deadlines since
there is generally little room for voltage and frequency
adaptation with the tight deadlines. Also, for experiments
with DVS, we compare against a base system with no ar-
chitecture adaptation, but with DVS controlled by GG.

2There are several interactions between the scheduler and adaptive
hardware that we do not consider [33]. For example, temporal slack from
a frame may be given to other applications or frames through buffering.
This interaction is beyond the scope of this study, and part of our future
work.

5 Results

5.1 Tuning of LL and GG+LL

To evaluate LL and GG+LL, we need to choose values
for all (six) of the thresholds as described in Section 2.2.1.
No previous work describes a systematic way of tuning such
thresholds.

We first attempt to automate the tuning process. As dis-
cussed in Section 2.2.1, there are a number of difficulties in
designing a tuning algorithm. Therefore, we proceed in two
steps. The first step is to narrow the range of values for each
of the thresholds, culling values that keep almost all of a re-
source activated or deactivated. Given this pruned design
space, the second step is to evaluate a number of random
points within it, and take the point that gives the least en-
ergy consumption while missing no more than 5% missed
deadlines for all applications (for the tight deadlines). We
elaborate on this process next.

In the first step, we use a binary search to find the maxi-
mum (and minimum) threshold value that keeps some of the
resource activated (or deactivated) on average. This process
reduces the design space from about

� ���
points (��� ��2���� � �)

to about
��� �

points (
���H2
��� ���), still an enormous number.
We now choose random points within the pruned design

space. We do this in two ways. (1) Randomly choose the
thresholds for one resource at a time, then combine them.
The best thresholds are the ones that give least average en-
ergy across applications and less than 5% missed deadlines
for all applications, or, if no set of thresholds makes enough
deadlines, the ones that give the fewest missed deadlines on
average. (2) Randomly choose all thresholds together, and
take the best set.

We evaluate 128 random points for each resource, and
another 128 for the resources together, on a subset of our
applications (GSMdec, G728dec, G728enc, and H263dec).
The second method described above fails to find a single set
of thresholds that gives less than 5% missed deadlines (or
even comes close to this criterion) for any of the four appli-
cations; therefore, we do not consider it further. The first
method finds a set of thresholds that meets the maximum
deadline miss requirement for three of the four applications
with which we tune. For the fourth application, H263dec,
we get a large fraction of misses (23%).

We also manually tuned the thresholds. Our goal was to
find a set of thresholds that gives good energy savings (the
most we can find) while meeting our deadline miss crite-
rion. This process required weeks of effort. We tuned the
LL algorithms for LL alone for all nine applications, and
when we use them in GG+LL, they cause more than 5%
deadline misses for one application, H263dec (7.4%). Due
to the time intensive nature of manual tuning, we did not
manually re-tune the algorithms for GG+LL.

App Tight w/o DVS Loose w/ DVS
GG+LL LG GG+LL LG
A M A M

GSMdec 0.3 0.3 1.2 6.2 1.8 1.9
GSMenc 99.5 4.3 0.6 4.2 0.4 0.4
G728dec 4.2 3.6 4.7 3.6 4.2 4.2
G728enc 3.1 4.2 1.6 0.5 0.0 0.0
H263dec 23.4 7.4 4.3 2.1 2.1 2.1
H263enc 2.2 2.2 4.4 3.3 3.3 3.3
MPGdec 6.0 2.6 5.0 0.0 0.0 0.0
MPGenc 0.8 0.0 0.0 6.8 0.8 0.0
MP3dec 3.1 2.8 4.5 0.5 0.7 0.7

Table 3. Missed deadlines (%) for automati-
cally (A) and manually (M) tuned GG+LL and
for LG. For loose deadlines and no DVS, � 1%
deadlines are missed for all applications and
algorithms.

5.2 Missed Deadlines

Table 3 gives the fraction of deadlines missed for
GG+LL (with both Auto and Manual tuning) and for LG.
The most interesting case is for tight deadlines, since that
is where deadline misses are most sensitive to the architec-
ture adaptation control algorithm. Only LG stays within the
5% deadlines missed goal for all applications. GG+LL with
Auto tuning misses more than 5% of the deadlines for three
applications (GSMenc, H263dec, and MPGdec), missing a
lot more than the 5% limit for two of them. Of particular
interest is the near 100% missed deadline rate for GSMenc
– the performance of GSMenc is more sensitive to the in-
struction window size than the applications used for tuning,
and too much is deactivated for it. This highlights the un-
predictability of heuristics-based LL algorithms; even when
such an algorithm is tuned to give few deadline misses for
a set of test applications, it may behave quite differently for
other applications. GG+LL with Manual tuning only ex-
ceeds the 5% limit for one application, as discussed earlier.

5.3 Energy Savings

Figure 3 shows the energy consumption of Base
(the non-adaptive processor), GG+LL with Auto tuning,
GG+LL with Manual tuning, and LG, all normalized to
Base for each application. Table 4 gives the energy sav-
ings for LG relative to the base processor and other algo-
rithms, including GG and LL alone (detailed results not
shown since a previous study already showed GG+LL does
better than both [30]).

For all combinations of deadlines and DVS, GG+LL
with Auto tuning, GG+LL with Manual tuning, and LG
give similar energy savings for all applications, with one
notable exception explained below (GSMenc). Recall, how-
ever, that GG+LL with Auto tuning misses too many dead-
lines for some applications (as indicated in Table 3) so these

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

100

60 60 60

������
������
������
���

������
������
������
���

100

59 59 59

		
		
		
	

��
��
��

��
��
��

��
��
��
�

100

54 53 54

��
��
��
�

��
��
��
�

100

68 67 67

100%

75%

50%

25%

GSMdec

%
 B

as
e

E
ne

rg
y

GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

100

56 54 55

������
������
������
���

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

������
������
������
���

������
������
������
���

100

66 67 64

��
��
��
�

��
��
��
�

��
��
��
�

!!
!!
!!
!

""
""
""
"

100

66 65 65

ALU
IW

FPU

#�##�#$
$%�%%�%&
&

'�''�'(
(

Base
GG+LL (Auto)
GG+LL (Manual)
LG

))
))
))
)

**
**
**
*

++
++
++
+

,,
,,
,,
,

--
--
--

..
..
..

//
//
//

00
00
00

100

58 58 59

11
11
11
1

22
22
22
2

33
33
33
3

44
44
44
4

55
55
55

66
66
66

77
77
77
7

88
88
88
8

99
99
99
9

::
::
::
:

;;
;;
;;
;

<<
<<
<<
<

100

62 61 63

(a)

==
==
==
=

>>
>>
>>
>

??
??
??
?

@@
@@
@@
@

AA
AA
AA
A

BB
BB
BB
B

100

63 63 62

C�CC�C
C�CC�C
C�CC�C
C�C

D�DD�D
D�DD�D
D�DD�D
D�D

69 70

EE
EE
EE
E

FF
FF
FF
F

GG
GG
GG

HH
HH
HH

II
II
II

JJ
JJ
JJ

100

59 59 57

KK
KK
KK
KK

LL
LL
LL
LL

77 76

100%

75%

50%

25%

GSMdec

%
 B

as
e

E
ne

rg
y

GSMenc G728dec G728enc H263dec H263enc MPGdec MPGenc MP3dec

*

77

MM
MM
MM
M

NN
NN
NN
N

100

56 54 56

O�OO�O
O�OO�O
O�OO�O
O�O

PP
PP
PP
P

QQ
QQ
QQ
Q

RR
RR
RR
R

SS
SS
SS
S

TT
TT
TT
T

100

66

U�UU�U
U�UU�U
U�UU�U
U�U

V�VV�V
V�VV�V
V�VV�V
V�V

100

80 78 76

WW
WW
WW
W

XX
XX
XX
X

YY
YY
YY
Y

ZZ
ZZ
ZZ
Z

[[
[[
[[
[[

\\
\\
\\
\\

100

74 76 79

ALU
IW

FPU

]�]]�]^
^_�__�_`
`

a�aa�ab
b

Base
GG+LL (Auto)
GG+LL (Manual)
LG

cc
cc
cc
cc

dd
dd
dd
dd

ee
ee
ee
ee

ff
ff
ff
ff

gg
gg
gg
g

hh
hh
hh
h

ii
ii
ii
i

jj
jj
jj
j

100

74 75 74

kk
kk
kk
k

ll
ll
ll
l

mm
mm
mm
mm

nn
nn
nn
nn

oo
oo
oo
oo

pp
pp
pp
pp

100

qq
qq
qq
qq

rr
rr
rr
rr

ss
ss
ss
ss

tt
tt
tt
tt

uu
uu
uu
uu

vv
vv
vv
vv

100

80 79 81

ww
ww
ww
w

xx
xx
xx
x

(b)

yy
yy
yy
yy

zz
zz
zz
zz

{{
{{
{{
{

||
||
||
|

}}
}}
}}
}

~~
~~
~~
~

������
������
������
������

������
������
������
������

100%

75%

50%

25%

GSMdec

%
 B

as
e

E
ne

rg
y

GSMenc G728dec

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��

��
��
��
��

G728enc

100

67 68 70

100

75 73 72

100

78 79 76

100

84 83 83

100
105

82 80

100

83 81 78 77

H263dec H263enc MPGdec MPGenc MP3dec

*

*

ALU
IW

FPU

Base (w/DVS)
GG+LL (Auto)
GG+LL (Manual)
LG

100

90 88 90

100

67 70 67

100

81
77

��
��
��
��

��
��
��
��

������
������
������
������

������
������
������
������

��
��
��
��

��
��
��
��

��
��
��
�

��
��
��
�

��
��
��
��
�

��
��
��
��
� ������

���
��
��������
�

�������
�

������
������
������
������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�

¡¡
¡¡
¡¡
¡¡

¢¢
¢¢
¢¢
¢¢

££
££
££
££

¤¤
¤¤
¤¤
¤¤

¥¥
¥¥
¥¥
¥¥

¦¦
¦¦
¦¦
¦¦

§§
§§
§§
§§

¨¨
¨¨
¨¨
¨¨

©©
©©
©©
©

ªª
ªª
ªª
ª

««
««
««
««
«

¬¬
¬¬
¬¬
¬¬
¬

­­
­­
­­
­­
­

®®
®®
®®
®®
®

¯¯
¯¯
¯¯
¯

°°
°°
°°
°

±±
±±
±±
±

²²
²²
²²
²

³³
³³
³³
³

´´
´´
´´
´

(c)

Figure 3. Energy consumption, normalized to Base. (a) With loose deadlines and no DVS. (b) With
tight deadlines and no DVS. (c) With loose deadlines and DVS. The shaded parts of each bar indicate
the energy consumed by the instruction window, ALUs, and FPUs. For some of the experiments,
GG+LL misses too many deadlines – these points are indicated with a star above the bar.

LG savings relative without DVS with DVS
to energy of Loose Tight Loose

Avg Max Avg Max Avg Max

Base 39 46 30 44 23 33
GG 4 10 10 17 9 21
LL 18 23 6 16 2 6
GG+LL (Auto) 0 3 -1 5 4 24
GG+LL (Manual) -1 4 0 3 1 5

Table 4. Average energy savings (%) for LG.

energy savings results are for reference only. Although not
shown for lack of space, the mean configurations chosen by
all of these algorithms are similar in almost all cases, lead-
ing to similar energy savings.

For GSMenc with DVS, GG+LL with Auto tuning uses
more energy than even Base (which uses DVS in this case).
To compensate for the large IPC degradation it gives GS-
Menc, GG+LL with Auto tuning chooses a much higher
frequency for than LG (645 MHz mean across all frames
for GG+LL vs. 502 MHz for LG).

For reference, we also report average and maximum en-
ergy savings for LG relative to both GG and LL alone. LG
does better than both GG alone and LL alone, with relative
savings depending on the amount of temporal slack (up to
21% over GG and up to 23% over LL).

App GG+LL LG App GG+LL LG

GSMdec 2% 6% GSMenc 4% 4%
G728dec 5% 4% G728enc 6% 16%
H263dec 3% 9% H263enc 10% 11%
MPGdec 2% 7% MPGenc 3% 9%
MP3dec 4% 16% Mean 4% 9%

Table 5. Temporal slack spreading for GG+LL
and LG, given as the standard deviation of per
interval IPC degradation.

5.4 Temporal Slack Spreading

LG strategically chooses how much temporal slack to
use for each interval based on the energy-performance
tradeoffs for all intervals; thus, it “spreads” the slack across
each frame. LL, in contrast, is not intended to use temporal
slack; thus, GG+LL should not spread slack any more than
GG.

We quantify this effect for LG and for GG+LL, for com-
parison. For one frame of each application, we use the
architecture chosen by GG (as part of GG+LL) as a base-
line; i.e., we run the chosen frame without adaptation us-
ing the architecture chosen by the GG part of GG+LL. We
then compute, for each interval, the IPC degradation given
by each algorithm relative to the above baseline. Finally,

we compute the standard deviation of the per interval IPC
degradation expressed as a percentage of the mean. This is
a measure of how much temporal slack spreading LG and
GG+LL provide. Table 5 shows the results.

We see that although LG spreads slack more than
GG+LL in almost all cases, GG+LL does spread tempo-
ral slack – up to 10% in one case. Tuning GG+LL actually
adjusts how it spreads slack. Thus, even though it spreads
slack in a very ad hoc manner, with enough tuning it is able
to achieve almost the same energy savings as LG, which
inherently spreads slack strategically.

6 Related Work

Most of the adaptation control algorithms proposed in
other studies have been for specific adaptive resources and
have targeted either temporal slack (for DVS) or resource
slack (for architecture adaptation), but not both [1, 2, 3, 5,
6, 9, 11, 14, 23, 24, 25, 26, 27, 28, 32].

There has been some recent work on controlling DVS
optimally [14, 23]. However, to our knowledge, there is no
such work for architecture adaptation.

In the architecture adaptation space, the most closely
related work is by Huang et al. [15, 16]. They propose
DEETM, a spatially global algorithm for general applica-
tions [15]. DEETM distributes temporal slack evenly across
all intervals (i.e., targets the same temporal slack for each
interval). The intervals are large (on the order of millisec-
onds), making this algorithm temporally global.

More recently, Huang et al. developed an algorithm for
controlling architecture adaptation for general applications.
It adapts at the temporal granularity of subroutines and can
spread temporal slack across subroutines [16]. The algo-
rithm associates configurations with subroutines, analogous
to what we do for each PC value, but with much larger inter-
vals. When mapping configurations to subroutines, it con-
siders independent resources separately – for dependent re-
sources it examines all possible combinations of their con-
figurations. It chooses the set of subroutine-configuration
pairs that saves the most energy across the entire application
for a given amount of slack. This differs from our LG algo-
rithm in two important ways. First, it runs at a coarser tem-
poral granularity, and so does not exploit short term vari-
ability. Second, it assumes that most adaptations are inde-
pendent of one another. Under these conditions the search
space is small enough that an exhaustive search (through
all subroutine-adaptation pairs) for an optimal solution be-
comes feasible. However, the adaptations we consider are
interactive, and for our applications, using such a coarse
temporal granularity would fail to capture the full energy-
savings potential. Further, our application with the small-
est search space has more than ��� ����� configuration-interval
pairs, making exhaustive search infeasible. We avoid using

exhaustive search by exploiting insights into multimedia ap-
plications to apply an efficient optimization algorithm. Fur-
thermore, we integrate control of DVS into our algorithm.

Dropsho et al. propose LL algorithms for the issue
queues, load-store queue, ROB, register file, and caches [6].
They target general applications, and do not exploit tempo-
ral slack. The algorithms for the caches use control feed-
back to obviate the need for tuning. However, they require
accurate prediction and measurement of the temporal slack
used for each interval. These are easy to obtain for the cache
adaptation considered, but it is unclear how to obtain them
for other resources.

There is also substantial work for adapting other parts of
the system, and integrating it with the processor is a key part
of future work. Most of this work is also thresholds-based
and requires a lot of tuning [8, 12].

7 Conclusions

In this paper, we study adaptation control algorithms for
adaptive general-purpose processors running real-time mul-
timedia applications. To our knowledge, we are the first to
take a formal approach to architecture adaptation control for
saving energy. We pose control algorithm design as a con-
strained optimization problem and solve it using a standard
technique, the Lagrange multiplier method. This technique
assumes knowledge of energy-performance tradeoffs for the
different hardware configurations at all points in all frames.
We show how to estimate these tradeoffs using properties of
real-time multimedia applications; however, our technique
is likely extendible to other application domains by leverag-
ing recent work on phase detection.

It is hard to control high overhead adaptations during
a frame; thus, we do so at the frame granularity. At the
beginning of each frame, we split the available temporal
slack between DVS and architecture adaptation (close-to-
optimally), choose a voltage/frequency for the entire frame,
and adapt the architecture during the frame.

We compare our algorithm’s ability to make deadlines
and save energy to the best previously proposed algorithm
for real-time multimedia applications. The previous algo-
rithm uses heuristics instead of our more formal optimiza-
tion approach. These heuristics compare processor statis-
tics to a set of thresholds, which require tuning to adjust
the energy savings and missed deadlines. While our al-
gorithm tries to optimally “spread” the available tempo-
ral slack across each frame, the previous algorithm spreads
slack in an ad hoc manner.

While our algorithm meets the soft real-time require-
ments for our experiments, the previous algorithm’s results
depend on its tuning. With an automated tuning process,
the previous algorithm is unable to always meet the re-
quirements on missed deadlines, in one case missing nearly

100%. With hand-tuning, a process which takes an imprac-
tically long time, it is able to meet the deadline requirements
for all but one application. Our algorithm, which needs lit-
tle tuning, saves almost the same energy as the previous one
even when it is hand-tuned, making it practical to imple-
ment.

There are a number of avenues of future work, includ-
ing integrating processor adaptation with adaptation in the
rest of the system, handling interaction with the operating
system, providing real-time guarantees, and extending this
work to other application domains.

Acknowledgements

We would like to thank Douglas Jones for leading us to
the Lagrange multiplier method and other members of the
GRACE project.

References

[1] D. H. Albonesi. Selective Cache Ways: On-Demand Cache Re-
source Allocation. In Proc. of the 32nd Annual Intl. Symp. on Mi-
croarchitecture, 1999.

[2] R. I. Bahar and S. Manne. Power and Energy Reduction Via Pipeline
Balancing. In Proc. of the 28th Annual Intl. Symp. on Comp. Archi-
tecture, 2001.

[3] D. Brooks and M. Martonosi. Dynamically Exploiting Narrow
Width Operands to Improve Processor Power and Performance. In
Proc. of the 5th Intl. Symp. on High Performance Comp. Architec-
ture, 1999.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Proc. of
the 27th Annual Intl. Symp. on Comp. Architecture, 2000.

[5] A. Buyuktosunoglu et al. An Adaptive Issue Queue for Reduced
Power at High Performance. In Proc. of the Workshop on Power-
Aware Computer Systems, 2000.

[6] S. Dropsho et al. Integrating Adaptive On-Chip Storage Structures
for Reduced Dynamic Power. In Proc. of the Intl. Conf. on Parallel
Architectures and Compilation Techniques, 2002.

[7] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing
and Predicting Program Behavior and its Variability. In Proc. of the
12th Annual Intl. Symp. on Parallel Architectures and Compilation
Techniques, 2003.

[8] X. Fan, C. S. Ellis, and A. R. Lebeck. Memory Controller Policies
for DRAM Power Management. In Proc. of the Intl. Symposium on
Low Power Electronics and Design, 2001.

[9] D. Folegnani and A. González. Energy-Efficient Issue Logic. In
Proc. of the 28th Annual Intl. Symp. on Comp. Architecture, 2001.

[10] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC Variation in
Workloads with Externally Specified Rates to Reduce Power Con-
sumption. In Proc. of the Workshop on Complexity-Effective Design,
2000.

[11] K. Govil, E. Chan, and H. Wasserman. Comparing Algorithms for
Dynamic Speed-Setting of a Low-Power CPU. In Proc. of the 1st
Intl. Conf. on Mobile Computing and Networking, 1995.

[12] S. Gurumurthi et al. DRPM: Dynamic Speed Control for Power
Management in Server Class Disks. In Proc. of the 30th Annual
Intl. Symp. on Comp. Architecture, 2003.

[13] T. R. Halfhill. Transmeta Breaks x86 Low-Power Barrier. Micro-
processor Report, February 2000.

[14] C.-H. Hsu and U. Kremer. The Design, Implementation, and Evalu-
ation of a Compiler Algorithm for CPU Energy Reduction. In Proc.
of the SIGPLAN’03 Conf. on Prog. Language Design and Imple-
mentation, 2003.

[15] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A Framework
for Dynamic Energy Efficiency and Temperature Management. In
Proc. of the 33rd Annual Intl. Symp. on Microarchitecture, 2000.

[16] M. C. Huang, J. Renau, and J. Torrellas. Positional Processor Adap-
tation: Application to Energy Reduction. In Proc. of the 30th An-
nual Intl. Symp. on Comp. Architecture, 2003.

[17] C. J. Hughes. General-Purpose Processors for Multimedia Applica-
tions: Predictability and Energy Efficiency. PhD thesis, University
of Illinois at Urbana-Champaign, 2003.

[18] C. J. Hughes et al. Variability in the Execution of Multimedia Ap-
plications and Implications for Architecture. In Proc. of the 28th
Annual Intl. Symp. on Comp. Architecture, 2001.

[19] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM:
Simulating Shared-Memory Multiprocessors with ILP Processors.
IEEE Computer, February 2002.

[20] C. J. Hughes, J. Srinivasan, and S. V. Adve. Saving Energy with
Architectural and Frequency Adaptations for Multimedia Applica-
tions. In Proc. of the 34th Annual Intl. Symp. on Microarchitecture,
2001.

[21] Intel XScale Microarchitecture. http://developer.intel.com/design/
intelxscale/benchmarks.htm.

[22] B. S. Krongold, K. Ramchandran, and D. L. Jones. Computation-
ally Efficient Optimal Power Allocation Algorithms for Multicarrier
Communication Systems. IEEE Trans. on Communications, Jan-
uary 2000.

[23] J. R. Lorch and A. J. Smith. Operating System Modifications for
Task-Based Speed and Voltage Scheduling. In Proc. of the Inter-
national Conference on Mobile Systems, Applications, and Services
(MobiSys), 2003.

[24] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron.
Control-Theoretic Dynamic Voltage and Frequency Scaling for
Multimedia Workloads. In Proc. of the 2002 International Con-
ference on Compilers, Architectures, and Synthesis for Embedded
Systems, 2002.

[25] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating: Specula-
tion Control for Energy Reduction. In Proc. of the 25th Annual Intl.
Symp. on Comp. Architecture, 1998.

[26] R. Maro, Y. Bai, and R. Bahar. Dynamically Reconfiguring Proces-
sor Resources to Reduce Power Consumption in High-Performance
Processors. In Proc. of the Workshop on Power-Aware Computer
Systems, 2000.

[27] T. Pering, T. Burd, and R. Brodersen. Voltage Scheduling in the
lpARM Microprocessor System. In Proc. of the Intl. Symposium on
Low Power Electronics and Design, 2000.

[28] D. Ponomarev, G. Kuck, and K. Ghose. Reducing Power Require-
ments of Instruction Scheduling Through Dynamic Allocation of
Multiple Datapath Resources. In Proc. of the 34th Annual Intl.
Symp. on Microarchitecture, 2001.

[29] D. G. Sachs et al. GRACE: A Cross-Layer Adaptation Framework
for Saving Energy. IEEE Computer (a sidebar), Dec. 2003.

[30] R. Sasanka, C. J. Hughes, and S. V. Adve. Joint Local and Global
Hardware Adaptations for Energy. In Proc. of the 10th Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems, 2002.

[31] T. Sherwood, S. Sair, and B. Calder. Phase Tracking and Prediction.
In Proc. of the 30th Annual Intl. Symp. on Comp. Architecture, 2003.

[32] M. Weiser et al. Scheduling for Reduced CPU Energy. In Proc. of
the 1st Symposium on Operating Systems Design and Implementa-
tion, 1994.

[33] W. Yuan et al. Design and Evaluation of A Cross-Layer Adap-
tation Framework for Mobile Multimedia Systems. In Proc. of
the SPIE/ACM Multimedia Computing and Networking Conference,
2003.

