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Abstract

A register file is a critical component of a modern
superscalar processor. It has a large number of entries
and read/write ports in order to enable high levels of
instruction parallelism. As a result, the register file’s
area, access time, and energy consumption increase
dramatically, significantly affecting the overall
superscalar processor’s performance and energy
consumption. This is especially true in 64-bit
processors.

This paper presents a new integer register file
organization, which reduces energy consumption,
area, and access time of the register file with a
minimal effect on overall IPC. This is accomplished by
exploiting a new concept, partial value locality, which
is defined as occurrence of multiple live value
instances identical in a subset of their bits. A possible
implementation of the new register file is described
and shown to obtain very good results, even when
compared to recently proposed optimized register file
designs. Overall, an energy reduction of over 50%, a
18% decrease in area, and a 15% reduction in the
access time are achieved in the new register file. The
energy and area savings are achieved with a 1.7%
reduction in IPC for integer applications and a
negligible 0.3% in numerical applications, assuming
the same clock frequency. A performance increase of
up to 13% is possible if the clock frequency can be
increased due to a reduction in the register file access
time. This approach enables other, very promising
optimizations, three of which are outlined in the paper.

1. Introduction

Integer word size in recent high-performance
processors has increased to 64 bits. This increase is
primarily due to the need for a larger virtual address,
but also helps to represent larger integer values in
general. Computer architects have repeatedly shown
that within this enormous dynamic range of values the
distribution of used values is very non-uniform. A few
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values account for the majority of values used.

This bias in data values is taken advantage of by
several  micro-architectural  techniques.  Value
Prediction [14] is one such technique, which takes
advantage of identical values that are seen repeatedly in
computations or memory accesses. Another example is
the cache hierarchy, which works because of address
locality — the fact that memory addresses get re-utilized
[3]. Moreover, it has been shown [25] that caching a
small number of frequently used values may help
reduce memory utilization by approximately 50% in six
SPEC95 programs.

Some of the above techniques exploit repeated
occurrence of the same data values as well as of the
nearby data values. This is the difference between
temporal and spatial locality in the memory hierarchy.
It is also the difference between two main types of data
exploited by value locality.

This research investigates the exploitation of a
different type of value locality. This form of value
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Figure 2. Distribution of (64-d)-similar Live Integer Data Values as a function of d

locality can be described as a partial value locality: a
frequent occurrence of values that have identical
subsets of consecutive bits. Results presented in this
paper prove its existence and scope. The paper then
shows how Partial Value Locality can be exploited in
the design of a integer register file.

The integer register file is a CPU unit with one of the
highest energy requirements [7] states that a register
file accounts for 15% to 20% of the overall energy
consumption. This is partly due to the 64 bit word size,
as mentioned above. Another reason is its size of 64 or
more physical registers. Finally, due to wide instruction
issue, the file needs to have a large number of read and
write ports. This research shows how partial value
locality can be used in the design of a (physical)
register file to significantly lower its energy
requirements and, potentially, reduce its access time.

Recent work on low-energy register file design
concentrated on reducing the number of ports. In
contrast, the research proposed here reduces, on
average, the effective register file size and its word
size. This results in significant savings, even when
compared to architectures with a reduced register file
size and a limited number of ports, such as those
proposed in [10] [5].

One can exploit value locality in the register file if
the number of unique register values is small. Figure 1
shows the distribution of integer data values in the
entire SPEC2000 benchmark suite'. Different sections
of the pie chart show the fraction of distinct, live
integer register values. For instance, it shows that a
single value accounts for 14% of all live register values
across all SPEC2000int programs. This fact has been
used in [19] to design a better register file.

This paper shows that partial value locality is also
widespread among register values. Its main
contribution is a content aware register file

! Obtained using an oracle that each cycle grouped and counted
all live values in integer registers (for a processor configuration
shown in Table I). The oracle then counted the number of live
registers with the most frequent value, the second most frequent
value, etc.
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organization, which takes advantage of the nearness of
live register values. The register file is partitioned into
several sub-files, each of them storing a different type
of value. Such sub-files can be smaller, more narrow,
and have fewer ports than the standard register file. In
fact, it will be shown that the clock cycle time may be
also be reduced using this approach resulting in
performance improvement. The register file area is also
improved.

The paper presents one application of partial value
locality and of the new register file organisation.
However, both of these are believed to have significant
potential for other types of processor optimization.
Section 6 briefly outlines three other applications and
discusses their potential.

This paper is organized as follows. Section 2 defines
a new concept, d-similarity, which is a special case of
partial value locality, Section III defines a content
aware register organization, and Sections 4 and V
analyse the impact of the proposed mechanism on
performance and energy consumption. Potential
benefits of a shorter access time and area savings that
the new mechanism produces are also analysed.
Finally, future work is discussed in Section 6 and
conclusions in Section 8.

2. Data Value Similarity

Let us define similarity, which is a special case of
partial value locality. Two data values will be called
similar if they are micro-architecturally near one
another. Micro-architecturally reflects the fact that
value similarity is expressed in micro-architectural
rather than arithmetic terms. For example, two values
that differ by 1 can be different in many bit positions.

More precisely, two 64 bit values are called (64-d)-
similar if they differ in d least significant bits and are
equal in the remaining (64-d) high-order bits. (64-d)-
similarity captures partial value locality in computation
that a micro-architecture can exploit. The question is
whether the amount of this type of partial value
locality is high. (64-d)-similarity will be evaluated for
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integer values in registers for both integer and floating-
point codes in this paper, but it exists in other parts of
the system as well.

(64-d)-similarity was measured as follows. Each
cycle all live values in the integer physical register file
were analyzed to determine how many had identical
(64-d) high-order bits. Registers with (64-d)-similar
values were placed in a similarity group and the
number of registers in each group was determined. The
groups were ordered based on the number of registers
in them. Figure 2 a) shows that, on average, 35% of the
live registers were in the first similarity group, another
9% in the 2nd group, 10% in the 3rd and 4th groups,
etc. The remaining values (another 35%) were placed
in the last group (REST). Without partial value locality
the distribution would have been uniform.

Figure 2 a), b), and c) differ in the value of d used.
An increase in d changes the distribution. For instance,
the /®-group captures more partially redundant integer
register values than any other group. In general, the
group with a very large number of values (REST)
decreases with increase in d and all others increase
because of that. These values are cumulative in the
following sense: tracking the top four (64-d)-similar
values will capture all values in groups of /, 2, and 4
groups for a total of 70% of all values (for d=16).

The results in Figure 2 demonstrate that many values
are (64-d)-similar. A group of (64-d)-similar values
shares the high-order bits and each value instance in the
group is uniquely represented by its remaining d bits.
They are therefore called short values. Value instances
that do not share their higher-order bits with any other
value are called /ong. Finally, a subset of short values
will be treated in a special way. These values have a
simple high-order part, either all zeros or all ones, and
are called simple values. The existence and frequency
of occurrence of the three value types: short, simple,
and long, can be exploited by reorganizing the register
file as described in the next section. To simplify the
notation, the (64-d)-similar values will be just called d-
similar in the remainder of this paper.

3. A new register file organization

The new register file organization shown in Figure 3
in replaces a standard, N-entry physical register file
organization. It consists of three separate files which
together approximate the behavior and performance of
N 64 bit physical registers. These files store values of
different type: short, long, or simple. Each file has a
unique size and bit width exploiting the properties of
the value type it stores. The effect of these architectural
parameters is studied later in this paper.

The Long register file stores 64-bit data and has the
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same general organization as a traditional register file.
The difference is that it can be significantly smaller due
to the existence of other value types, which are stored
in the other two register files. The reduced size is one
reason for its lower energy consumption. Reduced
frequency of access is another reason.

The Short register file holds the high-order bits for
short values. It is (64-d-n) bits wide (n is defined
below). The size of the Short register file can be small,
as will be shown below. The size reduction leads to
lower access energy. The remainder of the 64 bit word,
d+n bits is stored in the third register file described
next.

The third register file is a Simple register file and it
performs two distinct functions. The first one is to hold
all unique low-order d+n-bit fields for simple, short
and long values. The second function is to determine
the type of register access being performed and to
locate the short and long values. The Simple register
file has N entries, which is equal to the size of standard
physical register file if it were used. A simple entry is
assigned in renaming, but its width is significantly
smaller, reducing the access energy.

An entry in the Simple register file is composed of a
2-bit field called a Register Descriptor (RD) and a
(d+n)-bit field called a Value field. The RD field
identifies the type of value stored in the physical
register (simple, short and long). The Value field stores
a d+n bit, signed value for a simple value type or a
d+n-bit value for a short value type. A pointer to the
Short register entry uses the » bits. The Value field
stores an m-bit pointer to the long register file and d+n-
m bits of a long value. The latter allows the word size
of the Long register file to be reduced further. The new
register file is shown in Figure 3..

To summarize, an N by 64-bit physical register file
is replaced in the proposed organization by three
separate register files of the following sizes:

SIMPLE REGISTER FILE SHORT REGISTER FILE
R.D. VALUE FIELD 64-d-1 [
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Figure 3. The Content Aware Register File
Organization
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e an N-entry by (d+2-+n) bit Simple file,
e an M-entry by (64-d-n) bit Short file,
e a K-entry by (64-d-n+m) bit Long file
where n=log, M and m= log, K
Clearly, both the performance and the energy
consumption of the register file heavily depend on
parameters M, K, and d. Results presented below show
the performance impact of these parameters and are
used to select their values to optimize the IPC and
energy consumption of the proposed architecture.
Finally, the content aware register file organization
uses multiple read and write ports. The number of ports
and existing techniques to reduce this number are
largely orthogonal to the design of the content aware
file. This will be further discussed in Section 4.

3.1. Register file operation

The operation of the new register file consists of two
main steps. Let us first describe it for a read access.
When a physical register / is accessed, the first step is
to determine the type of value it stores. Based on this
information, a type-specific register file (or files) is
accessed and the value retrieved. The value type for the
physical register / is determined by accessing the RD
field of the /-th entry in the Simple register file. The
value field is read out in parallel.

If the RD field specifies a long value, then m bits of
the d+n Value field are used as an index to the Long
register file. The /ong register file is accessed next, the
desired value is read out, combined with the bits from
the Simple file and sent to the functional unit(s). The
long value access thus becomes a two-cycle operation.

If the RD field specifies a short value, then the d+n-
bit and the »-bit sub-fields of the Value field are used
as follows. The n-bit sub-field is used as an index to the
Short register file, which is accessed next to read out
the (64-d-n) high-order bits of the value. The d+n bits
from the Value field and the (64-d-n) bits from the
Short register file are concatenated to form the 64-bit
value. This type of access also requires two cycles.

Finally, if the RD field specifies a simple value then
the (d+n) bit Value field from the Simple register file is
sign extended to 64 bits and sent to the functional
unit(s). Using d+n bits for the simple values says that
they belong to a d+n-similar class of value instances.
For the short and long classification only the d-
similarity is used. This simply takes advantage of the n
extra bits to enlarge the range of potential simple
values.

One final issue for reads is what to use as the n-bit
pointer for short values. The low-order n bits of the
(64-d) high-order bits of a value group are used for this
purpose. This mechanism works well in that its use
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does not result in pointer conflicts. It is also shown
below that this register file does not need to be very
large and that a small n (3 or 4 bits) suffices to index it.
The Short register file entries are actually (64-d-n) bits
wide since the last n bits are already stored in the
Simple register file.

Writes present a different set of issues to resolve.
First, a destination register of an instruction is allocated
long before the value type of the result is known.
Second, a value type determination needs to be
performed before the write can be performed. The next
section explains how this is done in the context of the
instruction pipeline and its stages.

3.2. A Modified Instruction Pipeline

This section describes a possible implementation in
the instruction pipeline. The previous section indicated
that read access to the content aware register file
requires additional steps, and therefore extra time. The
extra time requires an additional register read stage in
the instruction pipeline. As will be shown later in the
paper, the extra stage has a negligible effect on
performance. Modification of other pipeline stages is
also required, as explained below.

Figure 4 shows the modified instruction pipeline
starting with the ISSUE stage. Earlier stages, such as
FETCH and DECODE, are not shown since they
remain in the same place even if their functionality is
modified. The main additions are an extra operand read
stage, a value type determination (comparison) stage
after execute or memory access, and extra bypass logic.
These modifications are described next in pipeline
stage order.

Decode/Rename: this stage now assigns a simple
register entry to every destination logical register. The
number of simple registers is equal to the total number
of physical tags, so this is done in exactly the same way
as in the baseline micro-architecture. At this point in
the pipeline it is impossible to determine the value type
of a destination physical register. This determination
(and allocation for Short and Long values) is deferred
until a later pipeline stage when the result value is
available.

1c bl
DATA _—-@——m
CACHE
ISSUE | OPERAND OPERAND ALL | MEMORY | WRITEBACK | WRITEBACK
READ READ| ALL MEM

Figure 4. (Partial) Instruction Pipeline
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RF Read: the register file access is performed in two
separate stages, RF1 and RF2.

The first stage RF1 performs an access to the Simple
register file and is equivalent to the baseline register
file read stage. The access to the Simple register file
produces the value type information (RD field) as well
as the content of the Value field.

The second stage RF2 performs the following
functions depending on the RD field value read in RF1:
e Set up the final result multiplexor based on the value

type
e Ifthe RD value obtained in RF1 was

o Simple Value :

The (d+n) bit value read out in RF1 is sign-
extended to 64 bits.

o Short Value

= An n-bit pointer from the Value field accessed
in RF1 is used to read an entry from the Short
register file.

= The value read from the Short file is
concatenated with d-+n bits obtained in RF1.

o Long Value

* An m-bit pointer from the Value field
accessed in RF1 is used to read an entry from
the Long Register File.

* The value read is concatenated with (d+n-m)
bits obtained in RF1.

One may wonder if the addition of a multiplexor
delay in RF2 increases the cycle time. This is
impossible to answer without a detailed design.
However, this additional delay is likely masked by a
shortened access time to the Short and Long register
files. In addition, access to the Simple register file in
RF1 is not likely to need a full cycle and time can be
borrowed from there. The access time is lower because
these files have fewer entries and lower bit width.

Write-Back: the write-back in the new register file
organization also requires two stages, WR1 and WR2.

Recall that a physical register is assigned to an
instruction by the renaming mechanism before the
result value type is known. This is one of the reasons
why all register accesses go through the simple register
file first (although this may be avoided, as will be
shown in Section 6). The assignment of a Short or
Long register file entry, if required, has to be delayed
until the data value is produced and its type
determined. It then requires a Short or Long register
allocation at this point in the pipeline (see description
below).

The first stage WRI1 performs the following two
functions concurrently:

e Determine if the result is a simple value. This is a

(64-d-n) bit compare of the higher bits with 0 and 1.
e Use the appropriate n bits of the result as a pointer to
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determine if it is a known short value. This is

accomplished by reading a Short register pointed at

and performing a comparison. The value is Short if
the comparison succeeds, otherwise the result is
marked as a Long value.

This is the longer of the two functions. Its timing is
determined by the Short register file access time. This
file is very small and thus has a much lower access time
then the other two files. Therefore, this should not be a
problem.

It also requires additional read ports on the Short
file, one for each write port. Again, this file is very
small and extra ports on it are not a serious problem.

At this point the type of an integer value is

determined and the actual write can be

performed in the next stage.

The second stage WR2 performs the following two
functions concurrently
e Write the value type in the Register Descriptor field

of the corresponding Simple register file entry.

e Perform one of the following depending of value
type determined in WR1:

o Simple value

= write the low (d+n) bits in the Value field of
the Simple Register File. Includes the sign bit.

o Short value: perform the following two operations

concurrently
= write the low (d+n) bits in the Value field of
the Simple Register File.
= write the high (64-d-n) bits in entry n of the
Short Register File.
o Long value: perform the following
operations concurrently.
= write the number of the newly allocated
register in the Value field of the Simple
register file.
= write the value to the allocated Long register.
= update the register allocation state (see below)

Result register allocation for Short and Long
values is performed during the write-back process. The
allocation process needs to be fast. A different strategy
is used for each value type.

Short: a short register is allocated using the n-bit
pointer contained in the value. If the desired entry in
the Short register file is not free the entry is declared
Long and the Long register allocation process is used.
Bits d, d+1, ..., d+n-1 of the result are used as an n-bit
pointer.

Long: maintain a pointer(s) to the next free register
to use and a free-entry counter. This pointer and the
counter are updated each time an allocation is made
during the WR2 stage.

three
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If there are no free long registers a Recovery State is
entered. A pseudo-deadlock is possible because an
instruction is issued before it is known that it will need
a Long register. For simplicity, the solution chosen in
this work is to stall the pipeline and free long registers
at this point. A description of how short and long
registers are normally freed can be found below.

The pseudo-deadlock situation was observed to
happen very infrequently. The deadlock probability is
further reduced by initiating the recovery action when
the number of free registers is low (but not 0). It was
experimentally determined that stalling issue when he
number of long physical registers is equal to issue
width greatly reduces the chance of pseudo-deadlock
with a negligible impact on performance.

The allocation of Short register entries above did not
describe when and how to select a value with a lot of
partial reuse. It is possible to try to allocate a new short
entry on every result and then see how useful it is. This
proved to cause a lot of thrashing because the Short file
is small and does not capture all short values with a lot
of reuse. Our analysis showed that good short values
mainly come from address computations. Therefore the
allocation of new short values was restricted to this
type of instructions. A base register used in a LD or ST
instruction is written into a Short file if a location it
maps to is free. This is actually performed in parallel
with the ALU stage and is the only time the Short File
is written. An address computed by a Load or a Store
instruction is used to allocate an entry, but only if the
indexed Short Register File location is free.

The Long and Simple registers are freed upon
instruction commit. Determining when to free a Short
register entry has to be done in such a way that frequent
value information is kept across different registers.
Reference counters can be used but their management
is complicated, in particular on branch misprediction.
Instead, a mechanism reminiscent of the reference bits
in the Virtual Memory system is used. These reference
bits are periodically cleared and then usage is recorded
again.

When an instruction reaches WRI1 stage and its
value type is Short, a bit Tcur is set to indicate that this
Short register still has a frequent value. There is one
such bit per Short register. When the entire ROB is
consumed (a period called ROB interval), Tcur is OR’d
with Tarch, another flag, to save the information from
all retired instructions. Tarch tracks whether a value in
a given Short register is used by an architectural
register. The OR of Tcur and Tarch shows that this
Short value was used during the last ROB interval and
is copied to Told. The Tcur is now cleared and Tacrh is
re-calculated for the current content of the Short file.
The recalculation is performed by a simple background
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Table 1. Architectural parameters

Baseline Out-of-Order Microprocessor
Simulation strategy Execution-driven
Is.sue/Fetch/Commit 8 instructions/cycle
width
Branch predictor Gshare ,14 bit history
I-L1 size 32 KB, 4-way, 1 cycle
D-L1 sze e e S
1% size llall/é]:éy 4-way 10 cycle
Memory latency 100 cycles
Memory bus width 32 bytes
Physical registers 112 Integer/128 FP
Reorder Buffer 128
Load/Store Queue 64
Integer Queue 32
FP Queue 32
g:sfer Funcional Units 8 (latency 1)

FP Funcional Units (lat.) | 8 (latency 2)

mechanism. A short register is free when Told, Tcur,
and Tarch are all zero.

Result Bypassing. The extra stage WB2 requires an
addition of an extra level of bypassing to avoid stalls. It
is estimated that the extra delay and energy
consumption of the bypass logic is compensated by the
savings in the register file. However, this additional
bypass does not have to be implemented if too
expensive. It is not used very frequently and provides
little performance improvement.

4. Performance

This section presents the performance and shows the
potential of the content aware register file with respect
to a baseline architecture defined in Table 1.
SPEC2000 benchmark suite was used to evaluate the
performance of this approach. The results presented are
averages over both integer and floating point
applications. All benchmarks have been simulated for
300 million representative instructions, where
representative is defined following [23].

Micro-architectures using a physical register file
with unlimited resources do so to maximize
performance ‘and to eliminate the need to stall the
processor due to lack of physical registers. The
baseline architecture performance is compared to such
an architecture. It uses 2x8 read ports and 8 write ports
for this design. The register file size is equal to the
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ROB size plus 32 (the number of architectural
registers) or 160 registers for this design.

The baseline architecture is defined to have a
register file with a reduced number of registers and
ports. It has been shown [15] that such a reduction
results in a negligible performance degradation and our
evaluation confirms this. The baseline register file
contains /72 physical registers (instead of 160
registers). This size was observed to lead to a
slowdown of only 1% compared to the unlimited case.
It is a much more meaningful base for comparing
energy reduction in the register file than the register file
with unlimited resources.

Various configurations of the baseline register file
with a limited number of read and write ports were
considered. The configuration with the best energy-
performance had 8 read and 6 write ports. The use of 8
read ports results in only a 0.17% slowdown compared
to 16 ports. The use of 6 write ports results in a 0.21%
IPC loss. The baseline integer register file uses this
configuration.

The configuration of the content aware register file
also needs to be defined. The important parameters
here are the value of d+n and the size of various
register sub-files. The IPC of a number of
configurations was measured to help select the best
overall configuration that reduced energy consumption
and access time with minimal performance loss.

Figure 5 shows the effect of the d+n parameter on
the relative IPC for various organizations. The 100%
performance corresponds to the register file with
unlimited resources. The baseline IPC is also shown. It
is clear that for all benchmarks the baseline
configuration performance is virtually identical to that
of a register file with unlimited resources.

The number of simple registers is always equal to the
number of physical registers in the processor, i.e. 112
in this case. The results in Figure 5 were obtained using
48 long and 8 short registers. The choice of these sizes
is explained next.The effect of the size of the short
register file on performance is as follows. Even a very
small number of short registers delivers close to the
maximum attainable IPC of 98+% for integer and
99+% for floating point benchmarks. The results are
not significantly better for 32 short registers. 8 short
registers are chosen as the best solution providing a
small IPC increase over the configuration with just 2
registers.

The effect of long register file size was studied in a
similar way using /12 physical registers and d=20. The
IPC for 48 long registers is practically the same as for
112 registers, IPC loss for 40 as compared to 48
registers is 0.6%. Floating point applications need 56
long registers to reach near-maximum baseline
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Figure 5. Average Relative IPC as a function of
d+n

performance of 99.75%. Numerical applications have a

very low overall IPC loss reaching 99.6% of baseline

with 48 long registers. The resulting choice is 48 long

registers.

d+n equal to 20 bits is selected based on the results
from Figure S5.Integer applications reach a near-
optimum point at 20, while floating point are extremely
close to maximum IPC. Higher values are not worth it
since any increase in d+n will lead to higher energy
consumption, area and cycle time.

One other alternative design for the short register
file is to use a fully associative search for values
instead of direct indexing, which was described in
Section 3.1. This was found lead to a very small
increase in IPC, but the energy consumption increase is
high compared to the n-bit index access and compare.
The reason is that a fully associative search requires the
use of a CAM, which is slow and energy inefficient.

Finally, the number of register ports on each of the
simple, short, and long sub-files was left unchanged
from the baseline configuration. In fact, additional
ports were provided in the Short file for comparison
access in stage WB1 (this is not a problem given how
small this file is). The number of accesses to each sub-
file is significantly reduced (as shown below) which
should allow a reduction in the number of both read
and write ports. However, this will lead to additional
control complexity since the /ong register allocation is
done after scheduling, while the potential energy
savings are estimated to be relatively low.

One would expect that the IPC, given the pipeline
with two stages for register file access, is the same
regardless of the simple register file width (d+n).
Instead, the IPC loss decreases with increase in d+n for
both integer and fp applications. The reason is that a
smaller d+n results in a lower value reuse in the short
registers and, therefore, more values are classified as
being /ong. This increases the probability of stalls due
to lack of long registers (and of the pseudo-deadlock
described above).

The impact of using the content aware register file
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Figure 6. Register file READ and WRITE
access distribution by value type (d+n)

with 8 short and 48 long registers can be seen in the
distribution of the read and write accesses for each
value/register type. The results presented in Figure 6
also show the dependence of the distribution on the
value of d+n (where n is fixed at 3), the width of the
simple file. The processor architecture contains bypass
logic, which eliminates many read accesses to the
register file in the content aware architecture (see Table
2 and [11][5]). This architecture has an additional level
of bypassing which further reduces the number of
register file accesses, as can be seen in Table 2 (and
actually reduces energy savings in the register file).

The Figure 6 shows the relative number of accesses
to the long register file to decrease with increase in
d+n, as can be expected. Larger d implies that more
values are considered short and simple rather than
long. The long register file consumes more energy per
access than the other two, so this is a good trend for
energy savings. The results show that for d+n=24 over
50% of all the accesses are short values. The number of
long accesses is below 20%.

Table 2 shows the percentage of all source operands
that came from bypass logic and did not require a
register access. This is something well known and
techniques such as the operand bypassing in the
functional units take advantage of this fact [11][5].

1620 24 “28. 32

Table 2 Percentage of bypassed operands

Baseline Content Aware
SPEC INT 38,1% 47.9%
SPEC FP 261% 28.4%
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Table 3. A simgle access energy for each
register file normalized to the unlimited
resource file

d+n | Simple | Short Long Baseline

8 8.2% 3.6% | 20.8%

12 11.3% | 3.4% 19.5%

16 143% | 3.2% 18.2%

20 17.3% | 2.9% 16.9% 48.8%

24 | 204% | 2.7% 15.6%

28 | 23.4% | 24% 14.3%

32 | 264% | 22% 13.0%

The percentage is lower for baseline architecture
because it uses only one level of bypass.

S. Energy, area and cycle time
considerations

A model proposed by Rixner et al [20] is used in this
work to estimate area, access time, and access energy
of the register file. It is done for both the baseline and
the content aware organizations. The results are shown
in Figure 7 and Table 3.

Table 3 shows access energy for each register file
type and the effect of d+n. All results are relative to the
unlimited organization. These results are obtained by
multiplying single access values from Table 3 by the
number of accesses for each type. The results show that
the baseline configuration was chosen well, it uses just
under 50% of the unlimited resource register file
energy with no appreciable decrease in IPC. The
content aware register file organization further
decreases the energy consumed in the register file by
another factor of 2. Using this figure in conjunction
with Figure 5 can determine the value of d+n which
delivers the highest energy-delay product.

Figure 8 presents the area of the three register files
relative to the unlimited resource register file. The
content aware register file is only 82.1% of the size of
the baseline register file.

Another result with implications for performance is

60%
3 0% e —
S
LB 40%
O =
8 £ 0%
2> M
2 20% -
2 —+— POWER RD + WR
S 10% r—
L - - & --POWER BASELINE
0% —_—

8 12 16 20 24 28 : 32
Figure 7. Relative register file energy
consumption with respect to the baseline
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Figure 8. Relative area of the register files

shown in Figure 9. The figure shows the relative access
time of the register files. All components of the content
aware register file are faster than the baseline register
access.

A shorter access time potentially allows a higher
clock frequency and this figure indicates a possible
15% increase in clock frequency. Several studies
[16][5] show that the register file is on the critical path,
and thus any decrease in its access time would be
beneficial. However, the exact improvement can only
be determined after a careful design. Even if the
register access time was reduced by 15%, another stage
can become the critical path.

With these disclaimers, let us estimate the increase
in performance based on potential frequency increase
achieved by our mechanism. If the frequency could be
increased by a 5%, the 1.5% average slowdown would
turn into a 3% average speed-up. A 10% to 15%,
increase could lead to a speed-up between 8% and
13%.

6. Other Potential Optimizations

The content aware register file proposed in this
paper has the potential to change the way a superscalar
out-of-order processor manages data and registers that
goes beyond the energy savings or the clock cycle
reduction discussed above. This section presents three
additional directions for utilizing the content aware
organization to further improve performance. These
ongoing projects show very promising preliminary
results.

Consider the source operand distribution in integer
instructions based on value type. Most of the time both
operands are of the same type (for over 86% of all
instructions), as can be seen in Table 4. It is also true
that the result operand is typically of the same value
type as the source operands. Therefore, using the
content aware register file allows a different type of
clustered micro-architecture to be defined. Existing
clustering mechanisms are driven by register usage, the
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Table 4. Operation distribution (for d+n=20
bits)

Percentage of operations based on source operands
Only simple operands 47.4%
Only short operands 21.7%
Only long operands 17.5%
Combination of simple and short 6.3%
Combination of simple and long 6.2%
Combination of short and long 1.0%

dataflow structure of an application, or the availability
of functional units. Instead, clusters can be based on
the value type in the content aware register file
organization. This can lead to performance
improvement as well as energy savings.

For instance, a narrow but very fast cluster for
simple values can be created. Another cluster can deal
with short values, which are also highly correlated with
memory addresses. The results above indicate that
there will be little inter-cluster communication in such
architectures. Preliminary results using this type of
clustering are very promising.

Another promising direction is to use the content
aware organization with simultaneous multithreading.
Results indicate that the fraction of long register
accesses is, on average, very small. In addition, the
number of live /ong registers is very small (on average,
only 12.7 registers). The need for 48 long registers is
driven by peak usage rather than by the average
number of live long registers. This indicates that a
smaller number of /ong registers can feed more than
one thread, especially if only one of them has high peak
register usage. This opens many interesting lines of
inquiry, such as what are the best thread priority
policies for this kind of simultaneous multithreading
architecture. This is the direction currently pursued by
us. The demand for registers and ports is much higher
in SMT architectures [6][4], therefore a larger

100%
SN ST MR R
g’ 80% 1 ‘?"4::::-—:::
= 70% |
m% 60% |
ESs0% | #—8—8—8n—u g 4
X 40% - - % - -BASELINE
= 30% ——SIMPLE
2 200 —&— SHORT
5 Jov | —&—LONG
0% e ey i

8 212° 16 20~ 24528 -~ 39

Figure 9. Relative access time of the register
files (d+n)
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improvement from content aware organization can be
expected. Preliminary results are also very promising
for this approach.

Memory hierarchy is another very promising area to
consider. Values similar to both /ong and simple have
been explored in previous work. However, both
addresses and data have considerable partial value
locality and its use can reduce both the energy and the
time of cache or memory access. In addition, it can be
exploited in the Load/Store unit and in combination
with clustering.

7. Related Work

The body of related work on register file energy
optimization is large. Some of it has already been
mentioned in the paper. Other work can be divided into
two broad categories. The first exploits data
compression in memory (from main memory to the
register file) and is orthogonal to the ideas presented in
this paper. The second category changes the register
file organization.

IBM developed a memory compression technique
based on the X-match compressor called Memory
Expansion Technology (MXT) [21]. This algorithm
works with large blocks of memory and is therefore
slow. It is most appropriate for main memory
compression.

For lower levels of cache hierarchy there exist
proposals such as X-RL [9], which compresses data in
the L2 cache. Random access to this data is not allowed
and therefore this technique can not be implemented in
the L1 cache due to potential performance impact.

L1 data compression based on value reuse uses a
small table to keep track of the most frequent values
using a type of profile-based dictionary [25]. This work
introduced the concept of frequent values, which has
been extended into frequent partial values in our work.
Another contribution uses dynamic zero compression is
described in [12]. It only compresses zero-valued
bytes.

There are a number of papers trying to exploit value
locality in the register file. [19] used the concept of
virtual-physical to join several physical registers when
they share the same value. [18] proposed a model to
optimize the use of specific values, 0 and 1. They are
all superseded by a mechanism based on d-similarity.

A concept of byte-to-byte compression across the
processor datapath was introduced in [17]. When a
particular zero or minus one value is found, the
processor works with the compressed version of the
data. The authors of this paper focused on energy
savings, since the mechanism relies on separate parallel
banks to store the compressed information.
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Modified register file organizations, such as [24],
concentrate on reducing the number of ports in a
register file to reduce energy. The authors assert that a
reduced number of ports may be more efficient both in
energy and access time, which can improve
performance.

Other studies proposed mechanisms to reduce the

number of the ports by means of modifying the register
file architecture, such as [11][2][5]. The mechanism
proposed in this paper is completely orthogonal to this
concept and can also benefit from a reduced number of
ports.
Other work attempts to improve the register
allocation algorithm to decrease the number of
necessary registers. These can be divided into three
subgroups. Early recycling frees registers before the
commit phase [13][16][8][22]. Virtual registers try to
delay the allocation of a physical register until the
writing of the register [1]. Hierarchical register files,
such as those presented in [11][16], effectively trade
size, speed, and power consumption.

8. Conclusions

This paper introduced the concept of partial value
locality and shown its existence in register file values
using the notion of d-similarity. Data values were
divided into three types: long, short, and simple, and a
new integer register file organization was proposed
based on this. It consists of three separate register files:
simple, short, and long. Each of these files has a
reduced size and lower frequency of access because the
use of value type information allowed register accesses
to be directed to the type-specific register file. The
paper also described pipeline modifications for
utilizing the new register file.

The change in size and frequency of access allowed
significant energy savings, while the impact on IPC
was almost negligible. The register file area and access
time were also noticeably reduced. Overall, the register
file implementation described saves, on average, 50%
of the energy compared to the baseline register file with
an average IPC loss of 1.7% (for SPECint2000). Even
further, this loss can be turned into a gain of up to 13%
if the access time reduction (up to 15%) would allow a
clock frequency increase. This is especially significant
if one takes into account that the baseline architecture
already used a reduced number of registers and
read/write ports.

It is very difficult to directly compare the energy
savings and performance loss of the proposed approach
and other recent proposals, such as [5][15]. They used
different simulators, architectures, and energy models.
Nevertheless, we are going to try to approximate. The
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reason is that all three papers report relative
improvement over an unlimited resource architecture.
The unlimited resource register file in [15] has 512
entries and the one in [5] has 180 entries, both with 16
Read and 8 Write ports. The relative energy savings
reported in [5] are 67% and those reported in [15] are
60%. The design proposed in this paper produces
energy savings by 77% (but only 50% compared to
baseline). And this is for a smaller register file of 160
registers with 16 read and 8 write ports.

Several ideas for future work utilizing the approach
presented in the paper were discussed. They are
currently under development and promise to open
additional, new research directions.
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