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Abstract 

 

We propose “secret-protected (SP)” architecture to en-
able secure and convenient protection of critical secrets 
for a given user in an on-line environment. Keys are ex-
amples of critical secrets, and key protection and man-
agement is a fundamental problem – often assumed but 
not solved – underlying the use of cryptographic protec-
tion of sensitive files, messages, data and programs. 

SP-processors contain a minimalist set of architectural 
features that can be built into a general-purpose micro-
processor to provide protection of critical secrets and 
their computations, without expensive or inconvenient 
auxiliary hardware.  SP-architecture also requires a 
trusted software module, a few modifications to the oper-
ating system, a secure I/O path to the user, and a secure 
installation process. Unique aspects of our architecture 
include: decoupling of user secrets from the devices, ena-
bling users to securely access their keys from different 
networked computing devices; the use of symmetric master 
keys rather than more costly public-private key pairs; and 
the avoidance of any permanent or factory-installed de-
vice secrets.1 
 
 
1.    Introduction 
 

In the Internet and wireless world, users want to be able 
to store and access their secrets or sensitive information 
securely across public networks, using different networked 
computing devices.  This includes document files, mes-
sages, programs, rights-managed applications and media 
content. Adversaries should not be able to decipher or 
tamper with the sensitive data as it is transported or stored. 
This can be achieved by encrypting and hashing the data 
using well-studied cryptographic algorithms and security 
protocols. However, the security provided by cryptogra-
phy depends on the safeguarding of cryptographic keys 
from adversaries. Therefore, keys are critical secrets. If 
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keys can be protected adequately, confidentiality and in-
tegrity of sensitive data can be achieved. 

Because software-only solutions, e.g., [8] [9] [18], have 
many weaknesses, high-assurance financial and military 
systems use specialized secure co-processing boxes to 
protect both the key materials and the computations that 
use the keys from physical and software attacks [31] [32]. 
Although such a protection mechanism is effective, it is 
expensive and impractical for use on mobile devices. 
Other applications use a smartcard to protect a core set of 
private keys [5]. The Trusted Computing Group (TCG) 
[36] uses a combination of hardware and software to cre-
ate a more secure Personal Computer (PC) platform. 

There are two important characteristics in these solu-
tions: they require separate hardware; and the hardware 
contains permanent secrets, usually a factory-installed 
public-private key pair. Trust is derived from the unique-
ness and provability of the device secret, and the device’s 
association with a given user. Apart from privacy con-
cerns, the latter attribute limits the portability of trust from 
one device to another. 

We propose a new paradigm where the sensitive data 
follows the users and is not associated with any particular 
device, but can be accessed using a multitude of devices 
with built-in security features described in this paper. We 
investigate an architecture that can scale to protect an un-
bounded number of cryptographic keys, and where re-
trieval of a key does not require establishing trust using 
factory-installed secrets. In addition, no separate hardware 
is required. This architecture can be used to protect any 
type of user secrets. In this paper, we focus on the protec-
tion of keys and investigate what constitutes a minimalist 
set of architectural additions to the general-purpose mi-
croprocessor and platform. 

Our proposal makes use of a hierarchically encrypted 
key chain to allow flexible storage of keys over publicly 
accessible networks. Computations involving the key ma-
terials are protected by a trusted software module running 
in a concealed execution environment. Concealed execu-
tion allows a process to execute without fear of its state 
being tampered with or observed by other processes, in-
cluding the Operating System (OS). Finally, secure regis-
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ters and cryptographic engines are added to the general-
purpose processor to support concealed execution. We call 
this an SP-processor, or “Secret Protected” processor. 

The rest of the paper is organized as follows: Section 2 
reviews related work and draws comparisons with our 
own. Section 3 states our threat model and defines our 
new trust model and reduced security perimeter. Section 4 
describes our architecture. Section 5 explains the proce-
dures for utilizing an SP-processor. Sections 6 and 7 give 
a security analysis and a performance analysis. Section 8 
summarizes the paper and points to future research.  
 
2.     Past Work 
 

Distributed software-only approaches seek to protect 
certain types of cryptographic keys by requiring an adver-
sary to quickly compromise several hosts or by enabling 
effective revocation mechanisms when key information is 
exposed, e.g., [8] [9] [18]. Although effective in defending 
against certain attacks involving limited classes and types 
of keys, these solutions engage remote servers in real-
time, providing an avenue for denial-of-service attacks. 

Hardware-based solutions have also been proposed and 
used in industry. For example, secure co-processors [31] 
[32] [37] [12] are used in financial and military applica-
tions. Secure coprocessors encapsulate general-purpose 
subsystems within physically secured casings. The private 
key of a factory-selected public-private key pair is se-
curely stored inside the casing during manufacture. While 
IBM’s secure co-processor platform [32] also allows its 
key pair to be replaced during service using a revocation 
procedure, it still relies on a factory installed secret and 
third-party authentication. Software that runs in the sub-
systems need to be carefully written to never leak the pri-
vate keys via the device’s interface. Untrusted hosts can 

utilize this guarantee to enable a wide variety of applica-
tions [31] [37] [7]. Smartcards can be regarded as special-
ized versions of secure co-processors in that they possess 
private keys that never leave the smartcard package, and 
contain computation elements that perform cryptographic 
operations using these keys. However, smartcards have 
limited computational and storage capability, and can be 
easily lost or stolen, while secure coprocessor subsystems 
may be expensive and inconvenient for mobile devices. 

Architectures, such as XOM [16], enable copy- and 
tamper-resistant software distribution [4] [11] [14] [33]. 
Application binaries are encrypted using symmetric-key 
encryption, and the keys are distributed specifically to 
each processor using its public-private key pair. These 
proposals provide a software tamper-resistant execution 
environment by compartmentalizing shared resources, 
implemented by either tagging or encryption. While not 
requiring additional hardware, the goal is to prevent soft-
ware piracy, not secure and convenient on-line key storage 
and protection, as in this paper. 

AEGIS [33] has mechanisms similar to XOM, but pro-
vides stronger memory integrity guarantees. In newer ver-
sions of AEGIS [35], the physical unclonable function 
(PUF) replaces the need for a factory-installed secret. The 
PUF is still a permanent secret of the chip, tying trust to 
the device rather than to the user’s secrets, as in this paper. 

 Commercial initiatives from the Trusted Computing 
Group (TCG) [36], Microsoft’s Next Generation Secure 
Computing Base (NGSCB) [24] and Intel’s LaGrande [13] 
attempt to provide a more secure execution environment 
using curtained memory, separating the memory space of 
trusted and insecure applications. They also enable attesta-
tion of the integrity of the software stack in the system. 

Our proposal for SP-processors significantly improves 
upon our initial work, VSCoP [19] [20], providing more 
Table 1: Comparison of proposed and implemented secure hardware architectures 
 SP-Processors, VSCoP XOM, AEGIS, Gilmont, 

Best 
Secure Co-processors,  
e.g., IBM4758 

TCG, NGSCB, La-
Grande 

Goal Secret protection and 
flexible transportation 
and storage of a user’s 
critical secrets 

Copy and tamper-
resistant software distri-
bution and execution  
(in processor) 

Secret protection for 
carefully-crafted secu-
rity applications 

Copy-resistant software 
distribution; curtained 
computing environment 
(outside processor) 

Require separate 
hardware? 

No No Yes Yes 

Require permanent 
device secret? 

No Yes (public-private key 
pair or PUF) 

Yes (public-private key 
pair) 

Yes (public-private key 
pair) 

Source of User’s 
trust 

Secrecy of User Master 
Key, integrity of trusted 
software module and 
computation 

Integrity of software and 
its computation result 

Secrets stored in casing 
never leak out 

Integrity of software at 
load time only 

Trust ties users to 
devices? 

No Yes Yes Yes 

Security perimeter Processor chip boundary Processor chip boundary Casing of subsystem Processor, DRAM, chip-
set, TPM chip, and buses  

Common Charac- Assumes hardware is correct and infallible under security attacks. In the next generation of complex chip 

teristics design and verification, will this assumption be valid? 
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flexible security at lower cost. Example improvements are 
the new Trusted Software Module, reduced processor re-
quirements, improved handling of interrupts, memory and 
cache protection, the addressing of new attacks, the new 
threat model and associated security analysis. 

Unprivileged software 

 software 
Privileged 

Table 1 provides some comparisons between these pro-
posals and our SP-processor. Secure co-processors, XOM, 
AEGIS, and the trusted platform module (TPM) chip in 
TCG all require device secrets to be stored permanently on 
chip. In addition to the larger storage for asymmetric keys 
and the computational complexity of public-key ciphers, 
these systems often assume that the processor or platform 
secrets are never compromised. Our solution protects 
keys, without requiring permanent processor secrets. We 
also use much shorter symmetric keys and faster symmet-
ric-key ciphers. 

OS Kernel  Trusted software module 

User’s Secrets 
(a) 

Off-chip cache DiskProcessor chip
On-chip cache Main memory Video
On-chip secrets 

Network

 Other I/O(b) Secure I/O 
3.     Threats and Trust Figure 1. Trusted components (in bold). (a) Or-

thogonal software access model, and (b) Re-
duced physical security perimeter. 

 

3.1. Threat Model 
 

The main threats we are concerned with are the expo-
sure or undetected corruption of a user’s critical secrets  
(i.e., keys, in this paper). An adversary should not be able 
to observe, delete, replace or modify any key without de-
tection. 

We focus on software threats, typically launched by a 
remote attacker across the network.  We assume an at-
tacker can get his code executed locally by exploiting se-
curity vulnerabilities, by manipulating the execution of 
existing software, or by direct execution of hostile code 
inserted statically or dynamically. Software binaries in 
memory or on disks may also be modified.  Hence, all 
existing software, including the OS, is vulnerable and un-
trusted.  

Although we consider mainly software attacks, we also 
consider a few simple physical attacks [2], including prob-
ing of external buses and reading or modifying external 
memory and disk storage. We do not consider more diffi-
cult physical attacks, such as probing the internal compo-
nents of the microprocessor chip itself. We also do not 
consider physical tampering of secure I/O paths. 

We only consider operational threats, which are those 
that occur during use of the system. This paper does not 
consider developmental threats, such as insider threats 
during the design and manufacture of the hardware and 
software components. In addition, we do not consider 
threats based on incorrect or malfunctioning hardware. 
Denial of Service attacks is also beyond the scope of this 
paper, although the user’s keys should still be protected 
even if system availability is disrupted. 
 

3.2. Some Specific Attacks 
 

Once attackers gain control of the OS, they have privi-
leged access to memory, allowing them to observe and 

modify any location. They might also tamper with OS 
functions, such as system calls and interrupt handlers, and 
can trigger arbitrary interrupts. Control over interrupts 
gives the attackers access to register values. Together,  
these allow the attackers to tamper with the code base and 
execution state of any process. 

In addition to subverting the OS, the attackers can gain 
access to memory by manipulating memory pages stored 
on disk, or by using DMA to directly access physical 
memory, bypassing the microprocessor entirely.  

These capabilities lead to a variety of attacks, in addi-
tion to simple observation of data, code or state. In a 
spoofing attack, the attackers generate data and try to pass 
it off as being valid. In a splicing attack, fragments of 
valid data might be duplicated or rearranged. Entire blocks 
of data might be copied or moved to incorrect locations. In 
a replay attack, valid data is saved by the attacker and re-
used at a later time in the same location. In a dynamic hos-
tile code insertion attack, malicious code is initially in-
serted as data in the stack or heap during runtime.  
 

3.3. New Trust Model 
 

In order to protect a user’s critical secrets in the context 
of the threat model and to allow convenient access to these 
secrets from different networked devices, we propose a 
new trust model built into client computing devices.  Fig-
ure 1 depicts the trusted components of our solution. It 
assumes that most software and hardware components are 
untrusted, including the OS and main memory. The trusted 
components protect a user’s secrets and are assumed to be 
implemented correctly.  

Software only accesses a user’s secrets through the 
trusted software module, which forms a new disjoint re-
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gion in the access paradigm. Traditionally, access control 
is based on hierarchical rings of protection, with the in-
nermost ring having the most access and the greatest pro-
tection. User software runs in the outermost ring, middle-
ware in the middle rings, and privileged OS software in 
the innermost rings. Our new trusted software module 
(TSM) runs orthogonally to these protection rings. It is not 
part of the OS because operations that are permitted to 
execute in the new region do not require and should not be 
allowed to access all system information. Conversely, the 
TSM operates independently of the OS because the OS 
should not be allowed to access user secrets. We call this a 
“Virtual Secure Co-processing” trust model since it is a 
secure co-processing paradigm, but supported by the mi-
croprocessor itself rather than a separate coprocessor.  

KINUser Master Key

Algorithm 
Identifier(s)

Parent KIN

PGP Private 
Key 

Banking 
PIN

File Root 
Key 

Encrypted 
Key 

Directory 
Key 

PGP Session 
Key 

Materials  
Keyed Hash 

of the 
File A Key File B Key Record 

(a) (b) 
Figure 2.  (a) Hierarchical key chain and (b) 

Structure of a key record 

In addition, we reduce the physical security perimeter 
from the “box” containing the computing device (e.g., PC, 
notebook, PDA, or game-machine) to just the microproc-
essor chip, due to the few physical attacks we consider in 
our threat model. 
 
4.     Architecture 
 

4.1. Overview of our Approach 
 

We first provide an overview of the main components 
of our SP-architecture and their interdependencies. Each 
component is further described in subsequent sub-sections. 
 

Key Chain (Section 4.2) 
The key chain is a hierarchical structure that stores all 

of a user’s keys in encrypted form (Figure 2). Each key in 
the structure is encrypted by its parent key. At the root is a 
User Master Key. This construction allows an unbounded 
number of keys to be associated with a user. The encryp-
tion allows the key chain, except for the User Master Key, 
to be stored on-line and accessed over public networks. 
 

Trusted Software Module (Section 4.3) 
The key chain can only be utilized by the trusted soft-

ware module (TSM). Only this module can access the 
User Master Key and use it to decrypt other keys in the 
key chain. The TSM interfaces with user applications and 
the OS by exporting a set of functions that carry out cryp-
tographic computation using the key chain, such as sign-
ing an email message. In addition, the module might pro-
vide access control to its own functions by demanding that 
callers demonstrate their trustworthiness. Another impor-
tant attribute of this module is that it should be small 
enough so that its correctness can be fully verified. 
 

The Concept of Concealed Execution (Section 4.4) 
Concealed execution allows the TSM to execute with-

out fear of its state being observed or modified by mali-
cious software. Based on the assumption that off-chip 
memory and OS are untrusted, concealed execution in-
volves encrypting and hashing data going to off-chip 

memory, encrypting and hashing register contents during 
interrupts, preventing illegal accesses to on-chip cache 
lines that contain sensitive data, and dynamically checking 
the integrity of the instruction stream before execution. 
 

New Hardware Features (Section 4.5) 
Various new processor features are required. New in-

structions are created for entering and exiting the con-
cealed execution environment, for the manipulation of 
user and device secrets, and for encrypted memory ac-
cesses. Cryptographic engines are introduced to accelerate 
instruction stream integrity verification and memory data 
encryption, decryption, hashing and integrity checking. In 
addition, cache lines are tagged when they are associated 
with data from concealed execution. 
 

Secure I/O (Section 4.6) 
We provide mechanisms for users to log in and to re-

initialize the device. To prevent software attacks, these 
critical functions must be tied to physical actions by the 
user. We illustrate a secure I/O path with simple input-
output mechanisms. 

 

OS Support (Section 4.7) 
In this proposal, the TSM runs in a single thread. 

Therefore, the OS acts as a wrapper around the TSM and 
queues requests to it. Alternatively, this can be provided as 
an extension to the OS as a device driver. 
 

4.2. Key Management 
 

We use a hierarchical data structure to facilitate secure 
storage and distribution of keys. We call this a key chain. 
Figure 2(a) illustrates such a hierarchical key chain struc-
ture, which may contain thousands of keys. All child keys 
are encrypted by their respective parent key. The root of 
the tree is the User Master Key. Only a leaf key can be 
used to encrypt users’ data. Using this structure, the entire 
key chain, except for the User Master Key, can be stored 
in publicly accessible (untrusted) repositories for retrieval. 
Therefore, the protection mechanism for the User Master 
Key is extremely important. In addition, this User Master 
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Key is only associated with the user; it is not permanently 
associated with any computing device. 

int Encrypt(input, output, isize, osize, 
    keychain, KIN, algorithm, initial_info) 

Figure 2(b) depicts the detailed structure of a key re-
cord. Each key has a key identification number (KIN), 
parent’s KIN, and an encryption algorithm identifier. 
These fields are stored in plaintext. The key data is en-
crypted using the parent key. The hash is used to guaran-
tee the integrity of the entire key record. It is a keyed cryp-
tographic hash, using the parent key. Examples of algo-
rithms that can be used to perform the encryption and 
hashing include AES [25] and SHA-1 [23], respectively. 

int KeyedHash(input, output, isize, osize, 
keychain, KIN, algorithm, initial_info) 

int AddKeyToChain(output, osize, keychain, 
parent, KIN, algorithm, initial info)

Figure 3.  Example functions in the TSM API

We define the User Master Key to be generated based 
on secrets possessed by the user. For instance, we can use 
the output of a cryptographically-strong one-way hash of 
the user’s passphrase as the master key. The passphrase is 
entered via secure I/O directly to the trusted domain (mi-
croprocessor and trusted software module) without OS 
intervention.  The selection of the passphrase should be 
carefully considered to provide sufficient entropy [30]. As 
suggested in [6], at least 80-bits of protection should be 
provided. If a random string consisting of numbers and 
characters (including both upper-case and lower-case let-
ters) is used as the passphrase, a string of 14 characters is 
sufficient. If English text is used as the passphrase, 60 to 
70 lower-case letters are needed to provide sufficient en-
tropy [6] [29]. Though this is long, users can choose sen-
tences that are easy for them to remember.  

Alternatively, a hardware token or biometric informa-
tion (possibly in conjunction with a hardware token or 
passphrase) can be used to generate the User Master Key.  
Reliable key generation using biometrics is an active re-
search topic, and some commercial biometric products are 
already available, such as fingerprint readers in the key-
board or in the mouse.  Applying multiple sources of in-
puts to authenticate a user is known as multi-factor au-
thentication.  Without loss of generality, in the rest of this 
paper, we will only employ a user’s passphrase input for 
User Master Key generation. 

In order to utilize a key in the key chain, a user only 
needs to present a passphrase to begin a session. An SP-
enabled computing platform can convert the passphrase 
into the User Master Key, which in turn is used to retrieve 
the keys in the user’s key chain. When the session is over, 
the user disassociates from the device by zeroizing the 
register used to store the User Master Key in the device. 
This process decouples the user’s secrets from the device. 
 

4.3. Trusted Software Module 
 

The key chain is shielded from the untrusted software 
by the Trusted Software Module (TSM). The TSM is the 
only software module in the system that is allowed to ac-
cess a user’s keys (critical secrets). It is written such that it 
never leaks secrets outside the trusted domain. It is the 
only module that carries out direct computation involving 

the keys. All other applications, including the OS, depend 
on interfacing with this module for operations related to 
the secrets. The TSM is not limited to cryptographic op-
erations on user keys. In fact, it is up to the vendor of the 
TSM to decide what functionalities should be made avail-
able in the module. In this paper, we focus our discussion 
on operations involving keys, to illustrate the architecture. 

The TSM provides encrypt and decrypt functions and 
functions that allow an application to generate and add 
keys to the user key chain. Figure 3 lists a few sample 
functions. Consider the function Encrypt(). Before the 
function is called, the user must determine which key is to 
be used. The keychain can be managed by an application, 
a software library or the OS. It retrieves the subset of the 
keychain from the root to the desired key, and passes this 
to the TSM. The TSM decrypts this, until the desired user 
key is decrypted and its integrity verified. It then applies 
that key to perform the desired encryption operation. Upon 
completion, the TSM exits concealed execution, and re-
turns control to the calling application. 

In order to exclude any vulnerabilities due to untrusted 
code, we require that the TSM be entirely self-contained. 
It should not call functions in external libraries nor make 
OS system calls. All necessary libraries should be stati-
cally linked into the TSM at compile time, and memory 
for storing intermediate data statically allocated. 

Consistent with our minimalist architecture goal, the 
TSM currently executes in a single thread. The OS queues 
requests to the TSM. All other non-CEM threads still run 
multithreaded. Cost-benefit tradeoffs of a multithreaded 
TSM can be studied in the future. 

Another important attribute of the TSM is its code size. 
Software bugs are inevitable in a complex code base. In 
order to give confidence of its correctness, the code size of 
the TSM needs to be small enough to be fully verified. 

Even when the TSM code is verified and trusted, it is 
possible for subverted software to make malicious use of 
its functions. Although malicious software cannot obtain 
the user’s actual secrets, it can make use of those secrets 
while the user’s key chain is associated with the device. In 
many scenarios, a verified and trusted TSM provides suf-
ficient protection. Otherwise, the TSM should also attempt 
to verify the trustworthiness of the caller to its functions. 
In high security applications, a secure bootup mechanism 
[3] may be used, such that the software platform is trusted. 
Or we may trust a small, verified kernel of the OS to cor-
rectly identify caller processes, and then restrict access 
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48 bytes 16

Instructions Hash Instructions Hash ……. 

Figure 4: Instruction stream of the trusted module with integrity hashes 
inserted at the cache line boundary, assuming 64-byte cache line. 

based on this identification. Such methods can be applied 
without modification to our architecture. 

 
4.4. Concealed Execution Mode 
 

The execution of the trusted software module (TSM) is 
protected from software attacks by a new Concealed Exe-
cution Mode (CEM). This has four aspects: (1) protection 
of the code binaries from malicious modification, (2) pro-
tection of data generated during CEM computation from 
malicious observation and modification, (3) protection of 
register contents during interrupt handling, and (4) clear-
ing of CEM data upon exit from CEM. 
 

4.4.1. Integrity of the Code Binaries.  To support CEM, 
we introduce another critical secret called the Device Mas-
ter Key. This is associated with the device for the lifetime 
of the installation of the TSM. 

During device initialization, the TSM is installed with a 
brand new Device Master Key. This Device Master Key is 
used to generate keyed hashes of the TSM binaries. 
Hashes of the TSM are generated per instruction cache 
line, and stored inline with the code. They also include the 
address of the first instruction in the cache line. Figure 4 
illustrates the resulting instruction stream. Since the 
hashes occupy instruction space, the compiler for the TSM 
needs to take into account the insertion of hash values to 
produce branch instructions correctly. 

During CEM, when instructions are fetched from the 
off-chip memory into the L2 cache, the processor verifies 
the integrity of the cache line by comparing the reference 
hash with a hash calculated on the fly over the instructions 
in the cache line. If the instruction stream has been tam-
pered with, the two values will disagree, and an exception 
is thrown. Furthermore, dynamic hostile code insertion is 
prevented by tagging protected instruction and data cache 
lines in the on-chip L2 unified cache and L1 caches (de-
scribed in Section 4.5). Therefore, all executed instruc-
tions are valid and the integrity of the TSM is guaranteed. 

After integrity checking, the hash is replaced in cache 
with NO-OP instructions so that it does not interfere with 
the flow of the non-branching instructions. 
 

4.4.2. Memory Data Protection.  Any CEM data going to 
the off-chip memory is also protected by encryption and 
hashing. When an on-chip data cache line marked as con-
taining CEM data is evicted, the processor first encrypts 
the cache line using the Device Master Key, then com-
putes a keyed hash over the encrypted memory contents 
and the starting address of the cache line. This sequence of 

encryption-then-hash has been proven secure in [15]. The 
encryption prevents adversaries from observing the mem-
ory contents, either by privileged software or by probing 
the buses.  Hashing prevents undetected tampering with 
data associated with CEM execution. 

On fetching a protected data cache line into the on-chip 
caches, the processor compares its saved hash value with 
one calculated on the fly. The two will not match if the 
memory was tampered with, causing an exception to be 
thrown. Like the instruction hashes, there are many alter-
natives for the storage of data hashes.  For example, they 
can be stored in a separate memory region in the virtual 
address space. Memory usage needs to take into account 
the space requirement of the hashes and make allocation 
accordingly. In the simplest realization, the memory re-
quired by the TSM is statically allocated. The loader can 
partition the virtual address space into data space and hash 
space, perhaps using the most significant bit of the virtual 
address, to form a direct mapping relationship. Thus the 
processor always knows where to fetch or write the refer-
ence hashes. 
 

4.4.3. CEM Interrupt Handling.  We assume an un-
trusted OS handles the interrupts. On an interrupt, the con-
tents of the register file (and any other architected registers 
in the original ISA) of the CEM thread are protected by 
encryption and hashing of the register contents in hard-
ware, prior to transferring control to the interrupt handler 
in the OS. Our solution does not require any changes to 
the existing OS interrupt handler.  

On an interrupt, the processor, while in the CEM, first 
encrypts all registers as one unit, using the Device Master 
Key. The resulting ciphertext is stored back to the regis-
ters. A hash is calculated over the ciphertext and stored 
on-chip in the CEM Interrupt Hash register. Then the 
processor temporarily exits CEM and transfers control to 
the OS. This allows the OS to handle the register values as 
in normal interrupts, but not to observe their true values. 
Storing the hash on-chip prevents it from being tampered 
with by an adversary, allowing the processor to detect any 
modifications to the register data when they are restored. 
This CEM interrupt scheme also prevents replay attacks 
using a prior copy of the encrypted registers – the only set 
that can be successfully replayed is identical to the one 
just saved.  

Finally, the processor needs to be able to identify a re-
turn back into the CEM, so as to carry out decryption of 
the register contents and verify their integrity. Our solu-
tion is to store the return address in an internal CEM regis-
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CEM Instructions Flags

ter, called the CEM Return Address register. Every time 
the processor executes a return instruction, it checks 
whether the target address is the same as this register’s 
value. If true, the return goes to the interrupted CEM ses-
sion. The in situ registers are decrypted, their integrity 
verified against the on-chip CEM Interrupt Hash value, 
and the processor returns to the CEM. 
 

4.4.4. CEM Exit.  When the CEM exits, control returns to 
the caller. At this point, the general purpose registers 
might contain sensitive data involved in the CEM session. 
Therefore, the processor must clear the registers before 
returning from CEM sessions. 
 

4.5. New Hardware Features 
 

We now describe the minimalist set of new hardware 
features required in the microprocessor in order to support 
a secure CEM thread amongst other simultaneously run-
ning insecure threads. The basic idea is that whenever 
there is resource sharing, such as the on-chip caches and 
registers, we need to look into the security implications 
and take steps to remedy them. There are two general 
strategies. If the resources are under the direct control of 
the processor hardware, tagging can be used to distinguish 
between concealed execution and normal execution. Using 
the tag, the processor can grant or deny accesses to the 
resources according to the current execution mode. If the 
resources are managed by software, such as the off-chip 
memory, encryption and hashing can be employed to en-
sure confidentiality and integrity. Figure 5 illustrates a 
typical processor with the new components shown in bold. 
 

New CEM Registers 
We define 5 new registers for SP-processors: a 128-bit 

User Master Key, a 128-bit Device Master Key, a 64-bit 
CEM Return Address, a 128-bit CEM Interrupt Hash, and 
a 2-bit CEM Status register. All but the last have already 
been introduced in earlier sections.  One bit in the CEM 
Status register indicates whether CEM is in use in the cur-
rent instruction stream. This is required so that the proces-
sor can access CEM instructions, validate the integrity of 

the TSM instruction stream, and handle interrupts differ-
ently. The other bit in the CEM Status register indicates 
whether any thread on the system is currently employing 
the CEM (but may have been interrupted). This is used to 
enforce only one CEM thread running at a time, and pre-
vent an untrusted OS from spawning more than one CEM 
thread. 

Only the User Master Key register can be accessed by 
the TSM in CEM. The system does not permit the contents 
of any of the other registers to be visible to any software, 
including the TSM. Hence there is no instruction to read 
the contents of these registers. Also, none of these register 
values are set at the factory; the two key registers are de-
fined by the user in the field, and the others are only set 
within the processor for CEM processing. 

The CEM Return Address, CEM Interrupt Hash, User 
Master Key and CEM Status registers should not be pre-
served when the power is off, so they are implemented as 
regular volatile registers. In fact, the User Master Key is 
cleared whenever a user session ends. On the other hand, 
for efficiency reasons, the Device Master Key is imple-
mented using non-volatile memory. Since the Device Mas-
ter Key is associated with the installation of the TSM, 
keeping it in non-volatile memory means that the TSM 
does not have to be reinstalled every time the power is 
turned off.  
 

Tagging CEM Cache Lines 
Two new cache line flags, CEM Data and CEM In-

structions, indicate whether the cache line belongs to the 
CEM thread, and whether it contains protected data or 
instructions. When insecure threads attempt to access the 
cache line with one of the flags set, an exception is 
thrown. In addition, we ensure that the CEM thread cannot 
treat data in the L2 cache as instructions, either intention-
ally or because of software bugs. 

During a CEM session, when there is an L2 cache miss 
for a secure data load, fresh content from off-chip memory 
is decrypted and its integrity checked. If the integrity 
check is successful, the L2 CEM Data flag is set and L2 
CEM Instructions flag is cleared. Otherwise, an exception 

  
New Registers: 

 L1   
CEM Status (2 bits) Instr.   

 Encryption 
and 

Unified Secure 
I/O 

Logic 

Cache User Master Key (128 bits) 
L2 Original Hashing Device Master Key (128 bits) Cache Core Engine L1 CEM Return Address (64 bits) Data 

Cache CEM Interrupt Hash (128 bits) 

to 
CEM Data Flags external 

memory Figure 5.  New processor features 
Processor Boundary LEDs, Buttons and Keyboard 
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is thrown and the cache line remains invalid. When the 
data is brought into the L1 data cache, only the CEM Data 
flag is preserved. Similarly, an instruction miss in the L2 
cache triggers the integrity check of the instructions com-
ing from off-chip memory. The L2 CEM Data flag is 
cleared, and the CEM Instructions flag is set. Only the 
CEM Instructions flag is copied to the L1 I-cache. 

T

 

Once data is in cache, exceptions are raised if non-
CEM threads attempt to access data or instructions in a 
cache line that has its CEM data or instructions flag set.  

Our new definition of the CEM cache line flags also al-
lows detection of some dynamic hostile code insertion 
attacks [17] caused by stack or heap smashing. The CEM 
Instructions flag in L1 I-cache will remain a “0” if the 
cache line contents indicated CEM data in the L2 cache. 
The processor throws an exception if the CEM thread ever 
attempts to execute an instruction when the CEM Instruc-
tions flag is a “0” in L1 I-cache.  
 

Hardware Encryption and Hashing Engine  
We provide encryption and hashing of cache lines by 

hardware for performance reasons. If AES-CBC-MAC is 
used for hashing, both the encryption and the hashing can 
be implemented using a single hardware AES module. 
 

New SP Instructions 
The new SP instructions and their functionality are 

summarized in Table 2. Some of them operate similarly to 
instructions in [16].   

At device initialization (Section 5.1), device_key_mv 
is used to write values to the Device Master Key register. 
There is no instruction for reading the contents of this reg-
ister. All operations that require using the Device Master 
Key register are implemented in hardware. Only the TSM 
running in CEM can obtain contents of the User Master 
Key register via the user_key_mv instruction.  How-
ever, there is no instruction that can be used by software to 
write values to the User Master Key; only the processor 
hardware can write values to that register during user ini-
tialization (described in Section 5.2). 

When an application wishes to enter the CEM by call-
ing a function in the TSM, the begin_cem instruction is 
executed.  The processor determines whether another 
CEM thread may have been interrupted by checking the 
CEM Status flags, and throws an exception if there is one. 
Otherwise, the processor proceeds by setting the CEM 
Status flags to 1’s. All instructions that enter the processor 
following the execution of begin_cem are cryptographi-
cally validated using the Device Master Key. 

In the CEM, the TSM can securely transfer data to and 
from memory using the cem_load and cem_store 
instructions. Spoofing and splicing attacks are prevented 
by encryption and hashing. Programs running in CEM can 
also complete normal (unsecured) memory loads and 
stores, which are essential for transferring the inputs and 
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able 2.  New instructions 
Instruction Function 

begin_cem 
Enters the CEM.  CEM Status register bits are set 
to 1’s.  All subsequently fetched instructions are 
cryptographically validated before execution.   

end_cem Exits the CEM. General-purpose registers are 
cleared.  CEM Status bits are set to 0’s 

cem_store 
Stores a 64-bit datum to secured memory.  The 
CEM Data cache line bit is set for every cache 
line touched by this instruction.   

cem_load 
Loads a 64-bit datum from secured memory.  The 
CEM Data cache line bit is set to indicate that the 
cache line content is data, not instructions. 

device_key_mv
Transfers information from a register to individu-
ally addressable 64-bit chunks of the Device 
Master Key. 

user_key_mv 
Transfers 64-bit blocks of information to a regis-
ter from individually addressable 64-bit chunks of 

the User Master Key. 

results of the cryptographic function from and to the rele-
vant software applications.  For example, an encryption 
function running in CEM must possess the ability to ac-
cess unencrypted source data from the unsecured data 
memory space of the calling application in order to com-
plete the encryption operation. 

Upon completion of a TSM function, the function exe-
cutes the end_cem instruction to exit CEM.  At this time, 
all of the general-purpose register values used by the TSM 
are cleared, the CEM Status register and the CEM Return 
Address are cleared, and the CEM data cache lines are 
flushed and cleared. The CEM instruction cache lines re-
main tagged in the on-chip caches to avoid observation 
from unsecured processes, but still allow the next CEM 
session to benefit from instructions already loaded in 
cache from the previous CEM session. 

 

Area Costs 
The new registers consume only 450 bits. The addi-

tional 2-bit cache line flags are insignificant increases to 
the size of the on-chip caches. The encryption and hash 
engines can be implemented using a single AES module, 
requiring as few as 25,000 gates [1]. The Secure I/O 
Logic, described later, is not large. Hence, the only im-
plementation complexity may be the non-volatile memory 
for the Device Master Key register. 
 

4.6. Secure I/O 
 

Secure I/O channels are required for user authentication 
and device initialization. We propose a very simple secure 
I/O interface comprising two LEDs and two buttons.  One 
button and LED is for Device Master Key initialization, 
while the other button and LED are for User Master Key 
initialization.  A “Device Reset” button clears the Device 
Master Key, readying the device for a new TSM installa-
tion. The Device Reset LED is red when the Device Mas-
ter Key is cleared (zeroized) and changes to blue once the 
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Device Master Key is set by the installation software. The 
other button, the “Authenticate” button, allows the user to 
initiate a session utilizing his or her key chain. After the 
user presses the Authenticate button, the platform switches 
the keyboard to a secure mode and begins diverting all 
keystrokes to the processor directly. Security against soft-
ware attacks for this input path is provided by encryption 
from the keyboard to the processor. The processor’s Se-
cure I/O Logic unit decrypts the keystrokes and uses the 
hashing engine to compute the hash of the passphrase. 
This hash is then moved to the User Master Key register. 
The Authentication LED is red when the User Master Key 
is cleared to zero, and changes to green once a User Mas-
ter Key is successfully entered. 
 

4.7. OS support 
 

The OS implements functionalities outside of the con-
cealed execution environment to support the single-
threaded nature of TSM and to improve performance. 
 

Function Wrapper 
The OS provides an entry point for applications to utilize 
the exported functions of the TSM. It saves and restores 
the states of the applications before transferring control to 
and from the TSM. 
 

Queueing TSM Requests 
The minimalist processor feature list above requires that 
the TSM be executed in a single thread. Therefore, the OS 
must queue requests to the TSM. 
 
Special TSM Loader 
Because data accesses of the TSM require special encryp-
tion, decryption and hashing, the system loader needs to 
handle it differently from other applications. Static data 
(which is the only data type we allow the TSM) already 
comes in encrypted and hashed format. In the simple 
scheme we proposed for storing the data cache line hashes, 
the loader needs to place the data and reference hashes in 
separate regions in the virtual memory space to create a 
one-to-one mapping, facilitating the integrity check for 
memory accesses. 
 

Optional Key Chain Management 
When calling the TSM, the user must select which key to 
use. Because the key identification numbers (KINs) and 
their ancestral relationships are all stored in plaintext, the 
management of the storage and transport of the key chain 
does not need to be carried out by the TSM. The OS or a 
user software library can do this by fetching all ancestors 
of the key prior to transferring control to the TSM. 
 

5.     Using SP-enabled Devices 
 

We now provide a summary of the steps involved in 
applying the new enhancements to protect secret keys.  
We define three major steps: device initialization, user 
initialization, and protected operation.   
 

Device initialization 
Device initialization occurs when a user first obtains a 

computing device containing our proposed security fea-
tures.  The user creates a new Device Master Key and in-
stalls the TSM. 

First, the user presses the “Device Reset” button to 
make sure the Device Master Key is cleared and to trigger 
the installation of the TSM. Next, the device must be 
booted up to a known correct and secure state. This can be 
achieved by platform attestation and secure bootup, using 
methods proposed in TCG [36], or more simply by a 
minimal secure BIOS. This secure BIOS possesses the 
functionality to install the TSM. 

The installation BIOS verifies the authenticity of the 
TSM by checking its digital signature using software-
based Public Key Infrastructure (PKI) techniques, verify-
ing its integrity and authenticity. The installation proce-
dure continues by packaging the TSM for later use in the 
CEM. This is done by: 

1. Generating a new Device Master Key. 
2. Signing the TSM by hashing its instruction stream on 

a per cache line basis. 
3. Encrypting and hashing the static data in the TSM. 
4. Issuing the device_key_mv instruction to copy the 

newly generated Device Master Key to the processor. 
 

After this installation process, the device can be re-
booted to the untrusted OS for normal usage. 
 

User Initialization 
User initialization occurs when a user instantiates his 

cryptographic key chain for use on an initialized SP-
enabled device. The user presses the Authenticate button 
to ensure that the User Master Key register is cleared and 
to trigger the secure I/O mechanism: the keyboard begins 
encrypting and diverting all keystroke input to the proces-
sor directly until the carriage return is hit. The user enters 
a passphrase via this secure input mechanism. The user’s 
key chain is now ready for use by the TSM. 

Creating a new user key chain simply involves select-
ing a passphrase, by which the User Master Key is gener-
ated. As keys are added to the chain, a user can store the 
encrypted key chain locally or remotely. 

Since the User Master Key is never permanently stored 
on the device, it is safe for a user to pass on a used device 
to another user.   
 

Protected Operation 
 Protected operation is the secure use, via the TSM, of a 

user’s key chain in an SP-device that has been device-
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initialized and user-initialized as in the two procedures 
detailed above.  

For example, a rights-managed digital video applica-
tion may request the TSM to decrypt chunks of an MPEG 
data file, using a previously selected and secured key in 
the key chain. The application does not need to read the 
key but merely needs to utilize it to decrypt the content. 
Although the application runs in the untrusted domain, all 
computations involving the key are carried out by the 
TSM, without fear of leaking information of the keys 
when it runs under Concealed Execution Mode. 

When completed, the user should clear the device of all 
information related to the User Master Key by pressing the 
Authenticate button again, which will zeroize the User 
Master Key register. 
 
6.     Security Analysis 
 

SP-architecture addresses the threats in Section 3.  The 
user’s keys are protected from observation and tampering 
during storage and transport by encryption and hashing. 
They can only be used by calling the TSM, which is a 
trusted software module. This means that it is correct and 
free from software security vulnerabilities. Tampering 
with the TSM code base and hostile code injection can 
occur while the binaries are stored on disk, in main mem-
ory, or in cache. On disk and in main memory, the binaries 
are protected by signing with keyed hashes. As the code is 
loaded into cache through the instruction fetch path, the 
integrity is verified. These CEM instruction cache lines 
are tagged and cannot be modified. Anything that has not 
been verified and then tagged as CEM instructions will not 
be executed while in CEM. 

Threats of manipulating the execution state of the TSM 
require tampering with the state of a CEM thread or its 
data. This includes register values, data cache, and main 
memory. CEM data is separated from unprotected data on 
a cache-line granularity in on-chip caches. Access of CEM 
cache lines by non-CEM threads causes an exception. 

Observation, spoofing and splicing of TSM’s main 
memory space are prevented by encrypting and hashing of 
all off-chip stores. The encryption prevents adversaries 
from observing the memory content. Integrity checks us-
ing hashes thwart spoofing attacks. Splicing is prevented 
by incorporating the memory addresses in the hashes. In 
addition, memory replay attacks can be prevented using 
known memory authentication systems, e.g., [10] [34]. 
The methodology in [10] uses Merkle hash trees, and can 
be cleanly integrated with our architecture. 

Observation, spoofing, splicing and replay of register 
contents during interrupt handling and context switches 
are remedied similarly by encryption and hashing. By first 
encapsulating in situ the registers of the TSM thread be-
fore transferring control to OS interrupt handlers, our ar-

chitecture provides protection without the need to modify 
the interrupt handling routine in the OS.  

After a CEM session ends, the registers and CEM data 
cache lines are cleared to prevent intermediate data from 
leaking information about the user’s secrets. 

Some dynamic hostile code insertion attacks are also 
prevented by our new definitions of the CEM Data and 
CEM Instructions flags for the on-chip L1 and L2 caches.  
Hostile code cannot be brought in during execution as 
data, then later executed as code. 

We also provide a secure I/O path to and from the 
trusted domain. Simple interfaces such as buttons and 
LEDs are connected directly to the processor. Keyboard 
inputs are first encrypted prior to transmission, preventing 
software attacks on the user’s passphrase. 

We address software attacks during device installation 
by requiring the system to boot up into a known trusted 
state. This can be implemented by a secure BIOS installa-
tion module, or more generally by platform attestation and 
secure bootup methods as presented in [3] and [36]. 

Finally, but importantly, the processor carries no fac-
tory-installed secrets. In fact, we provide mechanisms to 
clear or replace any values from the factory or previous 
owner. We therefore are also protected from compromise 
of the factory and its secrets database. 
 
7.     Performance Analysis 
 

The performance impact of our proposal is negligible 
for software packages that do not employ the TSM.  How-
ever, performance changes may be experienced by pro-
grams (such as SSL and secure storage software) that em-
ploy user key chains with the TSM.  In such software, 
performance degradation may occur due to the increased 
quantity and costs of external memory accesses during 
TSM operations.  By hashing and encrypting/decrypting 
memory content at the processor boundary, we add latency 
to external memory accesses.   

Since this paper concentrates only on protecting keys 
and their related cryptographic functions, we evaluate per-
formance degradation associated with these cryptographic 
functions.  Thus, we obtain performance statistics by 
simulating the execution of common cryptographic rou-
tines, e.g. [21], in the CEM. We use the RSA encryption 
algorithm [27], the AES encryption algorithm [25], and 
the MD5 one-way hash function [26] as representatives of 
public-key ciphers, symmetric-key ciphers and secure 
hashes. We will evaluate SP-processor performance 
against a wider range of benchmarks in the future. 

We model our proposed enhancements to the interface 
between the L2 cache and external memory as follows.  
We use 128-bit AES-CBC for data encryption/decryption 
and 128-bit AES-CBC-MAC to provide code and data 
authentication [23] [25]. The AES-CBC encryption and 
decryption of 64-byte cache lines can be completed with 4 
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serial and 4 parallel AES operations, respectively. The 
initialization vector (IV) is equivalent to the address of the 
cache line. MAC computation for authenticating both 48-
byte instruction and 64-byte data cache lines requires a 
latency of 4 and 5 AES operations respectively; in both 
cases, one extra AES operation is included to hash the 8-
byte address of the cache line. The AES encryption of a 
16-byte datum requires 10 rounds of work, and we conser-
vatively estimate that one AES round can be completed in 
at most two processor cycles. Hence, the total latencies 
involved in decryption, encryption and MAC computation 
are at most 20, 80 and 100 cycles, respectively.   

80 bytes from off-chip memory: 

d1 d2 d3 d4 MAC 

addr. 

0? AES AES AES AES 

AES

AES-1 AES-1 AES-1 AES-1 

IV
As shown in Figure 6, for secure data cache line loads, 

the decryption can be performed in parallel with the MAC 
computation without incurring any additional latency.  
Secure data cache line stores operate similarly to data 
cache line loads, but the first 16-byte AES encryption op-
eration must be completed before the MAC computation 
begins.  The remaining encryption operations can be com-
pleted in parallel with the MAC operations.  The process-
ing time of secure loads and secure stores is therefore 
equivalent to 5 and 6 serial AES operations, respectively.  
Authenticated instruction cache line loads require a MAC 
computation, so the added latency is 4 serial AES opera-
tions.  Hence, the maximum external memory access pen-
alties incurred (per 64-byte cache line) for secure data 
loads, secure data stores, and authenticated instruction 
loads are 100, 120, and 80 cycles, respectively. Our previ-
ous results in [20] show a performance degradation of less 
than 1%. 

64 bytes to L2 cache 

Figure 6.  Secure data cache line load

 
8.     Summary and Future Research 
 

SP-architecture incorporates a minimalist set of proces-
sor and platform features that protect a user’s critical se-
crets during storage, transmission and use in an on-line 
system.  For example, cryptographic protection of sensi-
tive data depends on the protection of keys.  Keys are 
critical secrets that must be carefully protected and man-
aged. In SP-architecture, keys conveniently follow their 
users and are not associated with any particular device.  
This allows a user to securely employ his keys on multiple 
devices, and allows a device to be used by different users.  

We used a hierarchically encrypted data structure to ef-
ficiently protect user key chains that are stored in open 
networks.  We proposed new features to the microproces-
sor to support a Concealed Execution Mode.  We defined 
a Trusted Software Module, which performs protected 
computations on users’ secret keys while running in the 
Concealed Execution Mode: the keys, their computations 
and intermediate state are all protected from observation 
and tampering by adversaries.  Splicing, spoofing and re-
play attacks are thwarted. 

SP-architecture incorporates several novel features. It 
proposes a new trust model based on what we call “virtual 

secure coprocessing”.  It  decouples user secrets from the 
devices.  It does not rely on any permanent or factory-
installed secrets.  The root of trust is based on two inde-
pendent master keys: one for the device and one for the 
user, both being symmetric-keys. Hence, hardware support 
is required only for symmetric-key operations rather than 
more costly public-key operations.   

While this paper focused on protecting keys as critical 
secrets, SP-architecture can also protect other critical se-
crets. In future work, we hope to evaluate SP-processing 
for different applications, such as digital rights manage-
ment and privacy protection systems. Also, while various 
proposals exist for secure I/O and secure bootstrapping, 
we believe that more research is needed to study alterna-
tives and integrate these into architectures like SP-
processing. The simplicity of SP-architecture suggests that 
verification and security assurances may be facilitated.  
Future work should include how this can best be done for 
SP and other secure processor architecture proposals.  We 
also assumed, like all other hardware-based proposals, that 
we can trust the correctness and integrity of hardware. 
Future research should look into how well this assumption 
holds as chips continue to grow in complexity.   

There are many possible extensions, alternative mecha-
nisms and applications of SP-processing. We hope to have 
provided a foundation for future research and evaluation 
of processor and platform architectures for more secure 
and convenient networked computing devices. 
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