

Architecture for Protecting Critical Secrets in Microprocessors

Ruby B. Lee Peter C. S. Kwan John P. McGregor Jeffrey Dwoskin Zhenghong Wang

Princeton Architecture Laboratory for Multimedia and Security
Department of Electrical Engineering, Princeton University, NJ 08544

rblee@princeton.edu

Abstract

We propose “secret-protected (SP)” architecture to en-
able secure and convenient protection of critical secrets
for a given user in an on-line environment. Keys are ex-
amples of critical secrets, and key protection and man-
agement is a fundamental problem – often assumed but
not solved – underlying the use of cryptographic protec-
tion of sensitive files, messages, data and programs.

SP-processors contain a minimalist set of architectural
features that can be built into a general-purpose micro-
processor to provide protection of critical secrets and
their computations, without expensive or inconvenient
auxiliary hardware. SP-architecture also requires a
trusted software module, a few modifications to the oper-
ating system, a secure I/O path to the user, and a secure
installation process. Unique aspects of our architecture
include: decoupling of user secrets from the devices, ena-
bling users to securely access their keys from different
networked computing devices; the use of symmetric master
keys rather than more costly public-private key pairs; and
the avoidance of any permanent or factory-installed de-
vice secrets.1

1. Introduction

In the Internet and wireless world, users want to be able
to store and access their secrets or sensitive information
securely across public networks, using different networked
computing devices. This includes document files, mes-
sages, programs, rights-managed applications and media
content. Adversaries should not be able to decipher or
tamper with the sensitive data as it is transported or stored.
This can be achieved by encrypting and hashing the data
using well-studied cryptographic algorithms and security
protocols. However, the security provided by cryptogra-
phy depends on the safeguarding of cryptographic keys
from adversaries. Therefore, keys are critical secrets. If

This work is supported in part by NSF CCR-0208946.

keys can be protected adequately, confidentiality and in-
tegrity of sensitive data can be achieved.

Because software-only solutions, e.g., [8] [9] [18], have
many weaknesses, high-assurance financial and military
systems use specialized secure co-processing boxes to
protect both the key materials and the computations that
use the keys from physical and software attacks [31] [32].
Although such a protection mechanism is effective, it is
expensive and impractical for use on mobile devices.
Other applications use a smartcard to protect a core set of
private keys [5]. The Trusted Computing Group (TCG)
[36] uses a combination of hardware and software to cre-
ate a more secure Personal Computer (PC) platform.

There are two important characteristics in these solu-
tions: they require separate hardware; and the hardware
contains permanent secrets, usually a factory-installed
public-private key pair. Trust is derived from the unique-
ness and provability of the device secret, and the device’s
association with a given user. Apart from privacy con-
cerns, the latter attribute limits the portability of trust from
one device to another.

We propose a new paradigm where the sensitive data
follows the users and is not associated with any particular
device, but can be accessed using a multitude of devices
with built-in security features described in this paper. We
investigate an architecture that can scale to protect an un-
bounded number of cryptographic keys, and where re-
trieval of a key does not require establishing trust using
factory-installed secrets. In addition, no separate hardware
is required. This architecture can be used to protect any
type of user secrets. In this paper, we focus on the protec-
tion of keys and investigate what constitutes a minimalist
set of architectural additions to the general-purpose mi-
croprocessor and platform.

Our proposal makes use of a hierarchically encrypted
key chain to allow flexible storage of keys over publicly
accessible networks. Computations involving the key ma-
terials are protected by a trusted software module running
in a concealed execution environment. Concealed execu-
tion allows a process to execute without fear of its state
being tampered with or observed by other processes, in-
cluding the Operating System (OS). Finally, secure regis-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

ters and cryptographic engines are added to the general-
purpose processor to support concealed execution. We call
this an SP-processor, or “Secret Protected” processor.

The rest of the paper is organized as follows: Section 2
reviews related work and draws comparisons with our
own. Section 3 states our threat model and defines our
new trust model and reduced security perimeter. Section 4
describes our architecture. Section 5 explains the proce-
dures for utilizing an SP-processor. Sections 6 and 7 give
a security analysis and a performance analysis. Section 8
summarizes the paper and points to future research.

2. Past Work

Distributed software-only approaches seek to protect
certain types of cryptographic keys by requiring an adver-
sary to quickly compromise several hosts or by enabling
effective revocation mechanisms when key information is
exposed, e.g., [8] [9] [18]. Although effective in defending
against certain attacks involving limited classes and types
of keys, these solutions engage remote servers in real-
time, providing an avenue for denial-of-service attacks.

Hardware-based solutions have also been proposed and
used in industry. For example, secure co-processors [31]
[32] [37] [12] are used in financial and military applica-
tions. Secure coprocessors encapsulate general-purpose
subsystems within physically secured casings. The private
key of a factory-selected public-private key pair is se-
curely stored inside the casing during manufacture. While
IBM’s secure co-processor platform [32] also allows its
key pair to be replaced during service using a revocation
procedure, it still relies on a factory installed secret and
third-party authentication. Software that runs in the sub-
systems need to be carefully written to never leak the pri-
vate keys via the device’s interface. Untrusted hosts can

utilize this guarantee to enable a wide variety of applica-
tions [31] [37] [7]. Smartcards can be regarded as special-
ized versions of secure co-processors in that they possess
private keys that never leave the smartcard package, and
contain computation elements that perform cryptographic
operations using these keys. However, smartcards have
limited computational and storage capability, and can be
easily lost or stolen, while secure coprocessor subsystems
may be expensive and inconvenient for mobile devices.

Architectures, such as XOM [16], enable copy- and
tamper-resistant software distribution [4] [11] [14] [33].
Application binaries are encrypted using symmetric-key
encryption, and the keys are distributed specifically to
each processor using its public-private key pair. These
proposals provide a software tamper-resistant execution
environment by compartmentalizing shared resources,
implemented by either tagging or encryption. While not
requiring additional hardware, the goal is to prevent soft-
ware piracy, not secure and convenient on-line key storage
and protection, as in this paper.

AEGIS [33] has mechanisms similar to XOM, but pro-
vides stronger memory integrity guarantees. In newer ver-
sions of AEGIS [35], the physical unclonable function
(PUF) replaces the need for a factory-installed secret. The
PUF is still a permanent secret of the chip, tying trust to
the device rather than to the user’s secrets, as in this paper.

 Commercial initiatives from the Trusted Computing
Group (TCG) [36], Microsoft’s Next Generation Secure
Computing Base (NGSCB) [24] and Intel’s LaGrande [13]
attempt to provide a more secure execution environment
using curtained memory, separating the memory space of
trusted and insecure applications. They also enable attesta-
tion of the integrity of the software stack in the system.

Our proposal for SP-processors significantly improves
upon our initial work, VSCoP [19] [20], providing more
Table 1: Comparison of proposed and implemented secure hardware architectures
 SP-Processors, VSCoP XOM, AEGIS, Gilmont,

Best
Secure Co-processors,
e.g., IBM4758

TCG, NGSCB, La-
Grande

Goal Secret protection and
flexible transportation
and storage of a user’s
critical secrets

Copy and tamper-
resistant software distri-
bution and execution
(in processor)

Secret protection for
carefully-crafted secu-
rity applications

Copy-resistant software
distribution; curtained
computing environment
(outside processor)

Require separate
hardware?

No No Yes Yes

Require permanent
device secret?

No Yes (public-private key
pair or PUF)

Yes (public-private key
pair)

Yes (public-private key
pair)

Source of User’s
trust

Secrecy of User Master
Key, integrity of trusted
software module and
computation

Integrity of software and
its computation result

Secrets stored in casing
never leak out

Integrity of software at
load time only

Trust ties users to
devices?

No Yes Yes Yes

Security perimeter Processor chip boundary Processor chip boundary Casing of subsystem Processor, DRAM, chip-
set, TPM chip, and buses

Common Charac- Assumes hardware is correct and infallible under security attacks. In the next generation of complex chip

teristics design and verification, will this assumption be valid?

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

flexible security at lower cost. Example improvements are
the new Trusted Software Module, reduced processor re-
quirements, improved handling of interrupts, memory and
cache protection, the addressing of new attacks, the new
threat model and associated security analysis.

Unprivileged software

 software
Privileged

Table 1 provides some comparisons between these pro-
posals and our SP-processor. Secure co-processors, XOM,
AEGIS, and the trusted platform module (TPM) chip in
TCG all require device secrets to be stored permanently on
chip. In addition to the larger storage for asymmetric keys
and the computational complexity of public-key ciphers,
these systems often assume that the processor or platform
secrets are never compromised. Our solution protects
keys, without requiring permanent processor secrets. We
also use much shorter symmetric keys and faster symmet-
ric-key ciphers.

OS Kernel Trusted software module

User’s Secrets
(a)

Off-chip cache DiskProcessor chip
On-chip cache Main memory Video
On-chip secrets

Network

 Other I/O(b) Secure I/O
3. Threats and Trust Figure 1. Trusted components (in bold). (a) Or-

thogonal software access model, and (b) Re-
duced physical security perimeter.

3.1. Threat Model

The main threats we are concerned with are the expo-
sure or undetected corruption of a user’s critical secrets
(i.e., keys, in this paper). An adversary should not be able
to observe, delete, replace or modify any key without de-
tection.

We focus on software threats, typically launched by a
remote attacker across the network. We assume an at-
tacker can get his code executed locally by exploiting se-
curity vulnerabilities, by manipulating the execution of
existing software, or by direct execution of hostile code
inserted statically or dynamically. Software binaries in
memory or on disks may also be modified. Hence, all
existing software, including the OS, is vulnerable and un-
trusted.

Although we consider mainly software attacks, we also
consider a few simple physical attacks [2], including prob-
ing of external buses and reading or modifying external
memory and disk storage. We do not consider more diffi-
cult physical attacks, such as probing the internal compo-
nents of the microprocessor chip itself. We also do not
consider physical tampering of secure I/O paths.

We only consider operational threats, which are those
that occur during use of the system. This paper does not
consider developmental threats, such as insider threats
during the design and manufacture of the hardware and
software components. In addition, we do not consider
threats based on incorrect or malfunctioning hardware.
Denial of Service attacks is also beyond the scope of this
paper, although the user’s keys should still be protected
even if system availability is disrupted.

3.2. Some Specific Attacks

Once attackers gain control of the OS, they have privi-
leged access to memory, allowing them to observe and

modify any location. They might also tamper with OS
functions, such as system calls and interrupt handlers, and
can trigger arbitrary interrupts. Control over interrupts
gives the attackers access to register values. Together,
these allow the attackers to tamper with the code base and
execution state of any process.

In addition to subverting the OS, the attackers can gain
access to memory by manipulating memory pages stored
on disk, or by using DMA to directly access physical
memory, bypassing the microprocessor entirely.

These capabilities lead to a variety of attacks, in addi-
tion to simple observation of data, code or state. In a
spoofing attack, the attackers generate data and try to pass
it off as being valid. In a splicing attack, fragments of
valid data might be duplicated or rearranged. Entire blocks
of data might be copied or moved to incorrect locations. In
a replay attack, valid data is saved by the attacker and re-
used at a later time in the same location. In a dynamic hos-
tile code insertion attack, malicious code is initially in-
serted as data in the stack or heap during runtime.

3.3. New Trust Model

In order to protect a user’s critical secrets in the context
of the threat model and to allow convenient access to these
secrets from different networked devices, we propose a
new trust model built into client computing devices. Fig-
ure 1 depicts the trusted components of our solution. It
assumes that most software and hardware components are
untrusted, including the OS and main memory. The trusted
components protect a user’s secrets and are assumed to be
implemented correctly.

Software only accesses a user’s secrets through the
trusted software module, which forms a new disjoint re-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

gion in the access paradigm. Traditionally, access control
is based on hierarchical rings of protection, with the in-
nermost ring having the most access and the greatest pro-
tection. User software runs in the outermost ring, middle-
ware in the middle rings, and privileged OS software in
the innermost rings. Our new trusted software module
(TSM) runs orthogonally to these protection rings. It is not
part of the OS because operations that are permitted to
execute in the new region do not require and should not be
allowed to access all system information. Conversely, the
TSM operates independently of the OS because the OS
should not be allowed to access user secrets. We call this a
“Virtual Secure Co-processing” trust model since it is a
secure co-processing paradigm, but supported by the mi-
croprocessor itself rather than a separate coprocessor.

KINUser Master Key

Algorithm
Identifier(s)

Parent KIN

PGP Private
Key

Banking
PIN

File Root
Key

Encrypted
Key

Directory
Key

PGP Session
Key

Materials
Keyed Hash

of the
File A Key File B Key Record

(a) (b)
Figure 2. (a) Hierarchical key chain and (b)

Structure of a key record

In addition, we reduce the physical security perimeter
from the “box” containing the computing device (e.g., PC,
notebook, PDA, or game-machine) to just the microproc-
essor chip, due to the few physical attacks we consider in
our threat model.

4. Architecture

4.1. Overview of our Approach

We first provide an overview of the main components
of our SP-architecture and their interdependencies. Each
component is further described in subsequent sub-sections.

Key Chain (Section 4.2)
The key chain is a hierarchical structure that stores all

of a user’s keys in encrypted form (Figure 2). Each key in
the structure is encrypted by its parent key. At the root is a
User Master Key. This construction allows an unbounded
number of keys to be associated with a user. The encryp-
tion allows the key chain, except for the User Master Key,
to be stored on-line and accessed over public networks.

Trusted Software Module (Section 4.3)
The key chain can only be utilized by the trusted soft-

ware module (TSM). Only this module can access the
User Master Key and use it to decrypt other keys in the
key chain. The TSM interfaces with user applications and
the OS by exporting a set of functions that carry out cryp-
tographic computation using the key chain, such as sign-
ing an email message. In addition, the module might pro-
vide access control to its own functions by demanding that
callers demonstrate their trustworthiness. Another impor-
tant attribute of this module is that it should be small
enough so that its correctness can be fully verified.

The Concept of Concealed Execution (Section 4.4)
Concealed execution allows the TSM to execute with-

out fear of its state being observed or modified by mali-
cious software. Based on the assumption that off-chip
memory and OS are untrusted, concealed execution in-
volves encrypting and hashing data going to off-chip

memory, encrypting and hashing register contents during
interrupts, preventing illegal accesses to on-chip cache
lines that contain sensitive data, and dynamically checking
the integrity of the instruction stream before execution.

New Hardware Features (Section 4.5)
Various new processor features are required. New in-

structions are created for entering and exiting the con-
cealed execution environment, for the manipulation of
user and device secrets, and for encrypted memory ac-
cesses. Cryptographic engines are introduced to accelerate
instruction stream integrity verification and memory data
encryption, decryption, hashing and integrity checking. In
addition, cache lines are tagged when they are associated
with data from concealed execution.

Secure I/O (Section 4.6)
We provide mechanisms for users to log in and to re-

initialize the device. To prevent software attacks, these
critical functions must be tied to physical actions by the
user. We illustrate a secure I/O path with simple input-
output mechanisms.

OS Support (Section 4.7)
In this proposal, the TSM runs in a single thread.

Therefore, the OS acts as a wrapper around the TSM and
queues requests to it. Alternatively, this can be provided as
an extension to the OS as a device driver.

4.2. Key Management

We use a hierarchical data structure to facilitate secure
storage and distribution of keys. We call this a key chain.
Figure 2(a) illustrates such a hierarchical key chain struc-
ture, which may contain thousands of keys. All child keys
are encrypted by their respective parent key. The root of
the tree is the User Master Key. Only a leaf key can be
used to encrypt users’ data. Using this structure, the entire
key chain, except for the User Master Key, can be stored
in publicly accessible (untrusted) repositories for retrieval.
Therefore, the protection mechanism for the User Master
Key is extremely important. In addition, this User Master

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Key is only associated with the user; it is not permanently
associated with any computing device.

int Encrypt(input, output, isize, osize,
 keychain, KIN, algorithm, initial_info)

Figure 2(b) depicts the detailed structure of a key re-
cord. Each key has a key identification number (KIN),
parent’s KIN, and an encryption algorithm identifier.
These fields are stored in plaintext. The key data is en-
crypted using the parent key. The hash is used to guaran-
tee the integrity of the entire key record. It is a keyed cryp-
tographic hash, using the parent key. Examples of algo-
rithms that can be used to perform the encryption and
hashing include AES [25] and SHA-1 [23], respectively.

int KeyedHash(input, output, isize, osize,
keychain, KIN, algorithm, initial_info)

int AddKeyToChain(output, osize, keychain,
parent, KIN, algorithm, initial info)

Figure 3. Example functions in the TSM API

We define the User Master Key to be generated based
on secrets possessed by the user. For instance, we can use
the output of a cryptographically-strong one-way hash of
the user’s passphrase as the master key. The passphrase is
entered via secure I/O directly to the trusted domain (mi-
croprocessor and trusted software module) without OS
intervention. The selection of the passphrase should be
carefully considered to provide sufficient entropy [30]. As
suggested in [6], at least 80-bits of protection should be
provided. If a random string consisting of numbers and
characters (including both upper-case and lower-case let-
ters) is used as the passphrase, a string of 14 characters is
sufficient. If English text is used as the passphrase, 60 to
70 lower-case letters are needed to provide sufficient en-
tropy [6] [29]. Though this is long, users can choose sen-
tences that are easy for them to remember.

Alternatively, a hardware token or biometric informa-
tion (possibly in conjunction with a hardware token or
passphrase) can be used to generate the User Master Key.
Reliable key generation using biometrics is an active re-
search topic, and some commercial biometric products are
already available, such as fingerprint readers in the key-
board or in the mouse. Applying multiple sources of in-
puts to authenticate a user is known as multi-factor au-
thentication. Without loss of generality, in the rest of this
paper, we will only employ a user’s passphrase input for
User Master Key generation.

In order to utilize a key in the key chain, a user only
needs to present a passphrase to begin a session. An SP-
enabled computing platform can convert the passphrase
into the User Master Key, which in turn is used to retrieve
the keys in the user’s key chain. When the session is over,
the user disassociates from the device by zeroizing the
register used to store the User Master Key in the device.
This process decouples the user’s secrets from the device.

4.3. Trusted Software Module

The key chain is shielded from the untrusted software
by the Trusted Software Module (TSM). The TSM is the
only software module in the system that is allowed to ac-
cess a user’s keys (critical secrets). It is written such that it
never leaks secrets outside the trusted domain. It is the
only module that carries out direct computation involving

the keys. All other applications, including the OS, depend
on interfacing with this module for operations related to
the secrets. The TSM is not limited to cryptographic op-
erations on user keys. In fact, it is up to the vendor of the
TSM to decide what functionalities should be made avail-
able in the module. In this paper, we focus our discussion
on operations involving keys, to illustrate the architecture.

The TSM provides encrypt and decrypt functions and
functions that allow an application to generate and add
keys to the user key chain. Figure 3 lists a few sample
functions. Consider the function Encrypt(). Before the
function is called, the user must determine which key is to
be used. The keychain can be managed by an application,
a software library or the OS. It retrieves the subset of the
keychain from the root to the desired key, and passes this
to the TSM. The TSM decrypts this, until the desired user
key is decrypted and its integrity verified. It then applies
that key to perform the desired encryption operation. Upon
completion, the TSM exits concealed execution, and re-
turns control to the calling application.

In order to exclude any vulnerabilities due to untrusted
code, we require that the TSM be entirely self-contained.
It should not call functions in external libraries nor make
OS system calls. All necessary libraries should be stati-
cally linked into the TSM at compile time, and memory
for storing intermediate data statically allocated.

Consistent with our minimalist architecture goal, the
TSM currently executes in a single thread. The OS queues
requests to the TSM. All other non-CEM threads still run
multithreaded. Cost-benefit tradeoffs of a multithreaded
TSM can be studied in the future.

Another important attribute of the TSM is its code size.
Software bugs are inevitable in a complex code base. In
order to give confidence of its correctness, the code size of
the TSM needs to be small enough to be fully verified.

Even when the TSM code is verified and trusted, it is
possible for subverted software to make malicious use of
its functions. Although malicious software cannot obtain
the user’s actual secrets, it can make use of those secrets
while the user’s key chain is associated with the device. In
many scenarios, a verified and trusted TSM provides suf-
ficient protection. Otherwise, the TSM should also attempt
to verify the trustworthiness of the caller to its functions.
In high security applications, a secure bootup mechanism
[3] may be used, such that the software platform is trusted.
Or we may trust a small, verified kernel of the OS to cor-
rectly identify caller processes, and then restrict access

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

48 bytes 16

Instructions Hash Instructions Hash …….

Figure 4: Instruction stream of the trusted module with integrity hashes
inserted at the cache line boundary, assuming 64-byte cache line.

based on this identification. Such methods can be applied
without modification to our architecture.

4.4. Concealed Execution Mode

The execution of the trusted software module (TSM) is
protected from software attacks by a new Concealed Exe-
cution Mode (CEM). This has four aspects: (1) protection
of the code binaries from malicious modification, (2) pro-
tection of data generated during CEM computation from
malicious observation and modification, (3) protection of
register contents during interrupt handling, and (4) clear-
ing of CEM data upon exit from CEM.

4.4.1. Integrity of the Code Binaries. To support CEM,
we introduce another critical secret called the Device Mas-
ter Key. This is associated with the device for the lifetime
of the installation of the TSM.

During device initialization, the TSM is installed with a
brand new Device Master Key. This Device Master Key is
used to generate keyed hashes of the TSM binaries.
Hashes of the TSM are generated per instruction cache
line, and stored inline with the code. They also include the
address of the first instruction in the cache line. Figure 4
illustrates the resulting instruction stream. Since the
hashes occupy instruction space, the compiler for the TSM
needs to take into account the insertion of hash values to
produce branch instructions correctly.

During CEM, when instructions are fetched from the
off-chip memory into the L2 cache, the processor verifies
the integrity of the cache line by comparing the reference
hash with a hash calculated on the fly over the instructions
in the cache line. If the instruction stream has been tam-
pered with, the two values will disagree, and an exception
is thrown. Furthermore, dynamic hostile code insertion is
prevented by tagging protected instruction and data cache
lines in the on-chip L2 unified cache and L1 caches (de-
scribed in Section 4.5). Therefore, all executed instruc-
tions are valid and the integrity of the TSM is guaranteed.

After integrity checking, the hash is replaced in cache
with NO-OP instructions so that it does not interfere with
the flow of the non-branching instructions.

4.4.2. Memory Data Protection. Any CEM data going to
the off-chip memory is also protected by encryption and
hashing. When an on-chip data cache line marked as con-
taining CEM data is evicted, the processor first encrypts
the cache line using the Device Master Key, then com-
putes a keyed hash over the encrypted memory contents
and the starting address of the cache line. This sequence of

encryption-then-hash has been proven secure in [15]. The
encryption prevents adversaries from observing the mem-
ory contents, either by privileged software or by probing
the buses. Hashing prevents undetected tampering with
data associated with CEM execution.

On fetching a protected data cache line into the on-chip
caches, the processor compares its saved hash value with
one calculated on the fly. The two will not match if the
memory was tampered with, causing an exception to be
thrown. Like the instruction hashes, there are many alter-
natives for the storage of data hashes. For example, they
can be stored in a separate memory region in the virtual
address space. Memory usage needs to take into account
the space requirement of the hashes and make allocation
accordingly. In the simplest realization, the memory re-
quired by the TSM is statically allocated. The loader can
partition the virtual address space into data space and hash
space, perhaps using the most significant bit of the virtual
address, to form a direct mapping relationship. Thus the
processor always knows where to fetch or write the refer-
ence hashes.

4.4.3. CEM Interrupt Handling. We assume an un-
trusted OS handles the interrupts. On an interrupt, the con-
tents of the register file (and any other architected registers
in the original ISA) of the CEM thread are protected by
encryption and hashing of the register contents in hard-
ware, prior to transferring control to the interrupt handler
in the OS. Our solution does not require any changes to
the existing OS interrupt handler.

On an interrupt, the processor, while in the CEM, first
encrypts all registers as one unit, using the Device Master
Key. The resulting ciphertext is stored back to the regis-
ters. A hash is calculated over the ciphertext and stored
on-chip in the CEM Interrupt Hash register. Then the
processor temporarily exits CEM and transfers control to
the OS. This allows the OS to handle the register values as
in normal interrupts, but not to observe their true values.
Storing the hash on-chip prevents it from being tampered
with by an adversary, allowing the processor to detect any
modifications to the register data when they are restored.
This CEM interrupt scheme also prevents replay attacks
using a prior copy of the encrypted registers – the only set
that can be successfully replayed is identical to the one
just saved.

Finally, the processor needs to be able to identify a re-
turn back into the CEM, so as to carry out decryption of
the register contents and verify their integrity. Our solu-
tion is to store the return address in an internal CEM regis-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

CEM Instructions Flags

ter, called the CEM Return Address register. Every time
the processor executes a return instruction, it checks
whether the target address is the same as this register’s
value. If true, the return goes to the interrupted CEM ses-
sion. The in situ registers are decrypted, their integrity
verified against the on-chip CEM Interrupt Hash value,
and the processor returns to the CEM.

4.4.4. CEM Exit. When the CEM exits, control returns to
the caller. At this point, the general purpose registers
might contain sensitive data involved in the CEM session.
Therefore, the processor must clear the registers before
returning from CEM sessions.

4.5. New Hardware Features

We now describe the minimalist set of new hardware
features required in the microprocessor in order to support
a secure CEM thread amongst other simultaneously run-
ning insecure threads. The basic idea is that whenever
there is resource sharing, such as the on-chip caches and
registers, we need to look into the security implications
and take steps to remedy them. There are two general
strategies. If the resources are under the direct control of
the processor hardware, tagging can be used to distinguish
between concealed execution and normal execution. Using
the tag, the processor can grant or deny accesses to the
resources according to the current execution mode. If the
resources are managed by software, such as the off-chip
memory, encryption and hashing can be employed to en-
sure confidentiality and integrity. Figure 5 illustrates a
typical processor with the new components shown in bold.

New CEM Registers
We define 5 new registers for SP-processors: a 128-bit

User Master Key, a 128-bit Device Master Key, a 64-bit
CEM Return Address, a 128-bit CEM Interrupt Hash, and
a 2-bit CEM Status register. All but the last have already
been introduced in earlier sections. One bit in the CEM
Status register indicates whether CEM is in use in the cur-
rent instruction stream. This is required so that the proces-
sor can access CEM instructions, validate the integrity of

the TSM instruction stream, and handle interrupts differ-
ently. The other bit in the CEM Status register indicates
whether any thread on the system is currently employing
the CEM (but may have been interrupted). This is used to
enforce only one CEM thread running at a time, and pre-
vent an untrusted OS from spawning more than one CEM
thread.

Only the User Master Key register can be accessed by
the TSM in CEM. The system does not permit the contents
of any of the other registers to be visible to any software,
including the TSM. Hence there is no instruction to read
the contents of these registers. Also, none of these register
values are set at the factory; the two key registers are de-
fined by the user in the field, and the others are only set
within the processor for CEM processing.

The CEM Return Address, CEM Interrupt Hash, User
Master Key and CEM Status registers should not be pre-
served when the power is off, so they are implemented as
regular volatile registers. In fact, the User Master Key is
cleared whenever a user session ends. On the other hand,
for efficiency reasons, the Device Master Key is imple-
mented using non-volatile memory. Since the Device Mas-
ter Key is associated with the installation of the TSM,
keeping it in non-volatile memory means that the TSM
does not have to be reinstalled every time the power is
turned off.

Tagging CEM Cache Lines
Two new cache line flags, CEM Data and CEM In-

structions, indicate whether the cache line belongs to the
CEM thread, and whether it contains protected data or
instructions. When insecure threads attempt to access the
cache line with one of the flags set, an exception is
thrown. In addition, we ensure that the CEM thread cannot
treat data in the L2 cache as instructions, either intention-
ally or because of software bugs.

During a CEM session, when there is an L2 cache miss
for a secure data load, fresh content from off-chip memory
is decrypted and its integrity checked. If the integrity
check is successful, the L2 CEM Data flag is set and L2
CEM Instructions flag is cleared. Otherwise, an exception

New Registers:

 L1
CEM Status (2 bits) Instr.

 Encryption
and

Unified Secure
I/O

Logic

Cache User Master Key (128 bits)
L2 Original Hashing Device Master Key (128 bits) Cache Core Engine L1 CEM Return Address (64 bits) Data

Cache CEM Interrupt Hash (128 bits)

to
CEM Data Flags external

memory Figure 5. New processor features
Processor Boundary LEDs, Buttons and Keyboard

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

is thrown and the cache line remains invalid. When the
data is brought into the L1 data cache, only the CEM Data
flag is preserved. Similarly, an instruction miss in the L2
cache triggers the integrity check of the instructions com-
ing from off-chip memory. The L2 CEM Data flag is
cleared, and the CEM Instructions flag is set. Only the
CEM Instructions flag is copied to the L1 I-cache.

T

Once data is in cache, exceptions are raised if non-
CEM threads attempt to access data or instructions in a
cache line that has its CEM data or instructions flag set.

Our new definition of the CEM cache line flags also al-
lows detection of some dynamic hostile code insertion
attacks [17] caused by stack or heap smashing. The CEM
Instructions flag in L1 I-cache will remain a “0” if the
cache line contents indicated CEM data in the L2 cache.
The processor throws an exception if the CEM thread ever
attempts to execute an instruction when the CEM Instruc-
tions flag is a “0” in L1 I-cache.

Hardware Encryption and Hashing Engine
We provide encryption and hashing of cache lines by

hardware for performance reasons. If AES-CBC-MAC is
used for hashing, both the encryption and the hashing can
be implemented using a single hardware AES module.

New SP Instructions
The new SP instructions and their functionality are

summarized in Table 2. Some of them operate similarly to
instructions in [16].

At device initialization (Section 5.1), device_key_mv
is used to write values to the Device Master Key register.
There is no instruction for reading the contents of this reg-
ister. All operations that require using the Device Master
Key register are implemented in hardware. Only the TSM
running in CEM can obtain contents of the User Master
Key register via the user_key_mv instruction. How-
ever, there is no instruction that can be used by software to
write values to the User Master Key; only the processor
hardware can write values to that register during user ini-
tialization (described in Section 5.2).

When an application wishes to enter the CEM by call-
ing a function in the TSM, the begin_cem instruction is
executed. The processor determines whether another
CEM thread may have been interrupted by checking the
CEM Status flags, and throws an exception if there is one.
Otherwise, the processor proceeds by setting the CEM
Status flags to 1’s. All instructions that enter the processor
following the execution of begin_cem are cryptographi-
cally validated using the Device Master Key.

In the CEM, the TSM can securely transfer data to and
from memory using the cem_load and cem_store
instructions. Spoofing and splicing attacks are prevented
by encryption and hashing. Programs running in CEM can
also complete normal (unsecured) memory loads and
stores, which are essential for transferring the inputs and

0-7695-2270-X/05/$20
able 2. New instructions
Instruction Function

begin_cem
Enters the CEM. CEM Status register bits are set
to 1’s. All subsequently fetched instructions are
cryptographically validated before execution.

end_cem Exits the CEM. General-purpose registers are
cleared. CEM Status bits are set to 0’s

cem_store
Stores a 64-bit datum to secured memory. The
CEM Data cache line bit is set for every cache
line touched by this instruction.

cem_load
Loads a 64-bit datum from secured memory. The
CEM Data cache line bit is set to indicate that the
cache line content is data, not instructions.

device_key_mv
Transfers information from a register to individu-
ally addressable 64-bit chunks of the Device
Master Key.

user_key_mv
Transfers 64-bit blocks of information to a regis-
ter from individually addressable 64-bit chunks of

the User Master Key.

results of the cryptographic function from and to the rele-
vant software applications. For example, an encryption
function running in CEM must possess the ability to ac-
cess unencrypted source data from the unsecured data
memory space of the calling application in order to com-
plete the encryption operation.

Upon completion of a TSM function, the function exe-
cutes the end_cem instruction to exit CEM. At this time,
all of the general-purpose register values used by the TSM
are cleared, the CEM Status register and the CEM Return
Address are cleared, and the CEM data cache lines are
flushed and cleared. The CEM instruction cache lines re-
main tagged in the on-chip caches to avoid observation
from unsecured processes, but still allow the next CEM
session to benefit from instructions already loaded in
cache from the previous CEM session.

Area Costs
The new registers consume only 450 bits. The addi-

tional 2-bit cache line flags are insignificant increases to
the size of the on-chip caches. The encryption and hash
engines can be implemented using a single AES module,
requiring as few as 25,000 gates [1]. The Secure I/O
Logic, described later, is not large. Hence, the only im-
plementation complexity may be the non-volatile memory
for the Device Master Key register.

4.6. Secure I/O

Secure I/O channels are required for user authentication
and device initialization. We propose a very simple secure
I/O interface comprising two LEDs and two buttons. One
button and LED is for Device Master Key initialization,
while the other button and LED are for User Master Key
initialization. A “Device Reset” button clears the Device
Master Key, readying the device for a new TSM installa-
tion. The Device Reset LED is red when the Device Mas-
ter Key is cleared (zeroized) and changes to blue once the

.00 (C) 2005 IEEE

Device Master Key is set by the installation software. The
other button, the “Authenticate” button, allows the user to
initiate a session utilizing his or her key chain. After the
user presses the Authenticate button, the platform switches
the keyboard to a secure mode and begins diverting all
keystrokes to the processor directly. Security against soft-
ware attacks for this input path is provided by encryption
from the keyboard to the processor. The processor’s Se-
cure I/O Logic unit decrypts the keystrokes and uses the
hashing engine to compute the hash of the passphrase.
This hash is then moved to the User Master Key register.
The Authentication LED is red when the User Master Key
is cleared to zero, and changes to green once a User Mas-
ter Key is successfully entered.

4.7. OS support

The OS implements functionalities outside of the con-
cealed execution environment to support the single-
threaded nature of TSM and to improve performance.

Function Wrapper
The OS provides an entry point for applications to utilize
the exported functions of the TSM. It saves and restores
the states of the applications before transferring control to
and from the TSM.

Queueing TSM Requests
The minimalist processor feature list above requires that
the TSM be executed in a single thread. Therefore, the OS
must queue requests to the TSM.

Special TSM Loader
Because data accesses of the TSM require special encryp-
tion, decryption and hashing, the system loader needs to
handle it differently from other applications. Static data
(which is the only data type we allow the TSM) already
comes in encrypted and hashed format. In the simple
scheme we proposed for storing the data cache line hashes,
the loader needs to place the data and reference hashes in
separate regions in the virtual memory space to create a
one-to-one mapping, facilitating the integrity check for
memory accesses.

Optional Key Chain Management
When calling the TSM, the user must select which key to
use. Because the key identification numbers (KINs) and
their ancestral relationships are all stored in plaintext, the
management of the storage and transport of the key chain
does not need to be carried out by the TSM. The OS or a
user software library can do this by fetching all ancestors
of the key prior to transferring control to the TSM.

5. Using SP-enabled Devices

We now provide a summary of the steps involved in
applying the new enhancements to protect secret keys.
We define three major steps: device initialization, user
initialization, and protected operation.

Device initialization
Device initialization occurs when a user first obtains a

computing device containing our proposed security fea-
tures. The user creates a new Device Master Key and in-
stalls the TSM.

First, the user presses the “Device Reset” button to
make sure the Device Master Key is cleared and to trigger
the installation of the TSM. Next, the device must be
booted up to a known correct and secure state. This can be
achieved by platform attestation and secure bootup, using
methods proposed in TCG [36], or more simply by a
minimal secure BIOS. This secure BIOS possesses the
functionality to install the TSM.

The installation BIOS verifies the authenticity of the
TSM by checking its digital signature using software-
based Public Key Infrastructure (PKI) techniques, verify-
ing its integrity and authenticity. The installation proce-
dure continues by packaging the TSM for later use in the
CEM. This is done by:

1. Generating a new Device Master Key.
2. Signing the TSM by hashing its instruction stream on

a per cache line basis.
3. Encrypting and hashing the static data in the TSM.
4. Issuing the device_key_mv instruction to copy the

newly generated Device Master Key to the processor.

After this installation process, the device can be re-
booted to the untrusted OS for normal usage.

User Initialization
User initialization occurs when a user instantiates his

cryptographic key chain for use on an initialized SP-
enabled device. The user presses the Authenticate button
to ensure that the User Master Key register is cleared and
to trigger the secure I/O mechanism: the keyboard begins
encrypting and diverting all keystroke input to the proces-
sor directly until the carriage return is hit. The user enters
a passphrase via this secure input mechanism. The user’s
key chain is now ready for use by the TSM.

Creating a new user key chain simply involves select-
ing a passphrase, by which the User Master Key is gener-
ated. As keys are added to the chain, a user can store the
encrypted key chain locally or remotely.

Since the User Master Key is never permanently stored
on the device, it is safe for a user to pass on a used device
to another user.

Protected Operation
 Protected operation is the secure use, via the TSM, of a

user’s key chain in an SP-device that has been device-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

initialized and user-initialized as in the two procedures
detailed above.

For example, a rights-managed digital video applica-
tion may request the TSM to decrypt chunks of an MPEG
data file, using a previously selected and secured key in
the key chain. The application does not need to read the
key but merely needs to utilize it to decrypt the content.
Although the application runs in the untrusted domain, all
computations involving the key are carried out by the
TSM, without fear of leaking information of the keys
when it runs under Concealed Execution Mode.

When completed, the user should clear the device of all
information related to the User Master Key by pressing the
Authenticate button again, which will zeroize the User
Master Key register.

6. Security Analysis

SP-architecture addresses the threats in Section 3. The
user’s keys are protected from observation and tampering
during storage and transport by encryption and hashing.
They can only be used by calling the TSM, which is a
trusted software module. This means that it is correct and
free from software security vulnerabilities. Tampering
with the TSM code base and hostile code injection can
occur while the binaries are stored on disk, in main mem-
ory, or in cache. On disk and in main memory, the binaries
are protected by signing with keyed hashes. As the code is
loaded into cache through the instruction fetch path, the
integrity is verified. These CEM instruction cache lines
are tagged and cannot be modified. Anything that has not
been verified and then tagged as CEM instructions will not
be executed while in CEM.

Threats of manipulating the execution state of the TSM
require tampering with the state of a CEM thread or its
data. This includes register values, data cache, and main
memory. CEM data is separated from unprotected data on
a cache-line granularity in on-chip caches. Access of CEM
cache lines by non-CEM threads causes an exception.

Observation, spoofing and splicing of TSM’s main
memory space are prevented by encrypting and hashing of
all off-chip stores. The encryption prevents adversaries
from observing the memory content. Integrity checks us-
ing hashes thwart spoofing attacks. Splicing is prevented
by incorporating the memory addresses in the hashes. In
addition, memory replay attacks can be prevented using
known memory authentication systems, e.g., [10] [34].
The methodology in [10] uses Merkle hash trees, and can
be cleanly integrated with our architecture.

Observation, spoofing, splicing and replay of register
contents during interrupt handling and context switches
are remedied similarly by encryption and hashing. By first
encapsulating in situ the registers of the TSM thread be-
fore transferring control to OS interrupt handlers, our ar-

chitecture provides protection without the need to modify
the interrupt handling routine in the OS.

After a CEM session ends, the registers and CEM data
cache lines are cleared to prevent intermediate data from
leaking information about the user’s secrets.

Some dynamic hostile code insertion attacks are also
prevented by our new definitions of the CEM Data and
CEM Instructions flags for the on-chip L1 and L2 caches.
Hostile code cannot be brought in during execution as
data, then later executed as code.

We also provide a secure I/O path to and from the
trusted domain. Simple interfaces such as buttons and
LEDs are connected directly to the processor. Keyboard
inputs are first encrypted prior to transmission, preventing
software attacks on the user’s passphrase.

We address software attacks during device installation
by requiring the system to boot up into a known trusted
state. This can be implemented by a secure BIOS installa-
tion module, or more generally by platform attestation and
secure bootup methods as presented in [3] and [36].

Finally, but importantly, the processor carries no fac-
tory-installed secrets. In fact, we provide mechanisms to
clear or replace any values from the factory or previous
owner. We therefore are also protected from compromise
of the factory and its secrets database.

7. Performance Analysis

The performance impact of our proposal is negligible
for software packages that do not employ the TSM. How-
ever, performance changes may be experienced by pro-
grams (such as SSL and secure storage software) that em-
ploy user key chains with the TSM. In such software,
performance degradation may occur due to the increased
quantity and costs of external memory accesses during
TSM operations. By hashing and encrypting/decrypting
memory content at the processor boundary, we add latency
to external memory accesses.

Since this paper concentrates only on protecting keys
and their related cryptographic functions, we evaluate per-
formance degradation associated with these cryptographic
functions. Thus, we obtain performance statistics by
simulating the execution of common cryptographic rou-
tines, e.g. [21], in the CEM. We use the RSA encryption
algorithm [27], the AES encryption algorithm [25], and
the MD5 one-way hash function [26] as representatives of
public-key ciphers, symmetric-key ciphers and secure
hashes. We will evaluate SP-processor performance
against a wider range of benchmarks in the future.

We model our proposed enhancements to the interface
between the L2 cache and external memory as follows.
We use 128-bit AES-CBC for data encryption/decryption
and 128-bit AES-CBC-MAC to provide code and data
authentication [23] [25]. The AES-CBC encryption and
decryption of 64-byte cache lines can be completed with 4

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

serial and 4 parallel AES operations, respectively. The
initialization vector (IV) is equivalent to the address of the
cache line. MAC computation for authenticating both 48-
byte instruction and 64-byte data cache lines requires a
latency of 4 and 5 AES operations respectively; in both
cases, one extra AES operation is included to hash the 8-
byte address of the cache line. The AES encryption of a
16-byte datum requires 10 rounds of work, and we conser-
vatively estimate that one AES round can be completed in
at most two processor cycles. Hence, the total latencies
involved in decryption, encryption and MAC computation
are at most 20, 80 and 100 cycles, respectively.

80 bytes from off-chip memory:

d1 d2 d3 d4 MAC

addr.

0? AES AES AES AES

AES

AES-1 AES-1 AES-1 AES-1

IV
As shown in Figure 6, for secure data cache line loads,

the decryption can be performed in parallel with the MAC
computation without incurring any additional latency.
Secure data cache line stores operate similarly to data
cache line loads, but the first 16-byte AES encryption op-
eration must be completed before the MAC computation
begins. The remaining encryption operations can be com-
pleted in parallel with the MAC operations. The process-
ing time of secure loads and secure stores is therefore
equivalent to 5 and 6 serial AES operations, respectively.
Authenticated instruction cache line loads require a MAC
computation, so the added latency is 4 serial AES opera-
tions. Hence, the maximum external memory access pen-
alties incurred (per 64-byte cache line) for secure data
loads, secure data stores, and authenticated instruction
loads are 100, 120, and 80 cycles, respectively. Our previ-
ous results in [20] show a performance degradation of less
than 1%.

64 bytes to L2 cache

Figure 6. Secure data cache line load

8. Summary and Future Research

SP-architecture incorporates a minimalist set of proces-
sor and platform features that protect a user’s critical se-
crets during storage, transmission and use in an on-line
system. For example, cryptographic protection of sensi-
tive data depends on the protection of keys. Keys are
critical secrets that must be carefully protected and man-
aged. In SP-architecture, keys conveniently follow their
users and are not associated with any particular device.
This allows a user to securely employ his keys on multiple
devices, and allows a device to be used by different users.

We used a hierarchically encrypted data structure to ef-
ficiently protect user key chains that are stored in open
networks. We proposed new features to the microproces-
sor to support a Concealed Execution Mode. We defined
a Trusted Software Module, which performs protected
computations on users’ secret keys while running in the
Concealed Execution Mode: the keys, their computations
and intermediate state are all protected from observation
and tampering by adversaries. Splicing, spoofing and re-
play attacks are thwarted.

SP-architecture incorporates several novel features. It
proposes a new trust model based on what we call “virtual

secure coprocessing”. It decouples user secrets from the
devices. It does not rely on any permanent or factory-
installed secrets. The root of trust is based on two inde-
pendent master keys: one for the device and one for the
user, both being symmetric-keys. Hence, hardware support
is required only for symmetric-key operations rather than
more costly public-key operations.

While this paper focused on protecting keys as critical
secrets, SP-architecture can also protect other critical se-
crets. In future work, we hope to evaluate SP-processing
for different applications, such as digital rights manage-
ment and privacy protection systems. Also, while various
proposals exist for secure I/O and secure bootstrapping,
we believe that more research is needed to study alterna-
tives and integrate these into architectures like SP-
processing. The simplicity of SP-architecture suggests that
verification and security assurances may be facilitated.
Future work should include how this can best be done for
SP and other secure processor architecture proposals. We
also assumed, like all other hardware-based proposals, that
we can trust the correctness and integrity of hardware.
Future research should look into how well this assumption
holds as chips continue to grow in complexity.

There are many possible extensions, alternative mecha-
nisms and applications of SP-processing. We hope to have
provided a foundation for future research and evaluation
of processor and platform architectures for more secure
and convenient networked computing devices.

9. References

[1] Amphion Corporation, "AES Encryption/Decryption" avail-
able at http://www.amphion.com/cs5265.html, 2002.
[2] R. Anderson and M. Kuhn, "Low cost attacks on tamper re-
sistant devices," Security Protocols: 5th Int’l Workshop, Springer
Verlag LNCS, no. 1361, pp. 125-136, 1997.
[3] W. Arbaugh, D. Farber, and J. Smith. “A Secure and Reliable
Bootstrap Architecture.” Proc. of IEEE Symp. on Security and
Privacy, pp 65–71, May 1997.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

[4] R. M. Best, "Preventing Software Piracy with Crypto-
Microprocessors," Proc. of IEEE Spring COMPCON ’80, pp.
466-469, 1980.
[5] M. Blaze, "High-Bandwidth Encryption with Low-Bandwidth
Smartcards," Proc. of the Workshop on Fast Software Encryp-
tion, pp. 33-40, February 1996.
[6] W.E. Burr, D.F. Dodson and W.T. Polk, "Electronic Authen-
tication Guideline: Recommendation of the National Institute of
Standards and Technology," NIST Special Publication 800-63
Version 1.0.1, Sep 2004.
[7] J. Dyer, R. Perez, S. Smith, M. Lindemann, "Application
Support Architecture for a High-Performance, Programmable
Secure Coprocessor," Proc. of 22nd Natl. Information Systems
Security Conference, October 1999.
[8] W. Ford and B. S. Kaliski, Jr., "Sever-assisted Generation of
a Strong Secret from a Password," Proc. of the 5th IEEE Interna-
tional Workshop on Enterprise Security, 2000.
[9] J. Garay, R. Gennaro, C. Jutla, and T. Rabin, "Secure Dis-
tributed Storage and Retrieval," Proc. of the 11th Int’l. Workshop
on Distributed Algorithms, Springer-Verlag LNCS, no. 1320, pp.
275-289, 1997.
[10] B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S.
Devadas, "Caches and Merkle Trees for Efficient Memory Au-
thentication," Proc. of 9th Intl Symp. on High Performance
Computer Architecture (HPCA-9), Feb. 2003.
[11] T. Gilmont, J.-D. Legat, and J. J. Quisquater, "An Architec-
ture of Security Management Unit for Safe Hosting of Multiple
Agents," Proc. of the Int’l Workshop on Intelligent Communica-
tions and Multimedia Terminals, pp. 79-82, Nov 1998.
[12] P. Gutmann, "An Open-source Cryptographic Coprocessor,"
Proc. of 2000 USENIX Security Symp., 2000.
[13] Intel, "LaGrande Technology Architectural Overview,"
http://www.intel.com/technology/security/, September 2003.
[14] D. Kirovski, M. Drinic, and M. Potkonjak, "Enabling
Trusted Software Integrity," Proc. of the 10th Int’l Conf. on Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS-X), October 2002.
[15] H. Krawczyk, "The Order of Encryption and Authentication
for Protecting Communications (or: How Secure Is SSL?)," Proc
of CRYPTO 2001, 2001.
[16] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.
Mitchell, and M. Horowitz, "Architectural Support for Copy and
Tamper Resistant Software," Proc. of the 9th Int’l Conf. on Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS-IX)., pp. 168-177, 2000.
[17] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi, “Enlist-
ing Hardware Architecture to Thwart Malicious Code Injection,”
Proc. of Int’l Conf on Security in Pervasive Computing (SPC-
2003), LNCS 2802, pp. 237-252, Springer Verlag, Mar 2003.
[18] P. MacKenzie and M. Reiter, "Networked Cryptographic
Devices Resilient to Capture," Proc. of the 22nd IEEE Symp. on
Security and Privacy, pp. 12-25, 2001.
[19] J. P. McGregor and R. B. Lee, “Virtual Secure Coprocess-
ing on General-purpose Processors.” Princeton University Dept.

of Electrical Engineering Technical Report CE-L2002-003, Nov
2002.
[20] J. P. McGregor and R. B. Lee, “Protecting Cryptographic
Keys and Computations via Virtual Secure Coprocessing.” Proc.
of the 2004 Workshop on Architectural Support for Security and
Antivirus, Oct 2004; also in Computer Architecture News, ACM
Press, Vol. 33. No. 1, pp 16-26, Mar 2005.
[21] mCrypt cipher suite, PAX Project, Princeton Architecture
Laboratory for Multimedia and Security (PALMS),
http://palms.ee.princeton.edu/PAX.
[22] Microsoft, "Fingerprint Technology,"
http://www.microsoft.com/hardware/mouseandkeyboard/features
/fingerprint.mspx
[23] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1997.
[24] Microsoft, "Next-Generation Secure Computing Base,"
http://www.microsoft.com/resources/ngscb/, Jun 2004.
[25] National Institute of Standards and Technology, "Advanced
Encryption Standard," FIPS Pub 197, Nov 2001.
[26] R. L. Rivest, "The MD5 Message Digest Algorithm," RFC
1321, http://www.ietf.org/rfc/rfc1321.txt, Apr 1992.
[27] R. L. Rivest, A. Shamir, and L. Adelman, "A Method for
Obtaining Digital Signatures and Public-key Cryptosystems,"
Comm. of the ACM, 21(2), pp. 120-126, Feb. 1978.
[28] RSA Security, Inc., "PKCS #11 v2.11: Cryptographic To-
ken Interface Standard," available at
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/, Nov 2001.
[29] B. Schneier, Applied Cryptography, J. Wiley & Sons, 1996.
[30] R. E. Smith, Authentication: From Passwords to Public
Keys, Addison-Wesley, 2002.
[31] S. W. Smith, E. R. Palmer, S. H. Weingart, "Using a High-
Performance, Programmable Secure Coprocessor," Proc. of the
Intl. Conf. on Financial Cryptography, pp.73-89, 1998.
[32] S. W. Smith and S. H. Weingart, "Building a High-
Performance, Programmable Secure Coprocessor," Computer
Networks, 31(8), pp. 831-860, April 1999.
[33] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S.
Devadas, "AEGIS: Architecture for Tamper-Evident and Tam-
per-Resistant Processing," Proc. of the 17th Int’l Conf. on Super-
computing (ICS), 2003.
[34] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S.
Devadas, “Efficient Memory Integrity Verification and Encryp-
tion for Secure Processors,” Proc. of the 36th Int’l Symp. on Mi-
croarchitecture, Dec 2003.
[35] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas,
“Design and Implementation of a Single-Chip
Secure Processor Using Physical Random Functions,” MIT
Technical Report CSAIL CSG-TR-483, 2004.
[36] Trusted Computing Group,
http://www.trustedcomputinggroup.org, June 2004.
[37] J. D. Tygar and B. Yee, "Dyad: A System for Using Physi-
cally Secure Coprocessors," Carnegie Mellon University Techni-
cal Report CMU-CS-91-140R, May 1991.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

