
Abstract
Pre-execution removes the microarchitectural latency

of “problem” loads from a program’s critical path by
redundantly executing copies of their computations in par-
allel with the main program. There have been several pro-
posed pre-execution systems, a quantitative framework
(PTHSEL) for analytical pre-execution thread (p-thread)
selection, and even a research prototype. To date, however,
the energy aspects of pre-execution have not been studied.

Cycle-level performance and energy simulations on
SPEC2000 integer benchmarks that suffer from L2 misses
show that energy-blind pre-execution naturally has a lin-
ear latency/energy trade-off, improving performance by
13.8% while increasing energy consumption by 11.9%.

To improve this trade-off, we propose two extensions to
PTHSEL. First, we replace the flat cycle-for-cycle load
cost model with a model based on a critical-path estima-
tion. This extension increases p-thread efficiency in an
energy-independent way. Second, we add a parameterized
energy model to PTHSEL (forming PTHSEL+E) that
allows it to actively select p-threads that reduce energy
rather than (or in combination with) execution latency.

Experiments show that PTHSEL+E manipulates pre-
execution’s latency/energy more effectively. Latency tar-
geted selection benefits from the improved load cost
model: its performance improvements grow to an average
of 16.4% while energy costs drop to 8.7%. ED targeted
selection produces p-threads that improve performance by
only 12.9%, but ED by 8.8%. Targeting p-thread selection
for energy reduction, results in “energy-free” pre-execu-
tion, with average speedup of 5.4%, and a small decrease
in total energy consumption (0.7%).

1 Introduction
L2 cache misses are a major obstacle to ILP. Address-

prediction driven prefetching eliminates many misses, but
a small number of static loads—“problem” loads—defy
address prediction and generate disproportionate numbers
of misses. Pre-execution generates timely and accurate
prefetch addresses for problem loads using execution
rather than address prediction. Pre-execution isolates prob-
lem load computations, then redundantly executes copies
of them in parallel with the main program on the spare
hardware contexts of a multithreaded processor. The cho-
sen computations are called p-threads. Pre-execution has
been used to target both branch mispredictions and cache
misses, but has been most successful in targeting L2
misses. Load latency reduction can be “communicated”
from a p-thread to the main program via simple cache
prefetching. L2 misses are also difficult to overlap with
other main thread work. The latter fact both makes pre-

execution more valuable, and simplifies the automated
analysis and selection of p-threads. In previous work we
presented a framework for analytically mining p-threads
from program profiles using constrained optimization
[19]. The framework—which in this paper we call PTH-
SEL—enumerates all static p-threads of a given length or
less, uses formulae to estimate the performance advantage
of each p-thread, and chooses the set that maximizes this
advantage. It has proven to produce good L2-miss target-
ing p-threads. Recent years have seen several proposed
implementations of pre-execution [3, 4, 6, 7, 15, 17, 18,
21, 24, 25] and even some physical research prototypes
[23]. To this date and to our knowledge, no one has exam-
ined pre-execution’s energy aspects.

Like many performance techniques, pre-execution uses
energy—in the form of redundant execution—to reduce
execution latency. Unlike some other techniques, however,
it is driven by a formal framework that explicitly controls
the amount of redundancy. In this paper, we ask two ques-
tions. First, what is the energy/latency trade-off of pre-exe-
cution as driven by an energy-unaware tool like PTHSEL?
Second, can this trade-off be manipulated? In other words,
can we add energy-cognition to PTHSEL (forming PTH-
SEL+E) and allow it to select p-threads that minimize
energy consumption?

To answer the first question, we analyze the perfor-
mance and energy consumption of pre-execution using p-
threads as selected by the original, energy-unaware PTH-
SEL. We find that latency-oriented p-threads (L-p-threads)
have a quasi-linear latency/energy trade-off, producing
average speedups of 13.8%, while increasing energy con-
sumption by 11.9%. As an answer to the second question,
we enhance PTHSEL in two ways.

First, we replace PTHSEL’s linear load-latency-reduc-
tion to global-execution-time-reduction function with a
parametric function based on an approximation of the crit-
ical path [9]. A combination of two critical path estimates
also models the interaction costs [8] of contemporaneous
L2 misses. PTHSEL’s original ignorance of interaction
costs left it vulnerable to selecting ineffectual p-threads.
While not directly energy-aware, this extension allows
PTHSEL to make more judicious p-thread choices, prima-
rily by recognizing that some problem loads have a rather
small effect on global execution time. The new miss cost
model is responsible for producing performance-positive
p-threads for mcf, and raises the average performance gain
from 13.8% up to 16.4%. Its main benefit, however, is a
significant improvement in the accuracy of latency gain
estimation. This added precision allows us to build on top
of the existing, latency-oriented, PTHSEL equations.

Second, we enhance PTHSEL with a parametric
energy model that explicitly accounts for the energy costs

Energy-Effectiveness of Pre-Execution and Energy-Aware P-Thread Selection

Vlad Petric, Amir Roth
Department of Computer and Information Science, University of Pennsylvania

{vladp,amir}@cis.upenn.edu

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

(and potential benefits) of p-threads. The energy-aware
framework, which we call PTHSEL+E, also contains for-
mulae for composing the existing latency criterion and the
new energy one. Via a composition parameter, PTHSEL+E
can be retargeted to select p-threads that optimize execu-
tion time, energy consumption, or any combination of the
two like ED [10] or ED2[16]. Energy oriented p-threads
achieve only a 5.4% performance improvement, but actu-
ally reduce energy by 0.7%. ED-oriented p-threads effec-
tively balance the two concerns, improving performance
by 12.9%, at an energy increase of 3%, yielding the great-
est ED improvement, 8.8%.

One parameter that impacts pre-execution’s latency/
energy trade-off is the idle energy factor: the fraction of
maximum per-cycle energy the processor consumes when
idle and which can only be saved using drastic, long/term
energy reduction techniques like power gating (i.e., “deep
sleep”). A zero idle factor makes latency-oriented pre-exe-
cution quite unattractive from an energy standpoint, but
retargeting p-threads for ED restores a linear latency/
energy trade-off. When the idle factor is high, pre-execu-
tion can be used as an energy reduction tool.

The rest of the paper is organized as follows. Section 2
reviews pre-execution and the original p-thread selection
framework, PTHSEL. Section 3 presents our extensions
for retargeting PTHSEL to optimize for energy consump-
tion or combinations of latency tolerance and energy con-
sumption like ED. Section 4 evaluates these extensions
using cycle-level performance and energy simulation.

2 Pre-Execution Primer
We begin by reviewing pre-execution and the original,

energy-unaware p-thread selection framework (PTHSEL)
[19]. Figure 1a shows a loop that executes 100 iterations.

The bold statement is a “problem” load. It misses 50% of
the time and its address stream is not easily predictable by
conventional predictors.

Pre-execution generates prefetch addresses for prob-
lem loads by redundantly executing their computations.
An isolated problem load computation is called a static p-
thread and consists of a trigger and a body. The trigger is a
PC in the original program or, alternatively, a special jump
instruction that has been planted into the main program.
The body is a list of instructions that comprises the com-
putation. When the main thread encounters a trigger, it
spawns a copy of the corresponding body and executes it
on a spare hardware context. Starting at the trigger, the
main thread and p-thread execute in parallel. However,
while the main thread fetches and executes all instructions,
the p-thread fetches and executes only the load’s computa-
tion. As a result, it fetches and issues the load first. By the
time the main thread reaches problem load, the corre-
sponding block is hopefully already cached.

Figure 1e shows the final p-thread chosen for the prob-
lem load. This p-thread, which is triggered by the induc-
tion statement i++, demonstrates many of the subtleties and
complexities of p-thread selection. For now, notice that it
tolerates the load’s latency by effectively skipping two
loop iterations ahead via i+=2, then pre-executes both pos-
sible load computations, once with rxid=xacts[i].rxid and
once with rxid=xacts[i].g_rxid.

2.1 One Implementation: DDMT
There have been several proposed implementations of

pre-execution [3, 4, 6, 7, 15, 17, 18, 21, 24, 25]. Specula-
tive Data-Driven Multithreading (DDMT) [18] is repre-
sentative of most, but has two unique features. First,
DDMT executes p-threads in lightweight mode [5, 18]. P-
thread instructions (p-instructions) are allocated reserva-

FIGURE 1. Pre-execution and p-thread selection example. (a) static code, (b) static slice tree, (c) unoptimized linear p-
threads, (d) optimized linear p-threads, (e) merged composite p-thread.

for (i = 0; i < N_XACT; i++) { // 100 iterations
 if (xact[i].cover==FULL)
 continue; // 20 times
 else if (xact[i].cover==PART)
 rxid = xact[i].rxid; // 60 times
 else
 rxid = xact[i].g_rxid; // 20 times
 receipts += rx[rxid].price; // 80 times/40 misses
}

 i++
 i++
 i++
 rxid=xact[i].rxid
rx[rxid].price

 i++
 i+=2
 rxid=xact[i].rxid
rx[rxid].price

 rxid = xact[i].g_rxid
rx[rxid].price

 i++
 i+=2
 rxid=xact[i].rxid
rx[rxid].price

 i++ 10 100
 i++ 10 100
 i++ 10 100
 i++ 10 100
 rxid=xact[i].g_rxid 10 20

 i++ 30 100
 i++ 30 100
 i++ 30 100
 i++ 30 100
 rxid=xact[i].rxid 30 60

 rx[rxid].price 40 80
Instruction DCptcm DCtrig

 i++
 i++
 i++
 rxid=xact[i].g_rxid
rx[rxid].price

(c) unoptimized linear p-threads

(b) static slice tree

(d) optimized linear p-threads
 i++
 i+=2
 rxid=xact[i].g_rxid
rx[rxid].price

(a) source

(e) composite p-thread

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

tion stations and physical registers, but not ROB or LSQ
entries; they do not impact architectural state because they
simply do not retire. More significantly, DDMT restricts p-
threads to be control-less (fixed instruction sequences that
execute in their entirety) and unchained (only the main
thread spawns p-threads). Our example illustrates both
restrictions and their work-arounds. Within a given itera-
tion, the problem load is control-dependent on the branch
if (xacts[i].cover==FULL). Rather than including this branch
in the p-thread, PTHSEL “assumes” that it is taken. A sim-
ilar “choice” includes both rxid=xacts[i].rxid and
rxid=xacts[i].g_rxid in the p-thread and excludes the branch
that selects between them. P-thread chaining is used to
jump multiple loop iterations ahead. In DDMT, chaining is
replaced by induction unrolling, the inclusion of multiple
induction statements in a p-thread. Our example p-thread
contains two-levels of induction unrolling (i+=2). Control-
less-ness and non-chaining preclude runaway p-threads,
and simplify p-thread analysis: for each static p-thread, we
know how many dynamic instances there will be and how
many instructions each will contain.

2.2 PTHSEL: Automated P-Thread Selection

P-threads are (optimized) backward slices of problem
loads. The difficulty in selecting p-threads is not in con-
structing the slices, it’s in knowing when to stop, i.e.,
determining how large a p-thread should be or, equiva-
lently, how far ahead of the target load it should be
spawned. Tolerating longer latencies requires “hoisting”
the trigger further upstream from the target load. However,
hoisting increases p-thread overhead by forcing it to
include more instructions. It also reduces the number of
misses covered while potentially increasing the number of
useless p-threads. The second effect comes from the
increased number of branches between the trigger and tar-
get load which increases the probability that the main
thread will deviate from the path implicitly assumed by the
p-thread. The considerations described above are all asso-
ciated with choosing the “sweet-spot” of a linear p-thread:
a p-thread consisting of the computation of a single load.
In general, the misses of a problem load will be computed
by multiple instruction sequences along multiple paths.
How does one choose a set of static p-threads that covers

as much latency for as many misses as possible while min-
imizing overhead? And how does one choose p-threads for
multiple problem loads? PTHSEL answers these questions
quantitatively.

Overview: dynamic slicing, linear p-threads, static
slice trees, and merging. PTHSEL uses a divide-and-con-
quer approach. First, it extracts linear p-thread candidates
from dynamic program traces via backward data-depen-
dence slicing. Candidates are grouped by static problem
load and organized into slice trees. The root of the tree is
the problem load itself. Each candidate is represented by a
node—its trigger is the node itself, while the body is the
path from the node to the root. Figure 1b shows the slice
tree for the problem load in the example. A fork in the tree
indicates a control-decision which effects the problem
load’s data slice. Here, the fork is due to the branch if
(xacts[i].cover==PART). A search procedure examines each
tree independently and selects a subset of the p-threads. A
post-pass merges linear p-threads (potentially targeting
different static loads) with common triggers, under the
assumption that merging improves p-thread characteristics
(i.e., it lowers overhead and doesn’t impact latency toler-
ance). From the slice tree in Figure 1b, the procedure
selects the two linear p-threads (1c), which are optimized
(1d) and merged (1e).

Aggregate Latency Advantage (LADVagg). PTH-
SEL’s centerpiece is a function that estimates the benefit of
each static p-thread as the number of cycles by which its
dynamic instances reduce execution time. Previously
called aggregate advantage (ADVagg), we now call this
function aggregate latency advantage (LADVagg) to distin-
guish it from energy metrics. Control-less-ness and non-
chaining allow the cumulative effects of a p-thread’s
dynamic instances to be calculated by simple multiplica-
tions. Shown in Equations L1–L3 of Table 1, LADVagg is
the difference of two components. Aggregate latency
reduction (LREDagg) is the latency tolerance of one
dynamic instance multiplied by the number of covered
misses (DCptcm). Aggregate latency overhead (LOHagg) is
the overhead of one dynamic instance multiplied by the
number of instances spawned (DCtrig). DCtrig and DCptcm
are mined from the traces and annotate the slice tree (1b).

The final components of LADVagg are tolerated

TABLE 1. PTHSEL Latency Model

Equation or Definition Description

L1. LADVagg(p) = LREDagg(p) – LOHagg(p) Aggregate latency advantage

L2. LOHagg(p) = DCtrig(p) * LOH(p) Aggregate latency overhead: overhead is incurred for every
dynamic p-thread instance (DCtrig)

L3. LREDagg(p) = DCpt-cm(p) * LRED(p) Aggregate latency tolerance: latency is tolerated only for
instances that pre-execute actual misses (DCpt-cm)

L4. LOH(p) = (SIZE(p)/BWSEQproc) * (BWSEQmt/BWSEQproc) Per dynamic instance overhead: overhead is discounted by
main thread sequencing utilization (BWSEQmt/BWSEQproc)

L5. BWSEQproc, Lcm External per-microarchitecture parameters: processor width,
and memory latency, supplied by manufacturer or reverse engi-
neered.

L6. BWSEQmt External per-program parameters: unoptimized IPC

L7. LADVagg –= LRED(p) * DCpt-cm(CHILD(p)) Reduced aggregate advantage

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

latency (LRED) and overhead (LOH) per dynamic p-
thread instance. P-thread overhead is modeled as fetch
bandwidth consumption, discounted by main thread con-
sumption of the same (bandwidth is considered free if the
main thread is not using it). The latency tolerance calcula-
tion is more involved and we do not show it for space rea-
sons. It is described in detail complete with working
examples in the original paper [19].

Correcting for overlaps. Although PTHSEL maxi-
mizes LADVagg sum, it does not select all p-threads with
positive LADVagg. Two static p-threads overlap if they tar-
get an overlapping set of dynamic misses. In our example,
a p-thread that has two unrolled instances of i++ overlaps
with one that has three. PTHSEL recognizes overlaps as
parent-child tree relationships and discounts the LADVagg
of each selected p-thread by the shared latency tolerance it
has with any selected child p-threads (L7). If discounting
turns LADVagg negative, the p-thread is de-selected.

3 Energy-Effectiveness of Pre-Execution
A performance technique like pre-execution is energy-

effective if it reduces latency at a greater rate than that with
which it increases energy consumption. Equivalently, an
energy technique is energy-effective if it reduces energy
consumption at a greater rate than that with which it
increases execution time. Two metrics for measuring
energy effectiveness are energy-delay (ED) [10] and the
energy-delay2 (ED2) [16]; energy-effective techniques
have relative-to-baseline ED and/or ED2 of less than 1.

A performance technique need not strictly trade
latency for energy; it can reduce both given a vehicle for
translating execution time reductions into energy savings.
Processors consume some energy even when “idle”. We
use the term idle energy to lump together energy consump-
tion due to leakage, imperfect/absent clock gating, and the
clock-gating control circuitry itself. By reducing execution
time, a performance technique saves idle energy. These
savings can be “virtual” if the processor reduces the idle
energy consumption per task by executing more tasks in a
given amount of time. They can also be real if the proces-
sor supports aggressive energy conservation techniques
like power-gating and dramatic frequency/voltage scaling
which can be employed when the processor is truly idle.
One example of such a technique is the Mobile Pentium
4’s sleep modes, which employ voltage scaling as well as
clock gating, to reduce static power consumption by as
much as 40% and total power consumption by 9.5% [11].
We conservatively choose 5%—similar to the energy sav-
ings corresponding to a transition from “Stop-Grant” to
“Deep Sleep”—to be our idle energy factor. This number
is likely to increase as leakage becomes more prominent.

3.1 Experimental Setup
We begin by describing our experimental tools.
Timing Simulator. Our simulator is built using the

SimpleScalar Alpha AXP machine definition and system
call interface [2]. It models a dynamically scheduled mul-
tithreaded processor with aggressive control speculation,
MIPS-R10000 style register renaming, and a two-level on-
chip memory hierarchy. The default configuration is a 6-

way superscalar processor, with a 15 stage pipeline, 128-
entry ROB, 80 reservation stations and 384 physical regis-
ters. 384 registers suffice to hold the architectural state of
four threads and the in-flight values of 128 instructions.
The processor is actually equipped with 8 thread contexts,
exploiting the fact that p-threads have no architectural
state. Our experiments show that even with 8 thread con-
texts, pre-execution only requires about 20 additional reg-
isters to hold in-flight p-thread values. However, we stress
that such a processor would not be a viable, general-pur-
pose, multithreaded machine. We use an 8K-entry hybrid
branch predictor, with a 2K-entry BTB. The on-chip mem-
ory hierarchy includes a 32KB, 2-way set-associative, 1-
cycle access instruction cache, 16KB, 2-way set-associa-
tive, 2-cycle access data cache, a 256KB, 4-way set-asso-
ciative, 12-cycle access L2, and 64-entry instruction and
data TLBs. The L2 and memory buses are 16-bytes wide;
the memory bus is clocked at 1/4 processor frequency. We
model an infinite main memory with a 200 cycle latency.
The processor can issue 2 loads and 1 store every cycle
and handle up to 16 outstanding misses.

Energy Model. We enhance the simulator with a mod-
ified version of Wattch [1]. Wattch models energy for
arrays (TLBs, branch predictor tables, ROB, reservation
stations, and rename tables), important combinational cir-
cuits (ALUs), buses, and the clock and uses CACTI 3.0
[20] to model cache energy. We model a clock-gating style
in which all structures draw some fixed fraction of their
maximum per-cycle energy even when unused with the
remainder consumed proportionally based on port usage.
The per-structure energy consumption of our processor is:
branch predictor/BTB (4.4%), i-cache/TLB (18.1%), win-
dow/ROB/result-bus (13.6%), register file (14.2%), ALUs
(5.5%), d-cache/TLB/LSQ (8.6%), L2 cache (13.6%), and
clock (22%). This breakdown corresponds to an unrealis-
tic cycle in which every port of every structure is accessed.
We assume a 5% idle energy factor [11]. Our other tech-
nology parameters are 100nm process, a 3GHz core fre-
quency, and a 1.2V supply voltage.

Benchmarks. We perform our experiments on those
SPEC2000 integer benchmarks that suffer from L2 misses.
Most proposed implementations of pre-execution, and
DDMT in particular, use statically generated p-threads.
For a program/processor combination the will not benefit
from pre-execution, the executable is not augmented with
p-thread code. The remaining benchmarks are not affected
by pre-execution one way or the other. We compile the
programs for the Alpha EV6 architecture using the Digital
Unix C-compiler with optimizations -O4 -fast. The
simulator extracts all nops at no (simulated) cost. We sim-
ulate the programs to completion on their train inputs,
using 2% sampling—with 2% cache/branch predictor
warm-up—with 10M instructions per sample.

P-Thread Selection. We select p-threads using raw
statistics mined from the same runs as those p-threads will
subsequently optimize. This “ideal profiling” allows us to
perform validation experiments by comparing predicted
values with simulated ones. As previously shown [19],
PTHSEL is sensitive to algorithm configuration and cer-
tain microarchitectural parameters, but is robust across

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

program inputs. We re-establish this result in an energy
context in Section 5.1. Our default selection settings are a
2048-instruction slicing window and 64 instructions per
linear p-thread.

3.2 Results and Discussion

Figure 2 shows relative execution time and energy
breakdowns for un-optimized executions (N) and execu-
tions augmented with latency-oriented PTHSEL p-threads
(O). For these programs, PTHSEL produces p-threads that
yield average reductions in execution time of 13.8%, but
does so at an energy cost of 11.9%. The execution time
and energy breakdowns help illuminate.

Latency analysis. The execution time breakdown is
constructed using a critical-path methodology [9]. The
model breaks the program’s critical path into five catego-
ries which are shown as a bar stack. From the bottom, the
categories are: memory latency, L2 latency, execution
latency, commit bandwidth, and fetch bandwidth/latency.
The performance effects of a finite-instruction window
and branch mispredictions are also part of the fetch bar.
Although misses to memory are localized to a relatively
small number of problem loads and account for only 1%
of the total number of critical path edges, their accumu-
lated latencies range from 25% (gcc) to 92% (mcf) of the
total running time. Pre-execution manages to reduce,
sometimes considerably, the L2 miss component of the
execution time, but it does so at the expense of main thread
fetch (bzip2, mcf, twolf). A very high number of p-threads
and p-instructions (e.g. a 48% increase in instruction count
for bzip2 and as high as 310% for mcf) effectively starve
the main thread. Part of the problem is failure on the part
of PTHSEL to adequately model the bandwidth overheads
of pre-execution. PTHSEL uses a divide-and-conquer
approach that can only model the aggregate bandwidth
overheads of the dynamic instances of individual static p-
threads in isolation. PTHSEL can and will select many p-
threads each of which will exact reasonable overhead in
isolation, but which in union will choke the processor.

Counter-intuitively, the deeper problem is not that the
p-threads are “bad” in aggregate, but that many of them

are “bad” individually. PTHSEL’s assumption that latency
tolerance translates directly into latency gains is too
aggressive, and can lead to the generation of many p-
threads that in reality produce net performance losses
(e.g., mcf). This inaccuracy in PTHSEL’s miss-cost model
is the main motivation for our first extension. By using a
more realistic model, we effectively prune the “bad” p-
threads and indirectly reduce fetch overhead.

Energy analysis. PTHSEL’s built-in assumption that
L2 misses are not naturally overlapped has two negative
effects energy-wise. First, it leads PTHSEL to erroneously
believe that all loads require latency tolerance equal to the
full memory latency and to produce p-threads that are
unnecessarily long and energy hungry. Second, it leads
PTHSEL to erroneously believe that load latency tolerance
translates cycle-for-cycle with performance improvement
and to produce p-threads that don’t actually reduce execu-
tion latency, but of course do consume energy. PTHSEL
contains this built-in assumption because it provides com-
putational traction. In PTHSEL’s latency-only world, over-
head is sub-linear fetch contention, so simplifications that
result in excessive overhead are tolerated. From an energy
standpoint, p-thread overhead is (at least) linear and sim-
plifications that ignore it can have undesired results.

While it may be possible to adjust the assumption, a
more straightforward way of counter-acting it is to account
for energy overhead explicitly. The energy breakdown
shown in the right graph of Figure 2 suggests that this
should be feasible. The breakdown distinguishes the fol-
lowing components: fetch (instruction cache and TLB),
structures that are accessed by p-loads (data cache, TLB,
load/store queue), the L2 cache, structures that are
accessed by all p-instructions (decoder, map table, instruc-
tion window, adder/ALU, register file, and result bus),
structures that are not directly affected by p-instructions
(branch predictor and re-order buffer) and, finally, idle
energy. Main thread accesses are solid, p-thread accesses
are striped. Our experiments show that with the exception
of the L2 cache, the (dynamic) energy overheads of pre-
execution are linear with respect to p-instruction count. At
the same time, the idle energy benefit of pre-execution is

FIGURE 2. Latency and energy analysis of PTHSEL driven pre-execution. Left graph shows latency (critical path)
breakdowns, right shows energy. Unoptimized execution (N) and PTHSEL driven pre-execution (O).

0

20

40

60

80

100

120
fetch commit exec L2 mem

bzip2 gap gcc mcf parser twolf vortex vpr.p vpr.r

N N N N N N N N NO O O O O O O O O
0

20

40

60

80

100

120

140

imem, m dmem, m l2, m dec+OoO, m rob+bpred
idleimem, pth dmem, pth l2, pth dec+OoO, pth

bzip2 gap gcc mcf parser twolf vortex vpr.p vpr.r
N N N N N N N N NO O O O O O O O O

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

linear with respect to execution time. These suggest that
predicting the energy effects of p-threads should be easy,
provided that a few energy constants are known. This
observation motivates our second extension.

4 Energy-Aware P-Thread Selection
PTHSEL models pre-execution overhead as sequenc-

ing bandwidth contention between p-threads and the main
program. On programs with low main thread bandwidth
utilization, it considers p-threads to be almost “free”, and
thus is likely to choose p-threads that significantly increase
the number of executed instructions. If energy is a con-
cern, this strategy may backfire. We present two exten-
sions to PTHSEL that improve latency energy trade-off.

4.1 Criticality-Based Load Cost
PTHSEL operates under the assumption that one cycle

of load latency reduction translates into one cycle of exe-
cution time reduction. One way to manipulate PTHSEL
without forcing it to explicitly model energy internally, is
by supplying it with a latency-reduction to execution-time-
reduction function for each static problem load.

From a critical path [9, 22] perspective, reducing the
latency for a single dynamic miss is beneficial until a sec-
ondary critical path that does not include the miss is
formed. Therefore, for a single instance of a problem load,
the latency-reduction to execution-time reduction function
is the identity (i.e., one cycle for one cycle) from zero to
the point where the instruction loses criticality, and flat
afterwards. Different instances of the load will have differ-
ent “saturation” points, and the curve obtained by averag-
ing over all instances will be smooth.

We supply PTHSEL with this function by extending
the tool that generates the slice tree which PTHSEL subse-
quently analyzes. The original tool is a simple trace ana-
lyzer. We augment it with a simple critical-path model [9]
that considers edges due to dataflow, branch mispredic-
tions, in-order fetch and retirement, and a finite sized
ROB. Representing and computing a dense function is
expensive so the analyzer computes execution time reduc-
tions for only a few load latency reduction points: 25%,
50%, 75% and 100%; PTHSEL linearly interpolates
between these.

Accounting for interactions. The interaction cost [8]
of two contemporaneous L2 misses is positive—the gain
of tolerating both exceeds the sum of tolerating each one
individually. This cost stems from the inability of the ROB
to effectively overlap such misses with non-miss work; if
only one miss is covered, the other wedges the ROB.

PTHSEL is a divide-and-conquer framework that deals
with one problem load at a time. Without critical path
information, PTHSEL over-estimates pre-execution’s
capabilities in this scenario, believing that hiding each
miss individually results in linear execution time reduc-
tions and that tolerating both results in additive reductions.
The overall result is a consistent over-estimation of perfor-
mance gains [19]. Ironically, the critical path function
swings the pendulum too far the other way. Since each
load individually has low criticality, PTHSEL will now
believe that neither is worth a p-thread. Accounting for

interactions accurately requires operations on power-sets
of overlapping problem loads which is computationally
infeasible. Instead, we average the pessimistic critical path
function described above with a more optimistic one
which is calculated assuming all contemporaneous misses
are resolved. An example should help here.

Consider two L2 misses that complete in the same
cycle; memory latency is 100 cycles. PTHSEL assigns
each load 100 cycles of latency savings for a total of 200.
That’s too high. Since neither load by itself is critical, the
pessimistic critical path function assigns each load 0
cycles of latency savings. That’s too low. The optimistic
critical path function is similar to PTHSEL—it considers
all other misses to be resolved but does account for sec-
ondary critical paths—and assigns each load 90 cycles of
savings (say). By averaging the pessimistic and optimistic
estimates, we assign each load 45 cycles of latency sav-
ings, for a total of 90. This estimate permits PTHSEL to
target both loads independently albeit less aggressively
than it probably should, but maintain a reasonable estimate
for global latency reduction.

4.2 Explicit Energy Model

Our final extension adds an explicit parameterized
energy model to PTHSEL to allow it to select p-threads
that target reductions in energy or any combination of
energy and latency. The augmented framework is called
PTHSEL+E and uses the same basic algorithms. The
extensions are a set of new formulae for p-thread energy
benefit and overhead that culminate in a new p-thread
evaluation function, EADVagg, which evaluates p-threads
based on their aggregate energy benefit. The formulae,
shown in Table 2, are built in layers. EADVagg builds on
LADVagg, the latency advantage computed by PTHSEL.
Together LADVagg and EADVagg can be combined to form
evaluation functions that maximize advantages of compos-
ite quantities like ED or ED2.

In the subsequent discussion, all quantities are in units
of energy (J). When multiplied, it is always by unit-less
quantities like accesses or cycles (which we correlate, but
not equate, with time). Energy constants are given per
cycle or per access, e.g., Eidle/c is the processor’s idle
energy per cycle and EL2/a is the energy of an L2 access.

Aggregate energy advantage (EADVagg). In form,
the EADVagg calculation (equations E1–E3) mirrors LAD-
Vagg, it is the difference between aggregate energy reduc-
tion (EREDagg) and overhead (EOHagg). A p-thread’s
energy reduction (equation E2) is proportional to its
latency reduction (LADVagg); the constant of proportion-
ality is the per-cycle idle energy consumption, Eidle/c. This
model fits with PTHSEL’s assumption that memory laten-
cies are not naturally overlapped with much useful compu-
tation, i.e., that the processor is idle during an L2 miss.

Similar to latency overhead (LOHagg), energy over-
head (equation E3) is proportional to the estimated num-
ber of p-thread spawns. Equations E4–E7 show the per
dynamic p-thread energy overhead model which we divide
into three components: (i) fetch, (ii) execution, and (iii) L2
access. Fetch energy is calculated for the p-thread as a
whole. P-threads are sequenced from the instruction cache

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

in processor width (BWSEQproc) sized blocks at a fre-
quency that achieves an overall bandwidth of 1 instruction
per cycle. This policy simplifies p-thread scheduling and
reduces instruction cache accesses. Its effect is that a p-
thread consumes fetch energy proportional to
ceil(SIZE(p)/BWSEQproc) (equation E5).

From an execution standpoint, p-instructions are split
into two categories: loads and ALU instructions (p-threads
contain neither stores nor branches). P-instructions exe-
cute in a lightweight mode, they are not allocated ROB or
LSQ entries and are not retired. P-thread loads, however,
do access the main thread LSQ to allow them to pick up
values from pre-trigger stores. We assume that each p-
instruction consumes renaming, instruction window, regis-
ter read (or bypass), register write, and result bus energy.
The model amalgamates these structures together and
assumes that a single access to all of them consumes Exall/
a energy. P-thread ALU instructions also consume ALU
energy, Exalu/a per access. P-thread loads also consume
address generation, and data cache/TLB/LSQ energy;
Exload/a for a single access to all structures (equation E6).

The most difficult energy component to model is the
L2. In the best case, a p-thread misses in the data cache
and accesses the L2 once, on the target problem load.
Note, in the default DDMT implementation, this L2 access
is not “energy-free” as it does not replace an access that
would have been performed by the main program. When
targeting L2 misses, DDMT prefetches only into the L2,
bypassing the L1. However, even if L1 prefetching is per-
formed, some number of pre-executed target loads will be
useless (needlessly consuming L2 energy) and these, in
fact, may actually pollute the L1 and result in even more

L2 accesses. The more difficult modeling problem
involves embedded non-problem p-thread loads which
may miss as well. We assume that embedded p-thread load
misses in the L1 at the same rate as the corresponding
main program load (equation E7).

The constants Ef/a, Exall/a, Exalu/a, Exload/a, EL2/a, and
Eidle/c are supplied to PTHSEL+E as external parameters.
They can be published by the hardware vendor or reverse
engineered using hardware counters [12]. For our configu-
ration, they correspond to 9%, 4.9%, 0.8%, 3.8%, 13.6%
and 5% of maximum per-cycle energy consumption.

Notice, there is no energy cost associated with p-thread
spawning. DDMT forks p-threads micro-architecturally by
taking a checkpoint of the physical register map table and
assigning it to a free thread context. Shadow map tables
are constantly updated to support branch speculation. Tak-
ing a checkpoint involves disabling updates on a shadow
copy, i.e., flipping a bit. Assigning a checkpoint to a free
sequencer involves writing a 3 or 4 bit value—processors
support between 8 and 16 checkpoints—into a table.

Composite metrics. PTHSEL+E’s latency and energy
models can be combined to model composite quantities
like ED or ED2 and to produce p-threads that target these
composites. Equations C1–C4 in Table 2 demonstrate the
required extensions. The parameter W is the (exponential)
weight given to latency in the composite calculation; when
W is 1 PTSHEL+E models and optimizes latency, a W of 0
optimizes energy, to model ED and ED2, W is set to 0.5
and 0.67, respectively.

The modeling of composites presents two previously
unseen challenges. Latency and energy are “pure” quanti-
ties and their reduction can be maximized in absolute

Equation or Definition Description

E1. EADVagg(p) = EREDagg(p) – EOHagg(p) Aggregate energy advantage

E2. EREDagg(p) = LADVagg(p) * Eidle/c Aggregate energy reduction: is proportional to the p-thread’s
aggregate latency advantage (LADVagg).

E3. EOHagg(p) = DCtrig(p) * EOH(p) Aggregate energy overhead: overhead is incurred for every
dynamic p-thread instance (DCtrig)

E4. EOH(p) = Ef(p) + Ex(p) + EL2(p) Per dynamic p-thread energy overhead: a combination of
fetch, execution, and L2 access energy

E5. Ef(p) = ceil(SIZE(p)/BWSEQproc) * Ef/a Fetch energy overhead: instruction cache access

E6. Ex(p) = SIZE(p)*Exall/a + ALU(p)*Exalu/a + LOAD(p)*Exload/a Execution energy overhead: separates loads from ALU insns

E7. EL2(p) = LOAD(p) * MISSRATEL1(p) * EL2/a L2 energy overhead: proportional to the number of loads in
the p-thread times a “global” p-thread data cache miss rate

E8. Ef/a, Exall/a, Exalu/a, Exload/a, EL2/a, Eidle/c External microarchitecture energy parameters: structure
access energy constants supplied by processor manufacturer or
reverse engineered

C1. CADVagg(p) = [L0
W*E0

1-W]

 – [(L0–LADVagg(p))W*(E0–EADVagg(p))1-W]

Aggregate composite advantage

C2. W Composition weight parameter: 0 for latency, 1 for energy,
0.5 for ED, 0.67 for ED2

C2. E0, L0 or E0/L0 External application parameters: unoptimized latency and
energy, or their ratio

C3. CADVagg(a+b) = [L0
W*E0

1-W]

 – [(L0–LADVagg(a+b))W*(E0–EADVagg(a+b))1-W]

Adding composite advantages: LADVagg and EADVagg can
be added directly

TABLE 2. PTHSEL+E energy and latency-energy composition models.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

terms without regard to relative improvement. Maximizing
the reduction of a composite that allows gains in one to be
traded for losses in the other requires knowledge of rela-
tive latency and energy improvements, which implies
knowledge of the unoptimized program’s absolute latency
and energy consumption. L0 and E0, respectively, are pro-
vided to PTHSEL+E as external per-application parame-
ters. E0 is absolute (not per-cycle) and includes idle
energy. In practice, the ratio E0/L0 may be easier to mea-
sure or estimate than either absolute quantity individually.
In that case, PTHSEL+E uses some reasonably large num-
ber for L0 and that number multiplied by E0/L0 for E0. A
related complication is that composite advantages cannot
be added. For instance, maximizing CADVagg of a set of
p-threads is not tantamount to finding a set of p-threads
whose CADVagg were maximized independently. In the
same way that accurately estimating CADVagg requires
knowledge of global quantities, it also requires knowledge
of the global effects of other p-threads. We acknowledge
this limitation but do not correct it, as doing so would for-
feit significant computational traction.

5 Experimental Evaluation
Section 3.2 presented an energy characterization of O-

p-threads, p-threads selected by the latency-only PTHSEL.
We now compare these with p-threads selected by PTH-
SEL+E. We also measure the response of PTHSEL+E to
changes in several microarchitecture parameters.

5.1 Re-Targeting P-Threads with PTHSEL+E

In this section, we measure the latency, energy, and ED
characteristics of latency-oriented L-p-threads and judge
our extensions by repeating the measurements for energy-
and ED-oriented p-threads, respectively. In the process, we
verify that re-targeting is “robust”, i.e., that L-p-threads
result in better latency reduction than energy- and ED-ori-
ented ones (E-p-threads and P-p-threads), etc.

The top graph in Figure 3 shows latency (bar), energy
(triangle), and ED (cross) improvements of L-, E-, and P-
p-threads. Here, improvement means “reduction”, a cross
on the positive side of the Y axis means that ED is
reduced. The second graph presents a p-thread/pre-execu-
tion characterization. We show L2 misses covered both
partially (dark bars) and in full (light bars) as a fraction of
the number of baseline L2 misses, the number of p-
instructions executed (diamond) as a fraction of main
thread instructions committed, the ratio of misses covered
to p-threads spawned which we call the usefulness (cross),
and average p-thread length (text). Latency and energy
breakdowns are shown in the bottom two graphs.

PTHSEL latency-oriented O-p-threads. We have
already discussed the shortcomings of PTHSEL and its
latency oriented p-threads in the abstract. Figure 3 illus-
trates these shortcoming quantitatively. By failing to
account for overlapping in any way, PTHSEL greedily
chooses p-threads under the mistaken assumption that
their lookahead will translate to performance. It consis-
tently generates the longest p-threads, inducing the highest
instruction overhead. Its ultra-aggressive p-threads do

cover the most misses and do achieve full coverage for the
most misses, but the profligate use of p-threads results in
sub-optimal performance improvements and consistently
high energy overheads. In mcf, overhead swamps the bene-
fit of prefetching and yields slowdowns.

Latency-oriented L-p-threads. L-p-threads (selected
by PTHSEL+E) differ from O-p-threads (selected by PTH-
SEL) in their use of a criticality-based miss-cost model.
By selectively throttling p-thread selection in situations
where latency reduction may not translate into perfor-
mance improvement, overhead is reduced and perfor-
mance is actually increased. L-p-threads achieve the best
latency reduction, improving performance by an average
(GMean) of 16.4%, and achieve speedup for mcf. That the
overlapping consideration is well-placed can be seen in the
fact that L-p-threads cover only slightly fewer misses than
O-p-threads, but reduce overhead more appreciably while
doing so, e.g., mcf, vpr.route. Despite the corrected view of
overhead, the weak LOHagg cost model still produces p-
threads that consistently increase energy consumption.
While the energy cost of a dynamic p-thread is propor-
tional to its length, its latency cost as modeled by LOHagg
is only the sub-linear interference between the p-thread
and the main thread. To achieve high miss coverages, L-p-
threads execute large numbers of instructions—bzip2’s L-
p-threads increase executed instructions by 44%—and
many useless instances. On average, they increase energy
consumption by 8.7%, but increases as high as 29%
(bzip2) are observed. However, this is still a super-linear
latency/energy trade-off, or ED improvement, of 6.6%.

Energy-oriented E-p-threads. By adding a per p-
instruction linear term to the cost model, EADVagg only
selects p-threads that pay for their own energy consump-
tion. While this reduces miss coverage (sometimes drasti-
cally), the remaining p-threads are much better behaved
from an energy standpoint, executing far fewer p-instruc-
tions and spawning considerably fewer useless instances.

Unlike L-p-threads, E-p-threads either reduce (or at
least don’t increase) the energy consumption of most
benchmarks. The very small increase in vpr.place (0.37%)
is due to optimistic LADVagg estimates which translate
into high EREDagg predictions. As expected, E-p-threads
consistently achieve the highest energy reductions (0.7%
on average) but also the lowest performance improve-
ments (5.4% on average). ED improves by 5.8%.

ED-oriented P-p-threads. P-p-threads balance energy
and latency concerns. The strong energy overhead filter
keeps energy consumption reasonable (3% increase on
average, but with higher variance than E-p-threads). At the
same time, the low latency overhead filter aggressively
pursues miss coverage and yields a 12.9% performance
improvement. This balance produces the best ED reduc-
tion, an average of 8.8%. Miss coverage, instruction over-
head and p-thread usefulness track our intuition—they all
fall between the values corresponding to the L- and E-ori-
ented p-threads.

ED2 -oriented P2-p-threads. Voltage/frequency scal-
ing is a circuit-level technique that provides an energy/
latency trade-off characterized by constant ED2 [16]. As
shown in section 4.2, PTHSEL+E can be easily configured

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

to select p-threads that target reductions in ED2 (P2-p-
threads). To reduce clutter, however, our graphs do not
explicitly show either relative ED2 or P2-p-threads.

One reason we can safely make this omission is that
that P2-p-threads are very similar, both structurally and
behaviorally, to L-p-threads. This is intuitive. The latency
benefit of L-p-threads is much larger than their energy
cost. Even weighing energy and latency equally (by target-
ing ED) effectively emphasizes latency. ED2 puts even
more emphasis on latency reduction.

L-p-threads already provide a super-linear energy/
latency trade-off and improve ED2 by an average of 19%
with all benchmarks “in the black.” Re-targeting for ED2

only increases this gain by 1%, to 20%. By comparison

criticality-based modeling of L2-miss cost yields an
improvement of 6%.

Summary. Within PTHSEL+E, the latency and energy
targets are “robust”, each optimizes its respective metric:
L-p-threads achieve the best performance and E-p-threads
produce the best energy reduction. “Metric robustness”
can be viewed as a form of model validation, when a quan-
tity is optimized in model space the same quantity
improves relatively in the real world. ED is a less robust
target, achieving the best ED improvement overall but in
only two thirds of the benchmarks individually. PTH-
SEL+E uses additive approximations based on indepen-
dence assumptions, whereas ED is inherently a non-
additive measure. However, in those cases in which ED is

FIGURE 3. Analysis of PTHSEL+E driven pre-execution. P-threads targeting latency (L), energy (E), and ED (P), and
PTHSEL latency p-threads (O). The top graph summarizes latency, energy, and ED improvements. The next shows pre-
execution diagnostics. The bottom two graphs show execution time and energy breakdowns. Breakdowns of unoptimized
execution (N) are shown for reference

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

imem, main

dmem, main

l2, main

dec+OoO, main

rob+bpred

idle

imem, pth

dmem, pth

l2, pth

dec+OoO, pth

bzip2 gap gcc mcf parser twolf vortex vpr.place vpr.route
N N N N N N N N NO O O O O O O O OL L L L L L L L LE E E E E E E E EP P P P P P P P P

0

20

40

60

80

100

120

fetch

commit

exec

L2

mem

0

20

40

60

80

100

120 part-cov misses

fully-cov misses

% useful spawns

% p-inst increase

 7
.2

 4
.4

 4
.2

 6
.9

 4
.7

 5
.9

 1
3.

0

 1
2.

8

 1
3.

6

10.1 avg pth len

 6
.9

 3
.6

 3
.8

 6
.3

 4
.6

 5
.3

 1
2.

6

 1
0.

8

 1
0.

3

 4
.8

 2
.9

 4
.8

 8
.6

 2
.9

 8
.1

 8
.9 1

0.
0

 5
.8

 4
.0

 2
.4

 7
.0

 9
.0

 5
.0

 5
.6

 1
3.

2

 7
.2

 8
.8

-20

-10

0

10

20

30

40

%IPC gains

%energy save

%ED save

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

“properly aligned”, the ordering of each target with
respect to each metric is intuitive: P-p-threads reduce more
latency than E-p-threads but less than L-p-threads, and
reduce energy more effectively than L-p-threads but less
so than E-p-threads. On average, retargeting changes met-
ric trade-offs by 2–5%. However, on a per case basis (e.g.,
bzip2, twolf, vpr), its impact can be much larger.

5.2 Model Validation

As previously shown [19], absolute predictive accu-
racy in a p-thread selection framework is not necessary.
From a practical standpoint, relative accuracy—the ability
to adjust p-threads correctly in response to underlying
parameter changes—is (much) more important. Neverthe-
less, in Table 3 we check PTHSEL+E’s predictions for
latency, energy, and ED reductions with actual reductions
from simulated runs. Since we measure actual / predicted
ratios, numbers close to 1 indicate that the estimate is
accurate. Numbers under 1 are over-estimations. To save
space, we show results for 4 benchmarks and L-p-threads.
E- and P-p-threads have similar behavior.

PTHSEL systemically over-estimated LADVagg by as
much as 60% [19]. PTHSEL+E’s criticality based miss-
cost model reduces these to 36% (e.g., an expected
improvement of 30% may yield an actual improvement of
20%, not no improvement at all). Some over-estimation
remains because the “non-overlapping L2 miss” assump-
tion is inherently unchanged. LADVagg over-estimation
translates into optimistic EREDagg predictions but here the
non-overlapping assumption acts as a correction. Energy
overhead estimations err in both directions (underestima-
tions are due to wrong path spawning) but are within 33%
relative. Since these are L-p-threads, many increase energy
consumption. PADVagg (our name for CADVagg that tar-
gets ED) multiplies the inaccuracies of EADVagg with
those of LADVagg. Again, the improved latency model
limits prediction errors to 36%.

5.3 Robustness to Profiling Data

Previous work showed that p-thread selection is stable
with respect to profiling input [19]. Our primary study
(Section 5.1) uses p-threads selected from ideal profiles.
Figure 4 repeats that study with realistic profiling, select-
ing p-threads from profiles of different input (ref) runs.

For most benchmarks, performance, energy and ED
gains with realistic p-threads are near those obtained with
ideal p-threads. Generally speaking, realistic profiling
degrades gain by at most 20% relative (e.g., from 16% to
13%). However, there are a few exceptions. In bzip2, the
ref input is less memory-critical than the train input. This
difference manifests when PTHSEL+E selects p-threads
aggressively. L-p-threads lose 60% of their gain relative to
ideal profiling. P- p-threads are affected to a lesser degree
and E-p-threads are unaffected. Twolf’s problem is a sam-
pling mismatch. Less aggressive sampling and the use of
multiple input set profiles should alleviate both problems.

Realistic profiling also degrades metric robustness for
ED. This is not surprising. PADVagg makes assumptions
about the absolute values of E0 and L0. These assumptions
may not hold closely in a realistic profiling scenario.

5.4 Sensitivity Analysis

We measure the response of each of PTHSEL+E tar-
gets—latency, energy, and ED—to changes in micro-
architecture parameters. Due to space constraints, we
show only three benchmarks for each experiment: two that
are representative and one that is “interesting”, i.e., partic-
ularly sensitive, insensitive, or counter-intuitively sensitive
to the change.

Idle Energy Factor. The fraction of maximum energy
structures consume when idle greatly impacts pre-execu-
tion’s latency/energy trade-off. A low factor reduces over-
all energy consumption, but also diminishes the energy
saving effects of latency reduction. A high factor increases
energy consumption, but amplifies the latency-to-energy
reduction lever. The top chart in figure 5 characterizes L-,
E- and P-p-threads for three idle energy factors: 0% (a pro-

Validation Expression gcc parser vortex vpr.place
Latency Prediction (LBASE – LPE) / LADVagg 0.93 0.64 0.72 0.92

Energy Prediction (EBASE – EPE) / EADVagg 0.67 0.69 0.84 1.15

ED Prediction (PBASE – PPE) / PADVagg 1.21 0.76 0.66 0.69

TABLE 3. PTHSEL+E Model Validation

FIGURE 4. PTHSEL+E with realistic profiling/test inputs

-20

-10

0

10

20

30

40

%IPC gains

%energy save

%ED save

L L L L L L L L LE E E E E E E E EP P P P P P P P P

bzip2 gap gcc mcf parser twolf vortex vpr.place vpr.route

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

cessor with no “deeper sleep”), our default 5%, and 10%.
Without a latency-to-energy reduction lever, the 0%

idle-energy scenario strongly opposes pre-execution from
an energy standpoint. In fact, there are no E-p-threads here
since when Eidle/c is 0, all EADVagg values are negative.
PTHSEL+E can still select P-p-threads using pre-execu-
tion’s naturally high latency/energy trade-off. At 0% idle
energy, L-p-threads have a strongly sub-linear latency/
energy trade-off, and produce dramatic energy increases
(vpr.route’s L-p-threads increase energy consumption by
23%). Surprisingly, retargeting PTHSEL+E to ED—by set-
ting the W parameter to 0.5—restores the linear trade-off.
This suggests that pre-execution can be a sensible energy-
conscious choice even in this scenario, which is strongly
biased against it. All p-threads—even purely latency-ori-
ented L-p-threads—reduce ED2 in this scenario, by an
average of 8.5% (not shown). In contrast, an idle energy
factor of 10% improves the energy and ED characteristics
of all p-threads. L-p-threads achieve performance
improvement at a lower energy cost, while both E- and P-
p-threads have a longer energy reduction lever. In this sce-
nario, pre-execution—targeted towards energy or ED—
may actively be used to reduce energy. For instance, in this
case E-p-threads reduce vpr.route energy by 7%.

Memory Latency. Longer memory latencies imply
more latency per load for p-threads to tolerate. Tolerating
more latency requires earlier spawns, which result in
longer, higher-overhead p-threads with lower coverage.
Increased memory latencies result in more idle energy
consumption, but also make PTHSEL+E’s assumption of
lack of natural overlapping less aggressive. Figure 4 shows
L-, E- and P-p-threads executing for three memory laten-
cies: 100, our default 200, and 300 cycles.

Intuitively, pre-execution’s performance gains increase
with growing memory latencies, but at a slower rate than

those latencies themselves. The increased gains drag
energy and ED gains upwards. The drag is especially
strong on E- and P-p-threads. Surprisingly, longer memory
latencies don’t increase p-thread length substantially and
thus are more energy efficient relatively than their short-
latency counterparts. Longer tolerated latencies require
more induction unrolling, a fixed cost and extremely
energy efficient idiom for arithmetic inductions.

L2 Cache Size/Latency. Larger L2s generate fewer
misses and consume more energy per access. Intuitively,
pre-execution will be more effective in smaller L2s.

The bottom graph of figure 5 shows L-, E- and P-p-
threads for three L2 cache size (and corresponding hit
latencies): 128KB (10 cycles), our baseline 256KB (12),
and 512KB (15). The somewhat surprising result is that a
smaller L2 does not necessarily imply a monotonic
improvement in relative performance/energy gains. In
most benchmarks (e.g., twolf, vortex), the dominant effect
of smaller caches is increased overall latency tolerance
and energy reduction. In mcf, the smaller L2 produces
more misses, but fetch overheads of the additional p-
threads overwhelm latency tolerance, reversing the trend.

6 Related Work
Recent years have seen many proposed [3, 4, 6, 7, 15,

17, 18, 21, 24, 25] and even some prototype [23] imple-
mentations of pre-execution. These have targeted both
loads and branches and have used both software and hard-
ware to generate and spawn p-threads. They have all stud-
ied pre-execution in the performance context. Here, we
explore pre-execution’s latency/energy trade-offs and its
energy and ED reduction properties. Our findings apply
most directly to data-driven multithreading (DDMT) [18],
the system with which we experimented, but can be used
as rough approximations for other systems.

FIGURE 5. Sensitivity of PTHSEL+E with respect to microarchitectural parameters

-20

-10

0

10

20

30

40

%IPC gains

L L LP P PL L LE E EP P PL L LE E EP P P
0% 0% 0%5% 5% 5%10% 10% 10%

gap vortex vpr.route
Idle Energy Factor

-10

0

10

20

30

40

%ED save

L L LE E EP P PL L LE E EP P PL L LE E EP P P

100 100 100200 200 200300 300 300

gcc twolf vortex

Memory Latency

-10

0

10

20

30

40

%energy save

L L LE E EP P PL L LE E EP P PL L LE E EP P P
128KB(10) 128KB(10) 128KB(10)256KB(12) 256KB(12) 256KB(12)512KB(15) 512KB(15) 512KB(15)

mcf twolf vortex

L2 Cache Size (Latency)

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

This work extends a previously proposed analytical
framework for p-thread selection [19], augmenting it with
evaluation functions that compare and select p-threads
based on energy and ED characteristics. Other systems
that automatically generate p-threads using a compiler
[13] or binary rewriter [14] may be extended with energy
awareness as well.

7 Conclusions and Future Work
Like many other techniques, pre-execution uses redun-

dancy (translation: energy) to reduce latency. Unlike many
other techniques, however, pre-execution is associated
with a quantitative framework that allows its latency
reduction properties to be analyzed and maximized via the
selection of good p-threads. This work explores the
latency/energy trade-offs of pre-execution and presents
two extensions to the original framework (PTHSEL) that
enable the selection of p-threads that target energy or ED
reduction rather than latency reduction. Our new frame-
work is called PTHSEL+E.

Experiments with a modified SimpleScalar/Wattch
simulator and the SPEC2000 integer benchmarks show
that with PTHSEL+E, latency-oriented pre-execution has a
super-linear latency/energy trade-off. It reduces execution
time by an average of 16.4% for those benchmarks that
suffer from a large number of L2 misses while increasing
energy consumption by 8.7%, an ED improvement of
6.5%. The latency/energy lever is due to increasing spar-
sity of data dependences proceeding backwards from
problem loads. Latency—and via a “deep sleep” mode,
energy—can often be substantially reduced at the cost of a
single p-instruction. Retargeting PTHSEL+E to produce p-
threads that reduce energy achieves a performance
improvement of only 5.3%, but reduces total energy con-
sumption. ED-targeted p-threads strike a good balance,
achieving a latency reduction of 12.9% at a modest energy
increase, for an ED improvement of 8.8%.

Pre-execution’s latency/energy lever depends on the
idle energy factor, the fraction of peak per-cycle energy
the processor consumes when idle for short stretches and
which can only be saved using drastic, longer-timescale
measures. A high factor makes marginal p-instruction
energy cheap, latency reduction translate to energy reduc-
tion more effectively, and pre-execution more attractive.
Our experiments use a conservative factor of 5%. At 10%,
pre-execution can be used as an energy reduction tool.

Although we do not explicitly evaluate branch pre-exe-
cution [5, 18, 25], it is potentially an effective energy-
reduction technique. Our extensions should apply to
branch p-threads with one modification. When targeting
L2 misses, we assume that the processor would have been
idle during saved cycles, such that energy is saved at a rate
of Eidle/c. When targeting branches, we should assume that
the processor would have been typically busy during saved
cycles and that energy is saved at a rate of Etotal/c.

Acknowledgements
We thank the reviewers for their feedback. This work

was supported by NSF CAREER Award CCF-0238203.

References
[1] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A Frame-

work for Architectural Level Power Analysis and Optimiza-
tions.” In ISCA-27, Jun. 2000.

[2] D. Burger and T. Austin. “The SimpleScalar Tool Set, Version
2.0.” Technical Report CS-TR-97-1342, University of Wiscon-
sin-Madison, Jun. 1997.

[3] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. “Si-
multaneous Subordinate Microthreading (SSMT).” In ISCA-26,
May 1999.

[4] R. Chappell, F. Tseng, A. Yoaz, and Y. Patt. “Difficult Path
Branch Prediction using Subordinate Microthreads.” In ISCA-
29, May 2002.

[5] R. Chappell, F. Tseng, A. Yoaz, and Y. Patt. “Microarchitec-
tural Support for Pre-Computation Microthreads.” In MICRO-
35, Nov. 2002.

[6] J. Collins, D. Tullsen, H. Wang, and J. Shen. “Dynamic Specu-
lative Precomputation.” In MICRO-34, Dec. 2001.

[7] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery,
and J. Shen. “Speculative Pre-Computation: Long Range
Prefetching of Delinquent Loads.” In ISCA-28, Jul. 2001.

[8] B. Fields, R. Bodik, M. Hill, and C. Newburn. “Using Interac-
tion Costs for Microarchitectural Bottleneck Analysis.” In MI-
CRO-36, Dec. 2003.

[9] B. Fields, S. Rubin, and R. Bodik. “Focusing Processor Policies
via Critical Path Prediction.” In ISCA-27, Jul. 2001.

[10] R. Gonzalez and M. Horowitz. “Energy Dissipation in General
Purpose Microprocessors.” IEEE Journal of Solid-State Cir-
cuits, 31(9), Sep. 1996.

[11] Intel Corporation. Mobile Intel Pentium 4 M-Processor
Datasheet, Jun. 2003. http://www.intel.com/design/mobile/
datashts/250686.htm.

[12] R. Joseph and M. Martonosi. “Run-Time Power Estimation in
High Performance Microprocessors.” In ISLPED-01, Aug.
2001.

[13] D. Kim and D. Yeung. “Design and Evaluation of Compiler Al-
gorithms for Pre-Execution.” In ASPLOS-10, Oct. 2002.

[14] S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and
J. Shen. “Post-Pass Binary Adaptation for Software-Based
Speculative Pre-Computation.” In PLDI-2002, Jun. 2002.

[15] C.-K. Luk. “Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading Pro-
cessors.” In ISCA-28, Jul. 2001.

[16] A. Martin, M. Nystroem, and P. Penzes. “ET2: A Metric for
Time and Energy Efficiency of Computation.” Technical Re-
port CSTR:2001.007, CalTech, 2001.

[17] A. Moshovos, D. Pnevmatikatos, and A. Baniasadi. “Slice Pro-
cessors: An Implementation of Operation-Prediction.” In ICS-
15, Jun. 2001.

[18] A. Roth and G. Sohi. “Speculative Data-Driven Multithread-
ing.” In HPCA-7, Jan. 2001.

[19] A. Roth and G. Sohi. “A Quantitative Framework for Pre-Exe-
cution Thread Selection.” In MICRO-35, Nov. 2002.

[20] P. Shivakumar and N. Jouppi. “CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model.” Technical report,
COMPAQ Western Research Laboratory, 2001.

[21] Y. Song and M. Dubois. “Assisted Execution.” Technical Re-
port #CENG 98-25, Department of EE-Systems, University of
Southern California, Oct. 1998.

[22] S. Srinivasan and A. Lebeck. “Load Latency Tolerance in Dy-
namically Scheduled Processors.” In MICRO-31, Nov. 1998.

[23] P. Wang, J. Collins, H. Wang, D. Kim, B. Greene, K.-M. Chan,
A. Yunus, T. Sych, and J. Shen. “Helper Threads via Virtual
Multithreading On An Experimental Itanium 2 Machine.” In
ASPLOS-XI, Oct. 2004.

[24] C.-L. Yang and A. Lebeck. “Push vs. Pull.” In ICS-14, May
2000.

[25] C. Zilles and G. Sohi. “Execution Based Prediction Using Spec-
ulative Slices.” In ISCA-28, Jul. 2001.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

