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Abstract

Multicore processors have emerged as a powerful platform

on which to efficiently exploit thread-level parallelism (TLP).

However, due to Amdahl’s Law, such designs will be increas-

ingly limited by the remaining sequential components of appli-

cations. To overcome this limitation it is necessary to design

processors with many lower–performance cores for TLP and

some high-performance cores designed to execute sequential

algorithms. Such cores will need to address the memory-wall

by implementing kilo-instruction windows.

Large window processors require large Load/Store Queues

that would be too slow if implemented using current CAM-

based designs. This paper proposes an Epoch-based Load

Store Queue (ELSQ), a new design based on Execution Local-

ity. It is integrated into a large-window processor that has a

fast, out-of-order core operating only on L1/L2 cache hits and

N slower cores that process L2 misses and their dependent in-

structions. The large LSQ is coupled with the slow cores and

is partitioned into N small and local LSQs, one per core.

We evaluate ELSQ in a large-window environment, finding

that it enables high performance at low power. By exploiting

locality among loads and stores, ELSQ outperforms even an

idealized central LSQ when implemented on top of a decou-

pled processor design.

1 Introduction

Placing multiple cores on a die is an effective way to in-

crease the raw execution bandwidth of the chip. In addition to

reduced design complexity, multicores enable performance at

a power budget that is superior to traditional scaling.

Nevertheless, multicores have some problems. Applica-

tions are difficult to parallelize. In the extreme case, sequen-

tial algorithms might not allow any high-level parallelization,

yet might still have a significant amount of instruction-level

parallelism (ILP). It is important to maximize the opportuni-

ties to exploit both thread-level parallelism (TLP) and ILP to

maximize system performance. One approach is to design a

heterogeneous processor with large cores capable of holding

thousands of instructions to exploit ILP and small cores to ex-

ploit TLP.

Past research has focused on designing large window pro-

cessors with proposals such as the WIB [1], CFP [2, 3],

TRIPS [4] or KILO-Instruction processors [5, 6]. For many

applications, a large window processor can exploit the copi-

ous ILP that remains hidden from current microarchitectures.

In this paper we focus on one of the most critical com-

ponents of a large-window processor: the Load/Store Queue

(LSQ). There have been many previous design proposals for

the LSQ. However, in architectures that can handle thousands

of in-flight instructions, most techniques fail to deliver perfor-

mance. In Section 2 we analyze the causes for this failure.

To overcome the bottlenecks we apply the concept of Exe-

cution Locality to our LSQ design. Execution Locality is the

observation that instructions tend to execute in bursts sepa-

rated by cache-missing loads. It has been applied to the design

of large-window processors [6, 7]. However, the authors have

not proposed a workable LSQ for this architecture.

Based on Execution Locality we design an LSQ with two-

level disambiguation, dividing the non-completed instructions

into two parts depending on whether they are miss-dependent

or not. The instruction that divides both groups is the oldest

instruction that does not depend on a cache miss. This instruc-

tion and all younger ones belong to the High-Locality part of

the window. Older instructions belong to the Low-Locality

part of the window. Low locality instructions are further par-

titioned into epochs implemented in different banks. A two-

level disambiguation scheme is implemented based on these

epochs. On issue, loads and stores first search the local epoch

for matches, then the global level. The implementation makes

local searches much more power efficient than global searches

and profits from store-load locality.

This paper makes the following contributions:

• A Load/Store Queue based on Execution Locality, the

ELSQ, is proposed. (Section 3.2)

• Exploiting locality, several restricted disambiguation

schemes are proposed that can considerably reduce the

implementation complexity. (Section 3.3)

• The LSQ further classifies low-locality memory instruc-

tions into epochs based on their age. Epochs are the

building blocks for the proposed two-level disambigua-

tion scheme. (Section 3.4)

• Several filtering schemes are proposed to reduce activity

in global disambiguation. (Section 3.4)

• The energy-efficiency is analyzed. (Section 6)

2 Background

2.1 Memory Handling for Large Windows

Building a scalable load store queue (LSQ) is challenging.

LSQs are more difficult to implement compared with normal
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instruction queues due to their higher number of states and

functionalities.

In a normal instruction queue there are only two states:

Ready or Not Ready. The functionality of the LSQ is more

complex. Issuing loads need to search the Store Queue (SQ),

while stores need to search the Load Queue (LQ). The overall

functionality that needs to be supported in an uniprocessor

environment is as follows:

Store-Load Forwarding: When a load issues, in addition

to accessing the data cache, it also needs to search the store

queue for older stores matching the load address. If there is

a match, the load should use the data from the store queue

instead of the cache. Store-Load Forwarding involves two

special cases. First, the matching store might still be waiting

for data. In this case it is common to periodically reissue the

load every few cycles until the data is available. Second, the

load access might only partially match the store. In this case,

special action should be taken to recover the correct value.

Some implementations squash the load and do not issue it

again until the store has committed its data to the cache [8].

Store-Load Ordering: When a store issues, it is neces-

sary to check whether a younger load with a matching address

has already executed, potentially violating program seman-

tics. In general, store-load violations squash the instruction

window starting from the violating load. Fortunately, these

violations are rare.

Commit: At commit, stores update the memory in pro-

gram order, maintaining program semantics. All loads and

stores need to be buffered during their whole lifetime.

Due to the age-based operation of LSQs it is typical to im-

plement age-indexed LSQs. In this scheme, when a memory

instruction is decoded, an entry is allocated at the tail of the

LQ or SQ. The size of the LSQ needs to be balanced so that

it does not overly constrain the instruction window. We now

introduce two relevant solutions that have been proposed for

the LSQ.

Hierarchical Store Queues One solution that has been pro-

posed to overcome the problem of the Store Queue is to use

hierarchical store queues (HSQ) [3]. In this scheme, the SQ

has two parts: A small and fast first-level store queue stores

the X youngest stores in the window and a large and slower

second-level SQ stores all older stores. This scheme optimizes

loads that are ready soon after decode and forward from close

stores, but penalizes loads that depend on chasing pointers or

forward from distant stores. The hierarchical store queue also

suffers higher complexity due to the way it manages check-

points. Second-level stores are tracked by hashing into a set of

counters. Checkpoint recovery consists of decrementing the

counters, one by one, for every squashed store. This is costly

and takes extra time.

Load Re-Execution The largest group of techniques ad-

dressing the load queue are those related to load re-

execution [9, 10] with the goal of making the LQ non-

associative, thus solving the LQ scalability problem. In these

schemes, when a store issues, it does not search the LQ for vi-

olations. Instead, when the load commits, the load re-executes

and checks whether it obtained the correct value. Research

has concentrated on reducing the number of loads that need to

re-execute. Lipasti et al. [9] propose re-executing only loads

that issue while there are older stores with unknown addresses

in–flight. Store Vulnerability Windows (SVW) [10] is another

way to decrease re-executions. SVW uses a Bloom filter to

determine whether a re-execution might be necessary, substi-

tuting data access with filter access and possible re-execution.

Large instruction windows can increase the number of nec-

essary re-executions, making this technique less applicable.

For example, using SVW with a 10-bit SSBF, a conventional

out–of–order processor with a 64-entry window observes an

average of 1 re-execution every 715 instructions for SPEC

FP. The same execution using a large window processor with

about 1500 in-flight instruction results in 1 re-execution every

95 instructions.

2.2 Execution Locality

A large impediment for high performance in current micro-

processors is the memory wall, i.e. the discrepancy between

memory access times and processor clock cycle. Given the

current processor/memory speeds and ROB sizes, every time a

main memory access occurs the processor spends around 90%

of the service time idle because the ROB fills.

The impact of the memory wall on performance has been

studied comprehensively [11]. Applications with large work-

ing sets and little locality suffer a large penalty in terms of ex-

ecution speed. For applications with high memory-level paral-

lelism, much of the performance can be recovered by increas-

ing the size of the instruction window. Since parallel memory

accesses do not need to wait for previous accesses to finish,

memory access latencies can be hidden.

Technologically it is infeasible to design large window pro-

cessors using traditional scaling techniques. Register files,

issue queues (wake-up and select machinery) and LSQs are

all hard-to-scale structures. Attempting to scale them reveals

power density and access time constraints. Thus, a different

approach needs to be explored.

Almost all large–window processor designs that have been

proposed rely on the observation that the instruction window

does not need to grow unless a long latency event such as an

L2 cache miss occurs. Most proposals operate by detecting

the presence of cache misses and extracting dependent instruc-

tions. Two techniques have been proposed. One group of

proposals extracts instructions at issue, using the select and

wake-up logic [1, 2]. Another set of large-window designs

makes use of the concept known as Virtual ROB, in which

long-latency instructions are extracted when they reach the

head of a partial ROB [5, 6].

In an environment where main memory accesses have high

latencies relative to the processor frequency, dependent in-

struction chains execute quickly relative to memory accesses.

Unless the working set is small and fits into the cache, the

execution of such applications consists of small bursts of in-
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Figure 1. Floating Point (left) and Integer (right) Decode→Issue Distribution for 100 million committed instructions

structions followed by intervals in which the processor waits

for data. This is the observation behind Execution Locality [6].

This concept has been used to propose decoupled processor

designs. A first core executes these high locality instructions

just after decode. Analysis shows that most instructions be-

long to this category. This first core is called the Cache Pro-

cessor while the cache-miss dependent instructions are pro-

cessed by a second core, the Memory Processor [6]. Cache-

miss dependent instructions are said to have low locality.

Figure 1 shows how the concept of execution locality ap-

plies to address calculation. The plots classify loads and stores

depending on the latency between instruction decode and ad-

dress calculation. Each data point represents the number of

loads or stores that have a similar decode→issue latency mea-

sured in cycles. Similarity is grouped in blocks of 30 cycles.

The test ran SPEC CPU 2000 on a 4-way out-of-order pro-

cessor with a large window (up to 4096 in–flight instructions)

and a memory subsystem with L1, L2 and main memory with

distances of 1, 10 and 400 cycles, respectively. The num-

bers are averages for 100 million committed instructions over

all benchmarks. The plots show the latencies within which

95% and 99% of all loads/stores are covered. For SPEC2000,

around 91% of all loads and 93% of all stores calculate their

addresses within 30 cycles after decode. The figures show that

most address calculations do not depend on cache misses, ex-

plaining the prefetching effect achieved by large-window pro-

cessors. For address calculations that depend on cache misses,

loads are more frequent than stores. Few stores have address

calculations depending on a cache miss, and almost none de-

pending on multiple cache misses.

3 Epoch-based Load Store Queue

3.1 Generic Processor Model

We first explain the LSQ model in the context of a tradi-

tional superscalar with a microarchitecture resembling that of

a MIPS R10000 [12]. This processor features a reorder buffer

and a centralized physical register file. Logical registers are re-

named during decode and checkpoints are taken at branches.

In Section 4 we will show how ELSQ can be integrated into a

microarchitecture based on execution locality.

Figure 2. Basic Scheme of a two level LSQ
based on Execution Locality

3.2 Epoch-based Load/Store Queue

We propose to partition the LSQ based on Execution Lo-

cality [6]. For high-locality memory references we keep a first

high-locality LSQ, while low-locality references occur in the

low-locality LSQ. Low-locality address calculations are more

latency tolerant. However, store-load forwardings from low-

locality stores to high-locality loads are critical.

The partitioning that we propose enables fast access time

and reduces power for high-locality memory instructions. In

any given cycle, the number of these instructions is rela-

tively small and moderate sized queues are sufficient to track

them. Thus, the technique resembles schemes that partition

the queue by using address interleaved LSQ banks. However,

the conceptual differences imply completely different logic

designs. Address-interleaved LSQs require mechanisms to

test the ordering between memory instructions that reside in

different banks. In our model, memory instructions are phys-

ically ordered among the queues so that low-locality instruc-

tions are older than high-locality instructions. This idea is il-

lustrated in Figure 2.

Loads and Stores are sequentially moved from the high-

locality queue (HL-LSQ) to the low-locality queue (LL-LSQ)

either when it is known that the address calculation is cache

miss-dependent or whenever the low-locality queues are ac-

tive. This is implicitly represented by the arrow in Figure 2.

When the LL-LSQ is not active it can be kept in a low-power

mode. This is beneficial to our design since the processor runs

in high-locality mode for a large amount of time.

Consider the code segment annotated with cache behavior

shown on the left of Figure 3. The right side of Figure 3 shows

how execution proceeds. As long as address calculations do

not depend on cache misses, address computation and issue
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Figure 3. Execution (right) of example code (left) in a locality based Load/Store Queue

proceed in the first queue (HL-LSQ). If the address calculation

does depend on a cache miss, then the instruction migrates to

the second queue (LL-LSQ) before address calculation and is-

sue proceed. Loads that obtain their address in the HL-LSQ

but miss in the cache are also migrated to the LL-LSQ. Migra-

tion from HL-LSQ to LL-LSQ follows a scheme based on the

Virtual ROB [5]. The goal of these techniques is to maintain

instructions separated in two queues based on age and locality.

3.3 Restricted Disambiguation Models

The scheme so far presented allows loads and stores to dis-

ambiguate either in the HL-LSQ or in the LL-LSQ. However,

disambiguation also needs to occur between locality levels. As

we will see, some support logic is needed to make this work.

This logic can be simplified if we restrict the disambiguation

capabilities. We consider four disambiguation models:

• Full Disambiguation: In this model, loads and stores

are allowed to disambiguate in both the HL-LSQ and the

LL-LSQ. This model requires associative queues in both

locality levels for loads and stores.

• Restricted SAC: Store Address Calculation (SAC) is re-

stricted mainly to the HL-LSQ. If a store address depends

on a long-latency register the store is allowed to migrate,

but no later memory reference can be migrated until the

store address calculation completes. This model simpli-

fies disambiguation by removing LL-LSQ searches for

store-load violations. The model benefits from the fact

that store addresses are usually calculated in the HL-LSQ

and rarely occur in the LL-LSQ (see Figure 1). Thus,

stalls will be infrequent.

• Restricted LAC: In this model, Load Address Calcula-

tion (LAC) is restricted to the HL-LSQ. The benefits in

terms of logic are less than those of the restricted SAC

model as store-load forwardings will still require search-

ing for stores in both HL-LSQ and LL-LSQ. Moreover,

loads tend to have many more long-latency address cal-

culations than stores so performance is likely to degrade

more noticeably.

Figure 4. LSQ with banked LL-LSQ

• Restricted LAC/SAC: In this model both loads and

stores are restricted. Disambiguation resources are con-

siderably simplified. However, the store window may be

large so a solution for the LL-LSQ is still necessary.

For common parameters like a 10-cycle L2 cache and a 4-

way processor, the HL-LSQs need not be larger than 24-32

entries, so a conventional-sized queue is enough.

3.4 Hardware Disambiguation Schemes

Since the LL-LSQ holds all low-locality loads and stores,

it may need to buffer hundreds of memory references. We ad-

dress the problem of the large LL-LSQ by banking the struc-

tures. To keep the sequence of memory instructions we bank

based on age, not address. The number of banks is a design

parameter. For the implementation we want to have as few

banks as possible to minimize complexity, but enough banks

for each to have smaller size. Figure 4 shows the partitioning.

Despite the multiple structures, this scheme still represents

a sequential window of memory instructions. Since each par-

tition of the LL-LSQ contains a sequential portion of loads

and stores of the instruction window –which we call a memory

epoch– we call our LSQ scheme the Epoch-based Load Store

Queue or ELSQ, in short. Note that instructions never travel

between epochs. We will use the banked scheme as the basis

and on top of it implement a scalable disambiguation scheme

for ELSQ.

Implementing an eager disambiguation scheme consists of

implementing store-load forwarding at load issue and store-

load violation detection at store issue. We now describe

2828



how this task is accomplished in the Epoch-based LSQ. The

ELSQ uses a two-level disambiguation. The first level is Lo-

cal Disambiguation. This disambiguation occurs within the

epoch and involves no global searches. Loads search the local

epoch’s store queue for matches while stores search the local

epoch’s load queue for violations. If a load finds a match-

ing store, the procedure stops as there is no need to perform a

global search. In this case the power of the search is reduced

to a single epoch. The scheme benefits from the fact that the

majority of store-load forwardings happen among close store-

load pairs. A similar procedure is applied to stores when they

find a local violation.

If the local search does not hit a global search is conducted.

Global Disambiguation provides the overall integration nec-

essary for correctness. Its goals are the same as local disam-

biguation, i.e. having loads get the correct value from match-

ing stores and having stores check loads for violations.

We propose two filtering schemes to avoid unnecessary

searches. The goal of these schemes is to minimize the number

of searches with a minimal hardware budget. One constraint

that the filters need to satisfy is that the access time must be

no longer than the time it takes to search the local store queue

or the L1 cache access latency. If the filter cannot satisfy this

condition load execution time will grow with a noticeable per-

formance penalty. For the ELSQ we study two filters: one

based on L1 cache lines (Line Filter) and one based on Bloom

filters (Hash Filter).

Line-based Filter In the first filter two bit–vectors (one for

loads and one for stores) with as many entries as the total num-

ber of epochs are associated with every L1 cache line. The full

collection of bit–vectors forms a table that we call the Epoch

Resolution Table (ERT). There are two cases in which the ERT

is updated: First, when a memory instruction with a known

address is inserted into an LL-LSQ epoch, it sets the bit corre-

sponding to its epoch and cache line in the ERT; and second,

when an instruction obtains its address while in the LL-LSQ.

Global disambiguation proceeds as follows. In parallel

with local store queue search during load issue, the cache line

and the ERT store bit–vector are accessed. The value from the

cache is used only when there is no active bit in the ERT store

bit–vector. If an active bit is found it means that there is a

possible match with a store and a remote search is conducted.

A load pays an additional latency penalty while waiting for

the search, even if it does not result in a match. The infor-

mation from the bit-vector contains the epoch to which the

likely matching store belongs. Using this information the load

accesses the LL-SQs searching for the store. It searches the

epochs that were active in the bit vector, one at a time, start-

ing from the most recent one. This considerably reduces the

energy required for the searches.

For this scheme to work it is necessary that the address-

known memory instructions in the low-locality queues have

an associated bit in the cache ERT. Thus, the system requires

that all referenced lines be allocated in the L1 cache. Note that

the data need not be available. When a new address appears

in the LL-LSQ it is necessary to allocate the line and lock it in

the cache. Locking is necessary because a replacement would

break the disambiguation mechanism. If the new line cannot

be allocated because all the lines in the set are already locked

then special action needs to be taken. If the address belongs

to an instruction that is being inserted from the HL-LSQ, then

the insertion procedure is simply stalled. However, when the

address is due to a memory reference that issued in the LL-

LSQ the situation is more complex. The problem is that the

loads that are locking the set may be younger than the load

that issued. Stalling would result in a deadlock. As a solution,

when this happens we proceed to squash the instruction win-

dow starting from the load that tried to lock the line and restart

execution. This is supported by the recovery logic.

Locking cache lines does not involve any additional struc-

tures as the replacement algorithm can take care of everything.

It will only replace lines for which there are no active bits in

the ERT.

Address Hashing based Filter To avoid the complexity re-

sulting from modifying the algorithm to handle cache-line

locking we also study a more conventional method based on

Bloom filters [13]. In this method, the ERT is indexed using

a hash consisting of a set of the lower–bits from the address.

Thus, when a memory instruction is inserted into the LL-LQs

or computes its low-locality address it takes n bits of the ad-

dress, it indexes the ERT and activates the bit corresponding

to its epoch. This scheme is decoupled from the L1 cache.

The access time to the ERT will depend on its size, so this is a

parameter to take into account.

We have described the two global disambiguation schemes

using the Full Disambiguation configuration. Using restricted

schemes may simplify the hardware considerably. Restricted

SAC, for instance, eliminates the need for the Loads–ERT. The

Stores–ERT, however, is always necessary for operation.

Figure 5 shows the operation of store-load forwarding for

both high-locality and low-locality loads forwarding from a

low-locality store. The access to the ERT is guarded by a

structure with the label INDEX. This structure reads the ad-

dress and decides where in the ERT to index, depending on

the filtering mechanism. Note that the figure only shows the

store-search part of the forwarding process. The data needs to

be sent back to the load, following the same path backwards.

In both filtering schemes, when an epoch commits, the

stores are sent to memory and the two columns that repre-

sent this epoch in the ERT are cleared. This way, lines in the

line-based ERT get automatically unlocked by the bit handling

mechanism. This method is notably simpler than the HSQ [3]

method that requires counters to be decremented one-by-one

for every store in the checkpoint.

3.5 Non-Associative Load Queue with Load
Re-Execution

The methods we have introduced work well as a way to re-

duce search activity in the Load and Store Queues. A different

approach is to attempt complete removal of parts of the LSQ.

As we have mentioned before, much research has concentrated

on removing the Load Queue and maintaining program se-

mantics via load re-execution [9, 10]. Load Re-execution con-

sists of executing an optimized load again during the commit

stage to check for the validity of the optimization.
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(a) High Locality Load (b) Low Locality Load

Figure 5. Operation of store-load forwarding for both High-Locality and Low-Locality Loads hitting in the ERT

Only loads that may have incurred a store-load order-

ing violation should re-execute. It is important to take this

into account, because cache access bandwidth is limited and

expensive. Many techniques to reduce the number of re-

executing loads have been researched. For instance, Roth pro-

posed tracking whether the load is vulnerable to any recently

committed store [10]. An alternative way to reduce the re-

execution rate is to track whether there are stores in flight with

unknown addresses and, in the case of store-load forwarding,

see if they are younger than the store that is forwarding. If

this is not the case then there is no need to re-execute. This is

called the no–unresolved–store–filter [9].

These techniques can be added to ELSQ to make the Load

Queue non-associative. However, care needs to be taken

with the no–unresolved–store–filter. The filtering that guards

searches in the LL-SQ does not track stores with unknown ad-

dresses. As a solution, it is possible to track which epochs

contain address-unknown stores by adding a new ERT table,

and adding counters in the epochs to track unresolved stores.

The additional ERT table would need to be accessed by all ex-

ecuting loads (except locally forwarded loads). This is a trade-

off that needs to be analyzed in relation with performance (see

Section 5.6).

3.6 Coherence and Consistency

The epoch-based LSQ is designed with traditional memory

semantics in mind. Externally the system sees a huge load-

store queue. The cache subsystem features only one L1 data

cache and there is only one L2 cache between L1 and main

memory. ELSQ does not modify the problem of maintaining

caches coherent, which can be solved using either snooping or

directory-based schemes.

ELSQ is designed to support total store ordering. Most cur-

rent processors operate under this model or use weaker mod-

els. Thus, ELSQ can be implemented on most architectures.

4 Integration with Locality-based Processor

The processor model that has been used so far is based on

conventional technology. It is well understood and can con-

ceptually work together with ELSQ, but in a real implementa-

tion it is not valid since it cannot scale to our goal of handling

Figure 6. Integration of ELSQ on top of FMC

thousands of in-flight instructions.

We have integrated ELSQ on top of a novel microarchitec-

ture known as FMC (Flexible MultiCore) [7]. As with previ-

ous execution locality designs, it consists of a Cache Processor

(CP) that processes high locality instructions and a Memory

Processor (MP) that processes remaining low-locality instruc-

tions. In FMC, the MP is partitioned into small sequential en-

gines (called memory engines, ME) with the goal of providing

reconfigurable heterogeneity. The natural way to complete the

integration is to establish a one-to-one relationship between

the memory engines and the ELSQ concept of epochs.

The overall organization and interconnect of this architec-

ture is shown in Figure 6. FMC uses a mesh network to in-

terconnect the different memory engines. By mapping ELSQ,

every epoch is mapped to a memory engine. As a result the

LL-LSQ is distributed along the memory engines. Access to

the memory engine network is provided by a bus that intercon-

nects the CP and the MP. In our model, every access from the

CP to the MP or back results in a one-way penalty of 4 cycles.

Traveling among memory engines works at the speed of one

hop per cycle.

For the ELSQ, it is critical that store-load forwarding is as

fast as possible. Often high-locality loads forward from low-
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Parameter Value Parameter Value

Fetch/Decode BW 4 insts per cycle OoO-64 Integer IQ Entries 40

CP ReOrder Buffer Size 64 OoO-64 FP IQ Entries 40

ME Max Instructions 128 OoO-64 Scheduling Policy Out-of-Order

ME Max Loads 64 OoO-64 INT/FP Registers 96/96

ME Max Stores 32 Number of Cache Ports 2 read/write ports

CP Integer Issue Queue Entries 40 L1 Cache Configuration 32KB 4-way, 32-byte lines

CP FP Issue Queue Entries 40 L1 Cache Latency 1 cycle

CP Scheduling Policy Out-of-Order L2 Cache Configuration 2MB 4-way Assoc.

CP INT/FP Registers 96/96 L2 Cache Latency 10 cycles

ME Issue Queue Entries 20 Main Memory Access Time 400 cycles

ME Scheduling Policy In-Order MultiScan [7]

ME Issue Width 2-way

Table 1. Default Processor Parameters

locality stores. If this operation performs a round-trip every

time (> 8 cycles) the penalty may be noticeable. To alleviate

this problem we suggest a final addition to the ELSQ: imple-

menting a Store Queue Mirror (SQM). The SQM is a replica

of the LL-SQs located next to the ERT. It is updated when a

store address appears in the Memory Processor. Accessing the

SQM in the Cache processor costs only one additional cycle

after ERT access. Figure 6 shows the location and intercon-

nect of the SQM. When implemented, the SQM also acts as

the buffer for stores before they commit. Thus, the SQM does

not incur any additional power due to network trips.

4.1 Exceptions and Recovery

Maintaining correct state when exceptions occur is another

important issue in the design of ELSQ. Being able to re-

cover at any point of the LSQ is a complex issue even for

smaller designs. In ELSQ we simplify this issue by relying on

checkpoints. ELSQ considers checkpointing only for the low-

locality LSQ, which holds many more instructions. The Cache

Processor checkpoints branches so recovery may proceed like

in a MIPS R10000 processor [12]. For LL-LSQ recovery, a

checkpoint is associated with every epoch. When an excep-

tion occurs, the processor restarts execution starting from the

instruction that initiates the epoch. To keep the state of the

ELSQ consistent with program semantics, all loads and stores

belonging to this epoch and to younger epochs –including the

HL-LSQ– are squashed. This means that some correct path in-

structions get squashed. Nevertheless, low-locality recoveries

are much less frequent than high-locality ones. Using check-

pointing for the ELSQ is similar to the use of checkpointing

for large window processors such as [3, 2, 6, 7].

5 Evaluation

We now evaluate the performance of the ELSQ. First we

analyze global performance issues, establishing the epoch size

and comparing the overall performance (Sections 5.2 and 5.3).

We then proceed by focusing on the store queue, analyzing the

performance of the filtering schemes (Section 5.4). Finally, we

analyze the load queue and evaluate the restricted disambigua-

tion and re-execution schemes (Sections 5.5 and 5.6).

5.1 Simulation environment

The ELSQ is modeled on top of an execution-driven sim-

ulator that models the FMC microarchitecture. Conventional

speculative out-of-order processors are simulated by disabling

the Memory Processor part of the simulator. For ELSQ,

both Line-based and Hash-based global disambiguation may

be simulated. An unlimited conventional LSQ is also mod-

eled. We also implement a model of load re-execution us-

ing Store Vulnerability Windows [10] and the no–unresolved–

store–filter [9]. Table 1 shows the default values that apply for

the different microarchitectures unless explicitly stated.

The simulator runs code compiled for the Alpha architec-

ture. We used the Alpha binaries for SPEC CPU 2000 avail-

able from the simplescalar web page. The simulation method-

ology is as follows: For each of the 26 benchmarks a simula-

tion point of 100 million instructions is obtained. The simu-

lator executes these points and yields statistics which are then

averaged with arithmetic mean.

5.2 Tuning Epoch Size

First we establish the sizes of checkpoints and epochs. The

number of epochs is the same as the number of checkpoints.

We choose 16 epochs since this value has been shown to work

well for the FMC architecture [7]. We set the maximum num-

ber of low-locality instructions per epoch to be 128. This num-

ber includes integer ops, floating point ops, control ops and

address calculations. Using this size for the checkpoint and a

total of 16 epochs, we find that the maximal IPC for SPEC FP

that can be reached lies at 2.99. We will now size the LSQ

trying to stay within 1% of the unlimited LSQ performance.

Setting the Load and Store Queue to 64 and 32 entries yields

a average slow-down of 0.9% (7% worst-case). This seems a

good trade-off from a power perspective. For this sizing pro-

cedure SPEC FP was used since at large window sizes it is

more sensitive to variations than SPEC INT.

5.3 Performance of Epoch-based LSQ

We now evaluate the performance of the large window

scheme. We evaluate both the cache-line-based and the hash-

based ERT schemes. For a fair comparison we model the

size of the hashing-based ERT to be the same as that of the

cache line–based ERT. For the 32KB 4-way L1 that we use

the size of the ERT amounts to 4KB of storage (2KB for the

Load–ERT and 2KB for the Store–ERT). This translates to a

10-bit address hashing. For each ERT scheme we evaluate

the impact of implementing the Store Queue Mirror. Finally,

we also model a single-cycle unlimited–size centralized Load

Store Queue. This LSQ is located in the Cache Processor to
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minimize store-load forwarding occurring in the high-locality

stream. However, loads that execute in the Memory Proces-

sor suffer the corresponding round-trip penalty. The results

are shown in Figure 7 as speed-ups over a conventional pro-

cessor with a 64-entry ROB that yields IPCs of 1.55 and 1.42

for SPEC INT and SPEC FP, respectively. Note that this pro-

cessor size is not representative of current technologies. It is

chosen because it features the same parameters as the Cache

Processor in the FMC architecture and emphasizes the impact

of large windows.

The figure shows that for SPEC FP the performance is quite

good for all schemes. The presence of the SQM improves

performance by about 1% and provides a performance that is

slightly larger than that of the centralized queue. This small

performance gain comes from local forwardings in the LL-

LSQ that require a full round-trip in the case of the ideal cen-

tralized queue. SPEC INT, on the other hand, is much more

sensitive to the store-load forwardings from low-locality stores

to high-locality loads. The presence of the SQM has thus a big

impact on the performance, providing up to 8% more perfor-

mance. Once the SQM is implemented, ELSQ performs at the

same speed as the idealized queue.

5.4 Performance of Global Disambiguation

In this section we evaluate the performance of the filter-

ing mechanisms for global memory disambiguation. The effi-

ciency of the mechanism has in principle little impact on IPC.

Different filtering schemes affect the number of searches that

happen in the LL-LSQ, either for store-load forwarding or or-

dering violations (in the latter case it affects also the number

of searches in the HL-LSQ). The schemes will have an impact

on area, complexity and power, but the impact on performance

is small. The Line–based scheme could be a little bit of an ex-

ception here, since it requires to lock cache-lines. However,

for the 4-way 32KB L1 cache that we use, the performance

penalty still lies only around 0.4% and can be safely ignored.

The main effect that needs to be evaluated is the number

of false positives that are generated. A false positive hap-

pens when the ERT directs the load or store to search in an

epoch where a matching address is actually not present. Such

a search is useless and wastes power. Thus, goal of the ERT

scheme should be to minimize these searches. For the address-

hash based scheme this goal can be achieved by increment-

ing the number of bits. Doing so, however, increments the

hardware budget of the scheme. Choosing the best scheme in-

volves a trade-off. Figure 8 (a) shows the average number of

false positives for 100 million committed instructions in SPEC

FP and SPEC INT together with the estimated hardware bud-

get. The hardware budget is estimated by taking into account

that we need two ERT tables (one for loads and one for stores)

and that every entry stores 16 bits. The figure shows that ERTs

of at least 4KB are necessary to have less than 1 false search

every 100 instructions. Note that 4KB here means 2KB for

the Load-ERT and 2KB for the Store-ERT. The figure also

shows that, using 32-byte lines, the line-based scheme requires

about half the hardware budget for similar accuracy. Finally,

it also shows that the filtering performance depends a lot on

how well the filter maps to the application behavior. The line-

based scheme performs much better on SPEC FP while the

hashing scheme seems to have better performance on integer

applications.

We also evaluate the impact of modifying the L1 cache on

the Line-based ERT scheme. This scheme depends on the con-

figuration of the cache since the ERT requires long-latency ad-

dress calculations to have the corresponding cache lines locked

in the cache. Intuitively this means that high-associativity

caches may be necessary since line conflicts are handled via

processor stalls or squashes. This section will evaluate how

large the L1 cache need to be to minimize the losses. We eval-
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uate a series of cache configurations of 32KB and 64KB, with

associativity ranging from 1 to 8 ways. To compare we also

add a hash-based ERT architecture. The interleaving is set so

that hardware budgets for ERT are the same in both schemes.

Thus, for the 32KB cache 10 bits are used and for the 64KB

cache 11 bits are used. Figure 8 shows the results for this test

relative to the highest scored performance. The figure shows

that an associativity of 4 recovers the lost performance for both

SPEC INT and SPEC FP. It also shows that the L1 cache size

and associativity has a much higher effect on performance for

SPEC INT than SPEC FP.

5.5 Restricted Disambiguation Models

We now analyze the performance of the restricted disam-

biguation schemes introduced in Section 3.3. Figure 9 shows

the performance of the four disambiguation models. Full dis-

ambiguation has been chosen as the baseline against which

comparison is being made. The figure shows that restricted

LAC involves a higher penalty than restricted SAC. The rea-

son for this has to be found, as shown in Figure 1, in the fact

that many more loads with low locality address calculation

exist than stores. Finally, when both stores and loads are re-

stricted, performance is similar to just using restricted LAC.

This is a result of low locality loads being much more fre-

quent than stores. Thus the stalls arising from restricting their

address calculation have a much higher penalty.

The performance of all four schemes is quite good. In par-

ticular, restricted SAC yields a slowdown that is below 2% for

both SPEC FP and SPEC INT. Looking into the benchmarks

further reveals that the slowdown is due to peculiarities of par-

ticular applications. For example, in the SPEC FP case, all the

slowdown is attributable to equake, which suffers around a

30% performance loss. Much of the execution of the sim-

ulation point is covered by the smvp() function, which in-

volves heavy multilevel pointer dereferencing, for both loads

and stores.

Restricted SAC has a notable implementation advantage: it

eliminates the need for a large associative Load Queue. Since

stores may only compute their address in the Cache Proces-

sor, only loads in the small high-locality load queue (HL-LQ)

may incur ordering violations. As a result, global disambigua-

tion for load violation is no longer necessary, which eliminates

the need for the Load-ERT. Note that, unfortunately, the con-

verse does not hold. Restricted LAC does not allow to remove

the store queue, so the global disambiguation scheme devised

previously would still need to be implemented. Overall this

means that restricted LAC is probably not a good idea.

5.6 Large Window Load Re-Execution

Finally, we analyze how Re-Execution performs in this

context. We implement the technique of Store Vulnerability

Windows [10] and remove the Load Queue. We do not modify

any other structure. The implementation of SVW comes in

two variants:

CheckStores: In this variant, when a load issues and forwards

from the store queue, it checks if any stores with unknown

address exist between the store-load pair. If so, the load

re-executes during commit. This is the no–unresolved–store–

filter [9]. As will be seen, doing so improves performance, but

it adds complexity to the store-load forwarding machinery.

Complexity is increased because it is necessary to implement

a mechanism that tracks unresolved stores.

Blind: In this variant, we do not check whether stores with

unknown addresses exist. Instead, we use only the SVW

filtering mechanism to decide whether a load needs to be

re-executed or not.

We evaluate the performance of the SVW scheme for both

IPC and increase in cache activity. In the evaluation we take

into account the fact that re-executing loads forces subsequent

stores to commit after the cache access completes. In most

cases this will be the next cycle (L1 access latency), but some

loads re-execute from the L2 and, in some very rare cases, the

load may re-execute from main memory. This behavior can

affect performance when the re-execution rate is high.

Evaluating SVW in the context of large-window architec-

tures is especially interesting as large windows are much more

likely to create ordering violations compared to small win-

dows. Figure 10 compares the performance of SVW on the

FMC – emulating a window of around 1500 instructions –

(right) and a smaller 64-entry ROB processor with a conven-

tional out–of–order architecture (left). The small processor is

provided to show how the number of re-executions increases.

The figure shows three configurations for the Store Sequence

Bloom Filter (SSBF), ranging from 8 to 12 bits.

From the results we see that using 12 bits has very good

performance in all schemes. The resulting table might, how-

ever, be a little larger and more power-hungry than desired.

Using 10 bits for the SSBF is still a good option. Perfor-

mance is almost unaffected except for SPEC FP when the

no–unresolved–store–filter is not used. The additional re-

executions will increase the energy dissipated by the cache,

but it needs to be taken into account that the CheckStores

mechanism implements additional structures that are accessed

by all loads issue while the processor is in low-locality mode.

This will add to the power consumption. Finally, even a SSBF

with 8 bits works nicely if the filter is implemented. Other-

wise, the performance for SPEC FP starts to degrade consid-

erably (∼7% vs. 1%).
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Figure 10. Performance of Store Vulnerability Windows on SPEC CPU 2000 relative to a model featuring

Load Queue. The plot shows how Re-Execution is a very window-size dependent technique

6 Energy Considerations

Our goal in introducing the ELSQ is to provide a large,

high-performance LSQ that operates with little additional

power and low complexity. We now analyze the power char-

acteristics of the ELSQ. Increasing the size of a standard load-

store queue would increase the energy consumption exces-

sively, precluding its implementation. However, this is not

true for the ELSQ. Although ELSQ keeps many queues, most

of them are not active at any given moment and do not per-

form searches. In general, when the ERT returns a positive

match, only one low-locality queue is searched. This happens

because of the highly accurate filtering methods as was shown

in Figure 8.

First, let us evaluate how much time the processor spends in

high-locality mode. During this mode the Memory Processor

does not need to track instructions because no cache misses

have occurred recently (i.e. the Memory Processor is empty).

Since the processor does not use low-locality resources, the

LL-LSQ together with the ERT and the associated logic can

be kept in a low power mode. Figure 11 shows the percentage

of time in which the processor is in the high-locality mode as

a function of the L2 data cache size.

The figure shows that even with a small 1MB cache, one

third of the time the processor only uses the small HL-LSQ

machinery that tracks only 32 loads and 24 stores. This is

similar in size to what today’s processors use. As the data

cache grows to 8MB the percentage of time during which the

LL-LSQ runs in minimal-power mode averages 50%. Note

that, when the Memory Processor is active, not necessarily all

epochs queues are allocated. For the 2MB L2 cache an average

of 5.73 epochs are allocated for SPEC FP while for SPEC INT

this number drops to 4.77. Furthermore, if a designer wants to

increase the efficiency of the queues, the Memory Processor

can be shared between threads [7].

To estimate the dynamic power requirements of the imple-

mentation we track the utilization of the structures including
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accesses to the queues and the number of ERT lookups and

network roundtrips of the searches (with or without data). Ta-

ble 2 shows the average number of events for 100 million

committed instructions for each of the SPEC FP and SPEC

INT simulation points. Several large window and two small

window configurations are evaluated. The structures of the

64-entry processor match the sizes of the cache processor al-

lowing us to better understand the power behavior of the pro-

cessor. The SVW implementation uses an SSBF with 10 bits

and it does not implement the no–unresolved–store–filter.

There are several interesting observations to make from

these tables. The structures that receive the most searches are

the High-Locality Store Queue and the Epoch Resolution Ta-

ble. The number of accessing instructions ranges from 25∗10
6

(FMC-Hash HL-SQ access in SPEC FP) to 37 ∗ 10
6 (FMC-

Line HL-SQ access in SPEC INT). For the modeled 4-way

fetch/decode architecture, the ERT and the HL-SQ will need

to be dual ported, while the high locality load queues, which

are accessed by around 8 ∗ 10
6–13 ∗ 10

6 instructions, may

be designed as single-ported associative structures. The low-

locality load/store queues see fewer instructions, between 0

and 10 ∗ 10
6, distributed to 5-6 subqueues (about 0-2 ∗ 10

6

each, on average). Thus a single port is also enough for these
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Configuration HL-LQ HL-SQ LL-LQ LL-SQ ERT/SSBF RoundTrips Cache Speed-Up

SPEC FP

OoO-64 8.692 27.006 0 0 0 / 0 0 33.375 1.0

OoO-64-SVW 0 27.006 0 0 0 / 26.591 0 34.135 0.997

FMC-Line 8.761 25.929 0.119 8.902 27.521 / 0 1.561 31.862 2.09

FMC-Hash 8.618 25.531 0.123 9.893 27.281 / 0 1.701 31.662 2.10

FMC-Hash-SVW 0 26.010 0 9.795 27.453 / 26.591 1.546 32.971 2.08

FMC-Hash-RSAC 8.732 25.815 0 9.378 27.037 / 0 1.468 31.610 2.07

SPEC INT

OoO-64 11.326 32.387 0 0 0 / 0 0 37.328 1.0

OoO-64-SVW 0 32.387 0 0 0 / 29.769 0 38.081 0.998

FMC-Line 13.356 37.703 0.115 10.348 34.327 / 0 0.544 39.961 1.196

FMC-Hash 13.354 37.615 0.114 9.445 34.250 / 0 0.541 39.887 1.195

FMC-Hash-SVW 0 37.602 0 9.606 34.130 / 29.769 0.438 39.948 1.190

FMC-Hash-RSAC 12.867 36.294 0 8.056 32.624 / 0 0.354 39.291 1.176

Table 2. Number of access to LSQ components (in millions) for SPEC FP (top) and SPEC INT (bottom)

subqueues. Finally, note that network roundtrips can be im-

plemented efficiently [14].

When control speculation works well, as in SPEC FP

benchmarks, using ELSQ offers a good power–performance

balance. For example, while OoO-64 performs 27 millions

queue accesses to two-ported structures, FMC-Hash performs

25.5 million accesses to two-ported queues and 10 million ac-

cesses to single-ported queues (of similar size). This is an ac-

ceptable increase in power consumption. It is also necessary

to account for the 27 million ERT accesses. The ERT is a 2KB

SRAM with a similar access rate to a L1 cache, but its power

consumption is much lower. Using CACTI-4.2 with a target

technology of 70nm, the read energy for the ERT is 0.00195nJ

while the read energy for the L1 cache amounts to 0.0958nJ.

Thus, the read energy consumption of the ERT is only 2%

that of the L1 Cache. With restricted disambiguation models

additional gains can be achieved. RSAC reduces the number

of accesses to the ERT, as stores do not access the ERT, and

therefore it also reduces the number of round-trips. This is in

addition to the benefit of removing the Load Queues from the

Memory Processor.

Finally, unlike in SPEC FP, the number of LSQ access in

SPEC INT grows with the aggressiveness of the processor.

This is an effect of poor control path speculation. In integer

programs, correctly speculating past multiple branches is dif-

ficult, so the processor instruction window grows, but many

instructions are wrong–path. New control speculation mecha-

nisms will be necessary to overcome this limitation.

Comparing the line-based filter and the address hash fil-

ter shows that both have similar behavior. FMC-Line reduces

accesses to the LL-SQ and also reduces round-trips. On the

other hand, stores in the MP need to lock the line. For SPEC

FP, about 5.2 million stores access their cache line and lock it.

Line locking and overflow squashes do not have a noticeable

impact on performance. However, the higher implementation

complexity makes this technique a less suitable candidate for

implementation.

Finally FMC-Hash-SVW and FMC-Hash-RSAC are com-

pared. This will tell us which of both methods is better for

load queue simplification. Energy-wise, RSAC has some nicer

properties than SVW. It reduces cache accesses (4% and 0%),

round trips (5% and 19%), LL-SQ accesses (4% and 16%) and

HL-SQ accesses (1% and 4%), for SPEC FP and SPEC INT,

respectively. Other operations are not directly comparable:

the access frequency of the SSBF (1024-entry RAM) is three

times that of the HL-LQ (32-entry CAM). On the other hand

SVW has marginally better performance than RSAC (0.5%

and 1.2%). Without taking HL-LQ and SSBF accesses into ac-

count, we conclude the performance-power behavior is better

for RSAC than SVW. Another topic that needs to be taken into

account is implementation complexity. Implementing RSAC

is simple: stores that do not have computed address at the

head of the HL-LSQ stall migration. SVW, on the other hand,

makes the whole Load Queue non-associative but requires the

implementation of an additional table (SSBF) and some logic

to implement the vulnerability windows.

7 Related Work

In addition to the schemes presented in section 2, several

other important contributions have appeared in literature.

One proposal that shares similarities with our Epoch-based

LSQ is the Address Resolution Buffer (ARB) [15], a work de-

veloped in the context of Multiscalar [16]. The main similar-

ity is the use of local and global disambiguation levels, where

the global level tracks groups of instructions and the lower

level individual instructions. Despite this similarity, ELSQ

controls global disambiguation via an Epoch Resolution Ta-

ble, a concept inspired in directory-based cache coherence

schemes [17, 18].

Several researchers have attempted to improve LSQ effi-

ciency by introducing innovations into the traditional structure

of the Load Store Queue. Sethumadhavan et al. [19] propose

using hardware hashing to attack the issues of performance,

power and latency. Single-bit hash tables are implemented via

bloom filters with the goal of filtering unnecessary searches.

Park et. al [20] propose several optimizations to reduce

search frequency on the LSQ. These include using a store-set

predictor [21] to reduce the search requirements, implement-

ing a load buffer for out-of-order loads that reduces the num-

ber of load queue searches and increasing the size of the LSQ

by using segmentation.

Finally, Sethumadhavan et al. [22] propose a load-store

queue architecture in which entries in the LSQ are not allo-

cated at decode, but at issue. This technique reduces the size

of the queues, but requires new methods to handle overflows.

Several works have developed high-performance LSQs on

top of the basic technique of re-execution [9]. One group

of optimizations is based on speculative memory bypassing
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(SMB) [23]. The goal of this optimization is to reduce the

pressure on the Store Queue. However, an aggressive config-

uration that predicts all store-load forwardings [24, 25] yields

a non-associative store queue.

8 Conclusions

In this paper we have proposed a new load-store queue

that aims at satisfying the memory requirements for a large-

window processor relying on the total store order consistency

model. The queue is based on two basic concepts: Execution

Locality and epoch partitioning with two-level disambigua-

tion. Epoch partitioning gives the queue its name: Epoch-

based Load/Store Queue (ELSQ).

ELSQ has several important features. First, it allows to im-

plement restricted disambiguation models that can consider-

ably simplify the implementation. Second, a two–level disam-

biguation can be implemented efficiently. Using simple filter-

ing schemes the activity of global disambiguation is reduced.

Finally, local searches in the epochs exploit locality in store-

load forwardings.

The queue has been simulated on top of FMC, a large win-

dow processor based on Execution Locality. In this environ-

ment, ELSQ has been shown to sustain high performance at

only a slight cost in terms of power and complexity. Our eval-

uation also shows that techniques based on load re-execution

are less competitive in terms of power, performance and com-

plexity compared with restricted store address calculation.
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