
MIT Open Access Articles

Configurable fine-grain protection
for multicore processor virtualization

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wentzlaff, David, Jackson, Christopher J., Griffin, Patrick and Agarwal, Anant. 2012.
"Configurable fine-grain protection for multicore processor virtualization."

As Published: 10.1109/isca.2012.6237040

Publisher: IEEE

Persistent URL: https://hdl.handle.net/1721.1/137263

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137263
http://creativecommons.org/licenses/by-nc-sa/4.0/

Configurable Fine-Grain Protection for Multicore Processor Virtualization

David Wentzlaff1, Christopher J. Jackson2, Patrick Griffin3, and Anant Agarwal2

wentzlaf@princeton.edu, cjj@tilera.com, griffinp@google.com, agarwal@tilera.com
1Princeton University 2Tilera Corp. 3Google Inc.

Abstract

Multicore architectures, with their abundant on-chip re-

sources, are effectively collections of systems-on-a-chip.

The protection system for these architectures must support

multiple concurrently executing operating systems (OSes)

with different needs, and manage and protect the hard-

ware’s novel communication mechanisms and hardware

features. Traditional protection systems are insufficient;

they protect supervisor from user code, but typically do not

protect one system from another, and only support fixed as-

signment of resources to protection levels. In this paper,

we propose an alternative to traditional protection systems

which we call configurable fine-grain protection (CFP).

CFP enables the dynamic assignment of in-core resources

to protection levels. We investigate how CFP enables differ-

ent system software stacks to utilize the same configurable

protection hardware, and how differing OSes can execute at

the same time on a multicore processor with CFP. As illus-

tration, we describe an implementation of CFP in a com-

mercial multicore, the TILE64 processor.

1. Introduction

Multicore computing systems have changed the face of

what is achievable on a single chip. Instead of a chip being

a unit in a larger system, or a single system being realized

on a chip, one chip can now contain a collection of systems.

Each of these systems can execute an independent operating

system (OS) concurrently within a single multicore proces-

sor. One example of this is the integration of a server-farm

on a chip. Another is a multicore cell phone where the GUI

processor executes a full featured OS, while the baseband

processor executes a very thin real-time OS. The ability to

integrate multiple systems on a single chip levies new re-

quirements on protection systems that manage and restrict

access to multicore resources.

When dealing with collections of systems integrated on

one chip, traditional protection systems break down. This is

because traditional protection systems are concerned with

protecting supervisory code from user code, but do not ad-

dress peer-to-peer protection, protecting one system from

another system. Traditional protection systems are con-

cerned with temporally protecting resources, while in mul-

0
1 2

3

TLB Access

0
1 2

3

DMA Engine

0
1 2

3

“User” Network

0
1 2

3

I/O Network

Key: 0 – User Code, 1 – OS, 2 – Hypervisor, 3 – Hypervisor Debugger

Figure 1. With CFP, system software can dy­

namically set the privilege level needed to ac­
cess each fine­grain processor resource.

ticore systems, a protection system must both temporally

protect and spatially isolate access to resources. Spatial iso-

lation is the need to isolate different system software stacks

concurrently executing on spatially disparate cores in a mul-

ticore system. Spatial isolation is especially important now

that multicore systems have directly accessible networks

connecting cores to other cores and cores to I/O devices.

The spatial aspect of multicore systems mixed with the

increase of silicon area afforded to multicore designers has

fueled a resurgence of architectural feature innovation. Ex-

amples include in-core DMA engines, directly accessible

networks, and co-processor accelerators. It is desirable that

these new features not be available to arbitrary code, but

rather that they can be restricted, virtualized, and multi-

plexed between multiple OSes executing on a single chip.

Multicore computing chips are a fabric for desktop OSes,

embedded OSes, real-time OSes, and very thin runtimes.

While full-featured OSes share similar protection require-

ments, the diversity of multicore OSes share fewer com-

monalities. Therefore, multicore processors require config-

urability in their protection systems to be able to execute

a diverse set of OSes. This configurability becomes even

more important when executing a real-time system where

emulation can detrimentally affect real-time performance.

We introduce Configurable Fine-Grain Protection (CFP)

as a mechanism to control access to different on-chip re-

sources. CFP is a unified hardware mechanism which en-

ables dynamic modification of the protection level required

to access a particular hardware resource. In CFP, the pro-

tection level needed to access each protectable hardware re-

source is individually configurable per resource. Resources

can be grouped by similar function into protection groups.

CFP is configured dynamically by software, which lies in

stark contrast to the traditional fixed assignment of features

1

to protection levels. The ability to change a hardware re-

source’s protection level allows differing protection models

to be created within a single chip. CFP is simple to im-

plement in hardware as it only requires a few bits per re-

source group being protected. The protection level needed

to access a particular hardware resource or set of resources

can be set in CFP much in the same way that a knob can

be turned. Figure 1 demonstrates how the protection level

needed to access four different hardware resources, TLB ac-

cess, DMA Engine access, User Network access, and I/O

Network access can be each individually set. In this exam-

ple, user code can access the user network, the operating

system can access the DMA engine, and the TLB and I/O

network is reserved for use by the hypervisor.

We illustrate these concepts though the implementation

of CFP in the Tilera TILE64 processor, a homogeneous

general-purpose multicore with 64 cores. This processor

contains all of the protection features to protect cores from

each other, and to run spatially and/or temporally multi-

plexed operating systems in a safe protected environment;

it protects 48 groups of resources using CFP. We discuss

the implementation overhead of CFP and the unique system

software opportunities that it affords.

2. Protection Challenges
In this section, we begin with an overview of the require-

ments that multicore puts on protection systems. We discuss

different resources that need to be protected and challenges

which are introduced specifically by integrating many cores

onto one piece of silicon. This section then describes previ-

ous protection systems and places Configurable Fine-Grain

Protection (CFP) in the space of possible protection sys-

tems. Finally we categorize how each of the different pro-

tection systems address the challenges placed by multicore.

2.1. Requirements on Protection Systems
The requirements in building a fully self-virtualizable [19]

multicore processor architecture extend the requirements

placed onto protection systems by uniprocessor system soft-

ware. First, the system needs to have differing classes of

software executing on it and some manner to restrict ac-

cess to resources to certain classes of software. There also

needs to be a way for these different classes of software to

safely communicate. Safe communication means passing

information between different classes of software without

allowing the privileges of one class to be passed to another.

Uniprocessor systems are primarily concerned with pro-

tecting access to memory, I/O devices, in-processor state,

and special instructions which modify processor state. Mul-

tiprocessor systems have extended these uniprocessor re-

quirements with the need to restrict communication be-

tween any two processors in a single system. Architec-

tures have also become more sophisticated in the types of

resources that need to be protected. For instance, multicore

architectures have seen the integration of in-core perfor-

mance counters, debug registers, cryptography units (e.g.,

Niagara 2 [16]), and DMA engines (e.g., TILE64 [27]).

2.1.1. Spatial Isolation

Multicore and multiprocessor systems have extended

uniprocessor protection requirements even further due to

the need to integrate multiple system software stacks on

a single system. One example of this can be seen in the

server consolidation space where multiple machines are

aggregated and put into one physical computer or chip.

Software virtualization [26] and hybrid hardware-software

schemes [9] have been used to address this challenge.

Multicores and multiprocessors such as TRIPS [20],

Raw [24], the Transputer [28], the J machine [18], and

Alewife [2] have introduced architecturally-exposed, direct

communication channels. Several of these architectures go

so far as to map communication networks into the proces-

sor register space thereby increasing performance of net-

work communication. This introduces the challenge of spa-

tial isolation. Spatial isolation is the need to isolate differ-

ent system software stacks executing on different portions

of a multiprocessor or multicore system. What makes this

unique is that memory protection alone is not sufficient to

restrict different cores communicating via direct messaging

networks. For many of these systems, the spatial nature of

the communication is important; for example, if cores are

connected in a 2D grid, then the location of communicating

processes is critical. Directly accessible networks may also

be used to connect to I/O devices. Finally, the destination

for messages on these networks are not always known at

message insertion time; Transputer channels and the Raw

static network have this property. For these reasons, spa-

tial isolation needs to be able to cut a multicore chip into

multiple isolatable domains or regions.

2.1.2. Diverse Fine-Grain Resource Control

Multicore systems are opening up diverse new fields which

are taxing traditional protection systems. This is because

multicore systems enable the integration of not only sys-

tems on a single chip, but systems of systems which were

never envisioned to share one piece of silicon. For example,

on a multicore cell phone, different OSes may run concur-

rently on a single chip: an application processor may run

Android Linux while the baseband processor is executing

an embedded OS. The Linux instance wants all of the pro-

tections afforded by modern protection systems. However,

the baseband processor may not; it may want its memory to

be protected from the Linux instance, while still receiving

direct access to on-chip networks and I/O devices. A pro-

tection system that allows fine-grain control over resources

can present each system integrated onto the chip with the

hardware view optimal for its OS.

2

Binary Rings Rings Rings (Per Core Capabilities CFP

Translation (Machine Global) (Per Core) with fine-grain MMIO)

Hardware Cost (Rank) None (0) Inexpensive (1) Inexpensive (2) Moderate (3) Expensive (4) Extra Hardware vs. Rings (3)

Protect Memory Yes; slow Yes; with MMU Yes; with MMU Yes; with MMU Yes; Capability/word. Yes; With MMU

Expensive HW

Protect I/O Yes; slow Yes; with MMU Yes; with MMU Yes; with MMU Yes; Capability protects Yes; Memory Mapped and

network connected I/O

Protect In-core Widgets Yes; slow Yes; at fixed Ring Yes; at fixed Ring Only memory mapped Yes; Capability protects Yes

Spatial Isolation Yes; slow No No Only memory mapped Yes Yes; memory and

register mapped networks

Multiple OSes Yes; slow No Yes Yes Yes Yes

Multiple OSes different Yes; slow No No Yes; but only Yes; Capability protects Yes

protection requirements memory mapped resources

Table 1. Requirements of Multicore protection and how different protection systems address them.

2.2. Protection Mechanisms
In this section we provide an overview of different protec-

tion systems and finish by building Table 1 which shows

how each protection system addresses or fails to address

the protection requirements set out by multicore systems.

Further comparison with specific implementations of pro-

tection systems can be found in Section 7.

2.2.1. Binary Translation

Dynamic binary translation systems such as VMWare [26]

can provide protection solely through software rewriting

and sandboxing. The downside of these systems is that

this rewriting introduces extra complexity, extra resources

in terms of memory usage, and the performance of rewrit-

ing all software can be slow, especially if protection checks

are costly or happen frequently.

2.2.2. Rings

The notion of Rings was introduced in Multics [21] as strict

hierarchical sets of privilege. Every resource that a less

privileged class of software can access, a more privileged

class of software can access. Early implementations had 8

hardware rings and we see Rings today in our desktop pro-

cessors with original x86 processors having 4 rings while

x86 virtualization hardware [3, 13] has added additional

rings. Hardware resources are statically designated by the

machine architect at machine fabrication and design time

to reside in a certain ring. Rings can be efficiently imple-

mented in hardware with only a few bits of storage and

simple compare logic. If a resource has been placed in

an incorrect ring or a system requires more rings than are

provided by hardware (virtualization), a trap-and-emulate

approach can be taken [19]. In trap-and-emulate, a trap is

taken to a more privileged ring if a less privileged ring at-

tempts to access a resource that the less privileged ring is

not allowed access to. The more privileged code can then

decide to emulate the functionality or refuse access depend-

ing on software policies. Trap-and-emulate can become a

performance impediment if the emulation occurs often. An

example of where this can effect performance is if two re-

sources are statically assigned to a particular ring but these

two resources should have been assigned to different rings.

Using the traditional trap-and-emulate model, software that

needs to access one, but not the other resource, must be

executed in a less privileged ring. In this case, it is not

only access to the restricted resource which must be trap-

and-emulated, but also access to the unrestricted resource

thereby penalizing its performance.

The base model of Rings is that a ring is machine global.

This can cause problems when multiple system stacks share

a single machine. An example is server aggregation where

two copies of Linux are executing both at a fixed ring, but

the two Linux operating systems do not trust each other.

To solve this problem, Rings with per core privilege levels

were introduced for multiprocessor systems. Rings with per

core privileges are still inflexible with respect to assigning a

resource to a ring level and are not able to address the spatial

isolation requirements for directly connected networks or

the fine-grain resource control requirements.

Rings can be extended to have some more fine-grain con-

trol by using memory mapped I/O to protect different re-

sources. Rings with MMIO can only be as fine-grain as

a page size, utilizes a TLB entry per resource being con-

trolled, cannot protect resources which are not accessed via

memory (such as register mapped resources or resources

which need to be accessed quicker than a memory ac-

cess), and by definition cannot be used to restrict access

to memory structures such as TLBs and memory control

registers. Examples of fine grain MMIO control that allow

for some degree of spatial isolation include IBM’s Logi-

cal Partitions (LPARs) [12] and SPARC’s Logical Domains

(LDoms) [29].

2.2.3. Capabilities

A capability is a communicable token which authorizes the

holder of the token access to a resource. When a piece of

code attempts to access a resource, it either explicitly or

implicitly presents the token. Hardware or firmware vali-

dates the access. Capabilities can provide very fine-grain

access and have been used to restrict access down to a par-

ticular byte in memory or hardware resource. Capabili-

ties [10] were introduced as a software concept in the Mul-

tics project and later transitioned into hardware realizations

in the System/38 [5], AS400 [22], and i432 [7]. Capabilities

in the context of hardware protection systems are typically

3

non-modifiable and are managed by hardware or firmware.

While capabilities are very flexible and provide fine-grain

access, the storage overhead of maintaining capabilities can

be high. Also, the added hardware complexity of capability

checking can be expensive.

2.2.4. Configurable Fine-Grain Protection

CFP provides the fine-grain protection feature of capabili-

ties with the low hardware overhead of rings. It is effec-

tively a ring architecture where resources can be moved be-

tween different rings. CFP also allows for configurable ac-

cess to resources which are not memory mapped. This abil-

ity enables spatial isolation by protecting access to register

mapped networks. The fine-grain control of CFP enables

specific network links to be disabled thereby spatially iso-

lating cores from other cores and cores from I/O devices.

Finally, CFP allows the protection level needed to access

different fine-grain resources to change, thereby enabling

different OS models to execute on one multicore processor.

In Table 1 we compare these different protection sys-

tems and weigh the relative performance, hardware cost,

and problems they solve.

3. Configurable Fine Grain Protection
The key characteristic of a CFP system is that it enables

efficient and dynamic management of fine-grain groups of

hardware resources by differing software components. The

assignment of management for different hardware features

does not need to be determined at silicon fabrication time,

nor does the assignment need to be uniform across a single

multicore processor. In this section, we describe how soft-

ware components can be divided into classes, and how per-

mission to access various resources is given to those classes.

3.1. Protection Levels
A CFP system supports multiple Protection Levels, or PLs.

At any given time, each independent execution entity is as-

sociated with one of those PLs; this is termed its Current

Protection Level, or CPL. The CPL controls what the entity

is currently allowed to do. PLs form an ordered hierarchy

or rings[21] of access rights. An entity whose CPL is x has

all of the powers of one whose CPL is x− 1, and may have

others that the latter does not have.

Each processor in a multicore system is an independent

entity and thus has its own CPL. However, there may be

other entities within the system. For instance, in TILE64,

each core contains a DMA engine, which is controlled by

but runs asynchronously from that core’s main processor. It

would be undesirable for the DMA engine to gain enhanced

privileges when the CPL of the associated main processor

was elevated; each DMA engine therefore has its own CPL,

separate from that of the main processor.

An entity’s CPL changes over time. For the main proces-

sor in a core, a PL is typically associated with each level of

DMA

Network 1

Network 2

HW Accelerator

TLB

MPL

0 1 2 3

Resource

Figure 2. Resources with configurable MPLs.

the system software stack, and the PL changes depending

upon where in the stack the processor is currently execut-

ing. A processor’s CPL may be increased when an interrupt

occurs, and may be decreased when interrupt processing is

complete. An example mapping of 4 PLs to software com-

ponents follows:
PL 0 Application program

PL 1 Operating system (Supervisor)

PL 2 Hypervisor

PL 3 Hypervisor debugger

3.2. Minimum Protection Levels
A key characteristic of CFP is providing fine-grain access

control to a large number of resources. In order to provide

this fine-grain control, each hardware resource is associated

with a separate Minimum Protection Level, or MPL. Fig-

ure 2 shows example hardware resources and how they can

be individually configured to require a different Minimum

Protection Level. This table is a compact representation of

how MPLs can be set like knobs in Figure 1. Depending

upon the resource, the per-resource MPL has some or all of

the following functions:

1. It may control access to a resource. Any entity with a

CPL greater than or equal to a resource’s MPL is al-

lowed to use that resource. Examples include access-

ing a special purpose register or accessing a register-

mapped network.

2. It influences the PL at which the interrupt handler as-

sociated with the resource runs. When an interrupt oc-

curs, the core’s main processor vectors to the interrupt

specific handler at the maximum of the MPL of the as-

sociated resource and the CPL of the executing core.

Therefore the PL may or may not be elevated.

3. It may control the level of access given to an entity

which is not a processor (for example, the MPL for

the DMA engine corresponds to the PL that the DMA

engine is running at).

One major issue with managing such a flexible system

is configuring the MPL registers themselves. The design of

MPLs must prevent privilege escalation. To prevent priv-

ilege escalation, a MPL can only be modified if the CPL

of the processor is greater or equal to the MPL. Also, to

prevent delegating to a more privileged PL which may not

be expecting the particular interrupt connected with a MPL,

MPLs cannot be raised higher than the CPL of the proces-

sor. Therefore, the processor may delegate control of a par-

ticular resource to a lower protection level, and may later

4

0
1 2

3

TLB Access

0
1 2

3

DMA Engine

0
1 2

3

“User” Network

0
1 2

3

I/O Network

“Bare Metal” with Hypervisor providing HW TLB

0
1 2

3

TLB Access

0
1 2

3

DMA Engine

0
1 2

3

“User” Network

0
1 2

3

I/O Network

Real “Bare Metal” with No Hypervisor

0
1 2

3

TLB Access

0
1 2

3

DMA Engine

0
1 2

3

“User” Network

0
1 2

3

I/O Network

Full Stack Linux with Hypervisor

Key: 0 – User Code, 1 – OS, 2 – Hypervisor, 3 – Hypervisor Debugger

Figure 3. Three different system software

stacks require MPLs to be set differently for
different resources.

revoke that control, but it cannot relinquish access to the

resource by raising its MPL above the CPL. Relinquishing

control can only be done via an interrupt/system call to a

higher PL. Also, this system prevents the PL of a non-main-

processor entity, like a DMA engine, from having its MPL

set higher than the CPL of the main processor.

The final challenge with MPL configuration is how to

manage access to the registers which themselves configure

the MPLs. This can be accomplished through the use of

one-hot control registers which are associated with both a

resource, and a target MPL for that resource; these are pro-

tected at a level which is the maximum of the resource’s

current MPL and that target MPL. For instance in a 4 level

CFP system, there are 4 registers per MPL per resource.

When a ‘1’ is written to the second MPL configuration reg-

ister, this sets the resource’s MPL to 2. In order for software

to write this register, the CPL must be at least the maximum

of 2 and the resource’s current MPL setting. This prevents

unauthorized changing of the MPL, and prevents an MPL to

be set to a level higher than the currently running code. By

such a methodology, a privilege fixed-point can be reached.

Of course, not all MPL configurations make sense. It

would be silly to give a PL access to the DMA engine TLB

but not to the DMA engine itself, while the reverse might

be quite plausible. CFP leaves it up to the system software

to configure MPLs in a sensible manner.

3.3. Examples
Figure 3 shows examples of how different software stacks

may require MPLs to be set to differing levels. The top ex-

ample shows a bare metal use model where access to the

TLB is still mediated by the hypervisor. This model can

allow the hypervisor to provide a hardware page table ab-

straction to an OS on a machine with a software managed

TLB; the hypervisor can also validate memory references in

this configuration. In the second configuration, a full bare

metal OS can access all of the resources of the machine. Fi-

nally, we see the configuration of a full stack Linux running

on top of a hypervisor. Because MPL controls are per core,

these three configurations can be concurrently executing on

one multicore chip.

4. Interrupt Processing
In this section, we describe how the mechanisms which

govern resource permissions in CFP also control operation

of the interrupt facility. We describe how the interrupt fa-

cility allows transfer of control between software compo-

nents while maintaining proper resource protection and how

downcalls and upcalls can be made in a safe manner.

4.1. Interrupts
In a CFP system, each interrupt has an associated resource,

and thus an associated MPL. An interrupt’s MPL influences

the PL at which the service routine executes; we term this

the Target Protection Level, or TPL. It also controls the code

which comprises that service routine.

4.1.1. Exception Context and Interrupt Critical Section

When an interrupt occurs, the processor modifies certain

state in order to execute the interrupt service routine. In or-

der to eventually resume execution of the interrupted code,

the original value of modified state must be saved some-

where. The Exception Context register is used for this pur-

pose. Each PL has one exception context which is used to

save the processor’s interrupt state. The contents of the ex-

ception context are accessible via special-purpose registers

(SPRs), which are protected by a fixed MPL equal to the PL

for that context; this means that code running at a certain

CPL can access its and lower PLs’ exception contexts.

This leads to a minor problem, however. Since there is

only one context per PL, and since an interrupt does not

necessarily increase the CPL, it would be possible for an-

other interrupt, targeted for a particular PL, to occur dur-

ing an interrupt service routine’s execution at that same PL.

This second interrupt would cause the exception context for

the first interrupt to be overwritten, thus preventing return

to the originally interrupted code. One might set the inter-

rupt mask in the first service routine to prevent further in-

terrupts; however, there would be no way to guarantee that

the instructions to mask the interrupt would execute before

the second interrupt could happen.

To prevent this problem, a processor state bit called the

Interrupt Critical Section (ICS) bit is used. When the pro-

cessor is in an ICS, maskable interrupts are deferred. ICS

is automatically entered at the start of every interrupt ser-

vice routine, and may also be explicitly entered or exited by

the processor via access to a special-purpose register. Since

interrupt service always modifies ICS state, the ICS state is

saved as part of the exception context state thereby enabling

interrupt nesting. Short interrupt routines can run entirely

within an ICS. For long interrupt routines, it is advisable

to save the exception context onto the stack and re-enable

interrupts by lowering the ICS bit. Before a return from

interrupt, the ICS bit should be re-enabled to prevent an in-

5

terrupt from occurring during exception context refill. If a

non-maskable interrupt is fired while in an ICS, the Double

Fault handler is entered; this can safely crash the system or

dump debugging information.

4.1.2. Detailed Interrupt Processing

Conceptually, before completing the execution of every in-

struction, and committing its results, the processor performs

the following algorithm; if an interrupt is actually chosen to

be serviced, the results of the instruction are not committed.

for interrupt in highest_priority to

lowest_priority:

if interrupt is asserted:

tpl = max(cpl, mpl[interrupt])

if interrupt is maskable and

interrupt_mask[tpl] contains interrupt:

continue

if tpl == cpl and processor is in ics:

if interrupt is implicitly masked by ics:

continue

else:

interrupt = DOUBLE_FAULT

tpl = max(cpl, mpl[DOUBLE_FAULT])

if interrupt != DOUBLE_FAULT or tpl != cpl:

exception_context[tpl] = (pc, cpl, ics)

pc = vector_address[tpl, interrupt]

cpl = tpl

ics = true

break

Upon execution of an iret instruction, the processor

does the following:

(pc, cpl, ics) = exception_context[cpl]

4.2. Upcalls
Software components request services from other software

components. Depending upon the components, these re-

quests are often hierarchical; an application may request

services from an operating system or supervisor, the super-

visor may request services from a hypervisor, etc. In a CFP

environment this would mean that those requests are flow-

ing from lower to higher protection levels.

In some cases a request is implicit; for instance, an ap-

plication might access a virtual address which had not been

mapped into its address space. This would cause a TLB

Miss interrupt, and the supervisor might, in response, al-

locate an empty page of physical memory and then map it

into the address space of the user process. In many cases,

though, the request needs to be made explicitly.

This is done via dedicated software interrupt (swint)

instructions, which, when executed, trigger a corresponding

software interrupt. While the number of swint instruc-

tions matches the number of PLs, there is no fixed asso-

ciation between the two; like all resources, each software

interrupt has a separate, changeable MPL. Often, a supervi-

sor or hypervisor assigns a swint to its PL, and uses it to

provide a system call service to lower PLs.

Unlike other resources, access to software interrupt in-

structions is not protected; their assigned MPLs serve only

to determine the target PL for the interrupt service routine.

If a software component wishes to restrict access to a soft-

ware interrupt which it provides, it may do so by checking

the CPL saved in the exception context and disallowing re-

quests from specific lower PLs.

4.3. Downcalls
While increasing the CPL is the most common way to re-

quest a service, there are situations where you might want

to instead decrease the CPL to accomplish a task. In effect,

this delegates processing of an interrupt to code running at

a lower protection level. For instance, a hypervisor might

want to handle the Double Fault interrupt, to detect a faulty

supervisor; however, if that interrupt were generated by an

application program, it might want to allow the supervisor

to handle it instead.

In many cases, this is quite easy to do. If an interrupt

which occurs at CPL 0 is handled at CPL 2, and the interrupt

service routine then decides that it should be handled at CPL

1 instead, it would perform the following algorithm, which

we will term a downcall:

• Read the contents of exception context 2, and write

it to exception context 1; this will be the PC of the

interrupted code, a CPL of 0, and whatever the ICS

state was at the time of the interrupt.

• Write exception context 2 with a PC of the desired in-

terrupt handler in PL 1, a CPL of 1, and enable ICS.

• Execute an iret instruction.

After the return from interrupt, the PL 1 interrupt service

routine is executed, and it begins with the exact same state

it would have had if the interrupt had gone to it originally.

When it is done, it returns from the interrupt and the origi-

nally executing code is resumed.

The tricky case comes when you want to delegate han-

dling of an interrupt to the PL at which the interrupted code

was running. For instance, a hypervisor might receive an

I/O interrupt which it would like to delegate to a supervisor.

If the interrupted code (supervisor) was not in an interrupt

critical section, and the interrupt of interest is not masked

at the delegatee PL, returning to the lower-level interrupt

routine can be done as above. However, if the interrupted

code was in an ICS, that procedure would destroy the state

of the lower PL’s exception context. Alternatively if the to-

be-delegated interrupt is masked at the supervisor PL, then

the interrupt should not be delivered until the interrupt is

unmasked. The downcall mechanism was the most chal-

lenging part of the CFP design. In the end we came up

with two solutions. One has potentially poor performance,

but is transparent to the delegated-to code; the other pro-

vides good performance, but requires coordination from the

delegated-to code.

The first solution is to temporarily virtualize the ICS

state bit and the interrupt masks for the lower PL, by raising

6

the MPL which controls access to their associated special-

purpose registers. This is akin to a more traditional trap-

and-emulate approach. When the delegated-to code ac-

cesses the ICS or interrupt masks, an interrupt to the delega-

tor occurs, which can emulate the instruction and determine

if it is safe to deliver the pending interrupt. After the inter-

rupt is delivered, the MPL of the interrupt masks and ICS

can be lowered. This solution has the downside of possibly

emulating all interrupt instructions, interrupt mask modifi-

cation, and ICS modification for as long as any delegated

interrupt is pending. Since a delegated interrupt may be

pending forever, there is no guarantee that the system will

ever leave this partial emulation state.

The second method requires the cooperation of the

delegated-to code, but is somewhat easier to implement.

With this method, the delegator arranges for the delegatee

to receive a notification, via interrupt, that it should make a

special system call to the delegator. Since the notification

comes via interrupt, it will not be delivered until the del-

egatee exits the critical section. The delegatee’s interrupt

routine is then executed, and it makes the special service re-

quest to the higher PL. The higher delegator PL now knows

that the delegatee is ready to receive an interrupt and it per-

forms the original downcall without masking concerns.

To enable this second method, software-triggerable inter-

rupts can be provided, each of which can be associated with

a PL by setting an associated MPL register. Each interrupt

is asserted when a corresponding special-purpose register is

set to 1. This solution provides high performance and does

not require emulation flows, but does require the coopera-

tion of the delegatee PL. This cooperation is not a security

hole because not requesting a delayed interrupt is the same

as simply leaving the interrupt masked.

5. Applications Enabled by CFP
CFP enables flexible system-level software stacks. As de-

scribed in the following sections, CFP resource assignment

allows system software to optimize for fast resource access

at a particular privilege level, or to optimize for debugga-

bility, or for any other criteria. These resource management

decisions can be changed dynamically and made indepen-

dently by each core in the system.

5.1. Spatial Partitioning of Multiple OSes
The rapidly increasing level of integration found in multi-

core systems-on-a-chip has allowed designers to pull more

and more hardware components into a single piece of sil-

icon. Modern SoCs include generic processor engines,

specialized accelerators, and highly-integrated I/O systems.

Just as previously separate hardware components are being

integrated on a single chip, we expect that multicore SoCs

will pull together multiple types of system software into a

single environment. In effect, multicores will have to sup-

port collections of systems, and not simply systems.

Figure 4. Three OSes concurrently executing
on a tiled multicore processor.

For example, many networking applications are com-

posed of data plane and control plane software. The data

plane software typically runs on an embedded real-time OS,

characterized by a minimal supervisor layer and direct ap-

plication access to the hardware. The control plane, by con-

trast, is often implemented with a complete multi-tasking

OS (e.g., Linux) that provides extensive system services and

protected hardware access. In very high speed networking

applications, additional cores may be dedicated to low-level

network processing (driver cores). Figure 4 shows three OS

domains concurrently executing on a tiled multicore.

Per-core resource protection allows system integrators to

build interesting hybrid system software stacks. One of the

key resources available in many multicores is a set of on-

chip hardware networks that allow direct core-to-core com-

munication without synchronizing through shared memory.

In a CFP system, these networks can be used to imple-

ment communication between the data plane and the con-

trol plane. Interestingly, the communication resources can

be protected differently in each environment. The control

plane, which often implements preemptive multi-tasking,

might choose to set the on-chip network MPL to the super-

visor level, avoiding problems that would result from swap-

ping out a user-level process while it is in the midst of is-

suing a packet to the on-chip network. Conversely, the data

plane might allow direct hardware access by the application

code in order to maximize performance. This ability to have

differing protection models executing at the same time on a

chip comes directly out of CFP. What makes CFP unique

is that this level of protection system configurability can be

done without the emulation cost associated with previous

solutions. The emulation costs become particularly relevant

when executing real-time OSes and applications which can-

not tolerate timing jitter.

Interestingly, in our example, the spatial division of

MPLs allows both pieces of the system to communicate

with each other via an agreed protocol on the same hard-

ware network, even though the network protection models

on each side are completely different. This sort of flexibil-

ity would not be possible in a system that provided only a

single, global protection level for the on-chip network.

7

5.2. Selective Virtualization
The protection of hardware resources in a CFP system is di-

vided into many independent protection sets, each guarding

a particular hardware resource. For example, in the TILE64

family of processors, each core has independent MPLs for

guarding access to the TLBs, the DMA engine, and each

inter-core communication network. This allows more privi-

leged software to choose on a per-resource basis whether to:

give less privileged software direct access to a hardware re-

source, allow virtualized access to that resource, or reserve

access to that resource for itself.

As an example, selective virtualization can be used to

optimize context-swap time. A common example of this is

management of floating point units. Many OSes do not save

the state of the floating point unit on each context-swap, but

rather wait for the new process to access the unit before

saving the previous context’s state and loading in the new

state. This requires that the hardware implementation allow

the OS to temporarily disable the floating point unit, so that

a fault will be generated when the user space program ac-

cesses the floating point unit, allowing the OS to complete

the context-swap.

Previous architectures have provided special-purpose

mechanisms for performing the above optimization on a

limited set of resources. We expect that future multicore

SoC implementations will have many more special-purpose

hardware engines. CFP provides a fine-grain and uniform

interface for independently protecting each of the many

special-purpose hardware engines in multicore SoCs. This

allows the system software to dynamically enable access to

each resource as necessary, reducing context swap overhead

while still allowing direct hardware access if desired.

5.3. Delegation of MPLs
The configurable aspect of CFP allows system software to

conveniently pass resource protection decisions to lower

layers of the software stack. For example, consider a three-

layered system consisting of application, OS, and hypervi-

sor. At system boot time, all MPLs are set to the hypervi-

sor’s protection level. As the hypervisor starts up the OS,

it can choose to shift control of some resources to the OS

by setting each resource’s MPL to the supervisor privilege

level. Similarly, the OS itself can choose to re-delegate cer-

tain resources to userspace by setting the resource’s MPL to

the user protection level. There is no need for the supervisor

to ask the hypervisor to switch a resource’s MPL down to

user level; once the hypervisor gives the supervisor control

of a resource the supervisor can re-delegate that control as

it chooses.

5.4. Dynamic Modification of MPLs
Just as access to each resource can be delegated to lower-

privilege system software, it can also be promoted back up

to a higher level. This allows any more-privileged layer to

DDRII DDRII

XAUI

2xGbE

XAUI

PCIe

GPIO

PCIe

DDRII DDRII

DDR2 (3)

DDR2 (0)

DDR2 (2)

DDR2 (1)

PCIe 4x

GPIO/HPI (32 b Total)

PCIe 4x

XAUI
MAC and

PHY

XAUI
MAC and

PHY

MAC

RGMII (Gbe)
MAC

JTAG

TWI

CLK DDR2 Controller

PLL
Boot

ROM

RGMII (Gbe)

ResetDDR2 Controller DDR2 Controller

MAC and
PHY

DDR2 Controller

MAC and
PHY

Controller

UART

Figure 5. TILE64 Processor Block Diagram.

regain control of a resource when needed. In CFP, each

resource’s MPL can be moved up or down dynamically.

An interesting use of dynamic MPL modification is

debugging direct hardware access by less-privileged sys-

tem software. For example, many embedded applications

choose to give direct hardware access to user-level pro-

grams in order to improve performance. User-level access

allows the application code to control the hardware with-

out having to make requests to more privileged software

via syscalls or a virtualization interface. However, user-

level access necessarily means that application writers are

responsible for writing and debugging hardware drivers.

Dynamic MPL modification can be used to selectively and

temporarily fine-grain virtualize a resource, and therefore

allow debugging or tracing the user-level driver’s access to

hardware without changes to the driver itself.

6. Hardware Realization and Results
6.1. Implementation Overview
As a vehicle to discuss multicore protection and as a first

implementation of many of the ideas in this paper, we de-

scribe the multicore protection features of the TILE64 pro-

cessor. The Tilera TILE64 processor consists of a two-

dimensional grid of 64 identical processor cores. Each core

is a full-featured computing system that can independently

run an entire OS. Likewise, multiple cores can be used to-

gether to run a multi-processor OS such as SMP Linux.

Also, different OSes can concurrently execute on TILE64

with different subsets of cores all in a protected and iso-

lated manner. For instance, SMP Linux, VxWorks, and var-

ious customer-specific OSes have been ported to TILE64

and CFP allows these different OSes to execute simultane-

ously.

Figure 5 shows the 64-core TILE64 processor. The mesh

networks in the TILE64 Processor connect to I/O and DDR-

2 memory controllers. Each core combines a processor,

cache, and switch. The switch implements five independent

networks used for memory traffic (2 networks), I/O, user-

mode messaging, and compiler controlled inter-core com-

munication [27]. Each processor is a three-way VLIW pro-

8

cessor with independent program counter (PC). Inside each

core, there is a two-level cache hierarchy, a DMA engine,

and complete support for interrupts, protection and virtual

memory. The TILE64 processor is the first implementation

of CFP and contains 4 protection levels; there are 48 differ-

ent categories of resources per core which are individually

fine-grain protected under CFP.

6.2. Multiple Protection Levels

One of the key assumptions made with CFP is that it is de-

sirable to have more than two protection levels. While CFP

can be used to assign resources between two protection lev-

els, its true power comes when there are even more levels

of protection. TILE64 contains 4 protection levels.

The hardware cost of having additional protection levels

lies not in the registers holding the current protection level

(going from two to four costs one extra bit), but rather in the

per-level additional state. The TILE64 processor duplicates

the interrupt mask registers, with one per protection level.

The TILE64 has 25 maskable interrupts. For each maskable

interrupt, there is a 4-to-1 multiplexer based on the CPL to

determine whether the interrupt is masked at a given protec-

tion level as shown in Figure 6a. Conveniently the timing

cost of this multiplexing step can be pipelined as changing

interrupt masks is a long latency operation, thus no effect

on clock speed is realized.

IM_0[i]

IM_3[i]

IM_2[i]

IM_1[i]

Interrupt Mask

for interrupt ’i’

CPL

a

CPL

>=

ICS

MPL[i]

1

0

CM[i]

1

Interrupt

Mask

Generation

Interrupt ’i’

signaled

Interrupt

’i’ taken

b
Figure 6. a) Selecting which MPL’s interrupt
mask (IM) to utilize for an interrupt ‘i’. b) In­
terrupt signaling logic for a particular mask­

able interrupt ‘i’. CM[i] denotes whether an
interrupt ‘i’ is critically masked inside of an
interrupt critical section (ICS).

The other state that needs to be duplicated on a per PL

basis is the exception context state. This is the state used

to save off the PC, CPL, and ICS bit. A multiplexer is also

needed to choose which PC to return to on a return from

interrupt instruction. This operation is uncommon, so its

timing is non-critical.

6.3. CFP Implementation
CFP enables much flexibility in system software design and

enables new ways to build protected collections of systems-

on-a-chip for a very small hardware cost when compared to

statically configured protection systems. The primary ad-

ditional cost of CFP is the cost of all of the MPL bits. In

TILE64, there are 48 differing MPLs, each of which can se-

lect between four protection levels which are base-two en-

coded. Thus, there are an additional 96 state holding ele-

ments in this design. In addition, there are comparators for

each of the maskable interrupts which in parallel determine

whether a particular interrupt will fire based on the MPL,

CPL, ICS bit, and interrupt masks. Figure 6b shows the

logic behind the interrupt masking decision.

When an interrupt occurs, the appropriate Target PL and

appropriate interrupt must be determined. Multiple inter-

rupts can be fired concurrently, and TILE64 contains a static

ordering of interrupts, thus a priority encoder is required.

This priority encoder is not used to determine whether an

interrupt has occurred (only an OR tree is needed); it instead

is used to determine the destination interrupt vector and tar-

get PL to transfer control flow to. A large priority encoder

can take a long time to resolve, but it can be pipelined at the

expense of increasing interrupt latency.

A multicore processor can have many special purpose

registers (SPRs) controlling processor behavior. With CFP,

each SPR is assigned to one MPL. In order to access the

SPR without faulting, the CPL of the processor must be

greater than or equal to the MPL. While it may seem chal-

lenging to validate access to hundreds of SPRs, judicious

choice of the SPR namespace alleviates much of this prob-

lem. The top bits of the SPR number can determine which

MPL protects a given SPR. Thus the protection check re-

duces to a multiplexer that chooses an MPL to compare

against the CPL. The select line on the multiplexer is the

top bits of the SPR number. From a timing perspective, the

multiplexer needs to complete between the time that the in-

struction is decoded and the time for which interrupts are

signaled, which can be several pipeline stages in a modern

processor.

6.4. Network Protection
A key component of spatial isolation is network protection.

The hardware cost of network protection is composed of

two main components, limiting access to the networks and

hardwalling [27] individual outbound network links. Each

network contains an MPL which describes the minimum

level needed for the processor to access the respective net-

work. If the CPL is less than the MPL and a network ac-

cess occurs, then a network access interrupt is taken. Unlike

SPR protection checking, in TILE64, networks are register

mapped. Because of this, a single instruction can access

multiple networks; thus protection comparators are needed

for each directly accessible network (3 in the case of the

9

TILE64). The cost of these comparators is small as it is

three two-bit comparators, and the timing is the same as the

SPR protection check timing.

6.5. Overall Area Impact
In this section, we describe the mechanisms and costs of

implementing spatial protection and CFP. The overall cost

is on the order of a hundred flip-flops, and comparators. In

the TILE64 design, this protection logic is less than 0.5%

of a core’s area. We feel that this is small enough to justify

adding CFP to more processors and in particular embed-

ded multicore processors in the future. Also, the gains in

term of debuggability and the ability to execute full OSes,

multiple OSes, and OSes with differing protection needs far

outweigh the area cost.

6.6. Performance Advantage of CFP
While much of the benefit of CFP is of a qualitative nature,

it is worth examining the performance advantage of CFP

compared to a trap-and-emulate approach. We investigate a

parallelized 1D Jacobi relaxation problem which uses user-

accessible direct networks to communicate values on three

architectures. The first architecture is the TILE64 architec-

ture utilizing CFP. The second architecture has dynamic net-

works, but they are protected at the supervisor level (Arch-

Sup), and the third architecture has networks which are pro-

tected at the hypervisor level (ArchHyp).

We break down the cycles needed to accomplish a sin-

gle user-mode network read or write on ArchSup assuming

the interrupt and trap latencies of the TILE64. In the archi-

tecture where the dynamic networks are statically protected

at the supervisor level (ArchSup), when a user process at-

tempts to access the dynamic network, an interrupt is taken

to the supervisor (7 cycles for interrupt plus 30 cycles to

save register state). The supervisor then determines whether

the running process has the right to access the dynamic net-

work by checking a field in the process structure (two mem-

ory references, assuming one L1 hit and one L2 hit, 10 cy-

cles, and a branch to test the access control 1 cycle). Af-

ter validating the access, the OS reads the instruction from

memory that caused the fault to determine the register be-

ing written to the network (8 cycles assuming instruction

is in L2 cache, plus a compare with a constant, 2 cycles,

bit extract, 1 cycle, and a register access, 1 cycle). It then

writes/reads the value to the network and returns from in-

terrupt to the subsequent instruction (1 cycle to write/read

value from network, 30 cycles to restore saved registers, 3

cycles to increment the return program counter, and 7 cycles

to return from interrupt). This total comes out to an aggres-

sive 101 cycles. In all likelihood this will take longer either

due to the trap handling code not being hot in the cache or

a needed data value not being in the cache.

On the ArchHyp architecture, where access to an on-chip

network is statically protected by the hypervisor, the perfor-

Jacobi Relaxation with and without CFP

1K_16P 2K_16P 4K_16P 1K_32P 2K_32P 4K_32P

C
y
c
le

s

0

20000

40000

60000

80000

CFP ArchSup ArchHyp

Figure 7. Cycles taken to compute 14 itera­

tions of a 1D Jacobi relaxation for 1024, 2048,
and 4096 entries on 16 or 32 processors. Test

run on TILEPro64 with CFP, ArchSup with the
dynamic network protected at the supervisor
level, and ArchHyp with the dynamic network

protected at the hypervisor level.

mance overhead is a superset of ArchSup. The additions

being that the hypervisor will do its own protection checks

(7 cycles for interrupt plus 30 cycles to save away regis-

ter state, two memory references, assuming one L1 hit and

one L2 hit, 10 cycles, and a branch to test the access con-

trol, 1 cycle) and then downcall into the supervisor (30 cy-

cles to restore saved registers, and 7 cycles to return from

interrupt). In addition to the ArchSup case, after valida-

tion, the supervisor must call into the hypervisor to actually

send/receive the message via a hypercall (7 cycles for in-

terrupt plus 30 cycles to save away register state, 30 cycles

to restore saved registers, and 7 cycles to return from inter-

rupt to the supervisor). We very aggressively assume that

the hypervisor and supervisor code is in the cache and the

whole operation takes 260 cycles.

We ran a one-dimensional Jacobi relaxation for 14 itera-

tions for 1024 (1K), 2048 (2K), and 4096 (4K) entries on 16

(16P) or 32 (32P) processors on real TILEPro64 hardware.

This test used the user dynamic network to pass values be-

tween cores at the boundaries of a split Jacobi matrix. We

ran on a 64 core TILEPro64 development system running at

700MHz with 4GB of DDR2 RAM. The TILEPro64 con-

tains CFP support and does not trap when accessing the user

dynamic network. To emulate ArchSup and ArchHyp, we

ran on the same TILEPro64 system, but introduced stalls

when reading or writing of the network as described above.

We used this conservative approximation approach because

the TILEPro64 already contains CFP hardware used by the

production system software and there was no business need

to create a hypervisor which would be slower and not use

the CFP hardware. As can be seen on Figure 7, ArchSup is

28% to 57% worse performance than CFP and ArchHyp is

71% to 147% worse than CFP.

This study favored ArchSup and ArchHyp, but it is very

possible that the performance of these nominal implemen-

tations could be significantly worse. One thing that could

10

affect the performance is if a resource which should be pro-

tected is put into a group with a resource which is com-

monplace to access. If such a situation occurs, the trap-and-

emulate overheads could be felt not only when accessing the

resource that needs to be protected, but also when other re-

sources grouped in the wrong protection level are accessed.

In this test, we use access to the user dynamic network

as an example of a resource which can be protected with

CFP, but there are many other resources that may need fine-

grain protection. In fact the TILE64 has 48 different fine-

grain protectable protection groups. Other examples where

applications may need fast access to fine-grain protectable

resources include timers, in-core DMA engines, hardware

accelerators, counters, profiling hardware, fast access to

memory state such as LRU information, and memory watch

point hardware. These resources are especially important

for auto-tuners or JITs which want to test how an optimiza-

tion affects performance without incurring trap overhead.

7. Related Work
Heterogeneous multicores such as those used in cell phone

systems and multimedia consumer applications [25] are

good examples of embedded systems containing multiple

cores in a system-on-a-chip fashion. While many of these

systems execute multiple OSes, the manner in which they

are connected is typically ad hoc and governed by how they

are wired together. CFP and the spatial partitioning of the

TILE64 processor provides a structured approach to isolat-

ing multiple systems which share a single chip versus that

of ad hoc embedded SoC design.

Many architectures contain protection systems with two

or more protection levels. Having multiple protection lev-

els arranged in a set of rings was originally proposed in the

Multics system [10, 21]. Since that time, many systems

have supported more than two levels of protection. The

x86 architecture supports 4 protection levels [14]; Alpha [8]

and MIPS [17] support 3. But unlike CFP, the allocation

of resources to protection levels is fixed. We have seen a

resurgence of additional protection levels to support virtu-

alization with Intel’s VT technology [13] and AMD’s Paci-

fica [3].

Architectures such as SPARC [23] have the ability to

disable the floating point unit. When access occurs, an in-

terrupt is taken at the supervisor level. This type of hard-

ware bears resemblance to CFP, but is only for one resource.

Also, SPARC does not allow the reassignment of the FPU

to a different protection level which CFP enables.

The use of a memory management unit to restrict ac-

cess to memory mapped I/O (MMIO) devices can be used

to restrict access to I/O devices much in the same manner

that CFP can restrict access to in-core hardware resources.

While similar, protection of MMIO has some disadvantages

and differences when compared to CFP. The largest prob-

lem with MMIO is that it requires protection management

to be handled by the piece of software (hypervisor) that

is in control of the MMU. Because of this, any change to

the protection levels of any hardware in the system require

the hypervisor to get involved. In CFP, these changes can

be taken care of by lower protection levels and delegated.

Also, MMIO does not allow direct delegation of interrupts,

therefore with MMIO any interrupt or protection violation

must enter the hypervisor before being proxied to the rel-

evant system software. CFP, in contrast, enables hardware

to directly dispatch the interrupt to the relevant system soft-

ware. Proxying through the hypervisor is especially prob-

lematic when a real-time system is involved because it can

introduce an absolute performance problem along with ad-

ditional performance jitter.

Protection of MMIO devices is typically used to protect

out-of-core devices. The control mechanism for MMIO

protection is different than CFP. MMIO utilizes loads and

stores to access devices and is not able to use any other

means, by definition. CFP can protect in-core registers

which can be much faster to access. For example, a CFP

protected SPR access in the TILE64 takes only two cycles,

while MMIO needs an address translation to occur, and typ-

ically involves a core communicating with the I/O bridge.

Because MMIO utilizes page based protection, the gran-

ularity of protection is quite coarse and removes address

space from any process attempting to access MMIO devices

while CFP does not. MMIO also pollutes the TLB with an

entry per resource protected. Most TLBs are an associative

structure, while CFP utilizes indexed structures to restrict

access. Finally, MMIO cannot directly control the privilege

level at which other in-core entities, such as a DMA engine,

execute; CFP can.

An example of the MMIO approach to restricting ac-

cess to resources include the IBM Power 5 [4], Power 6,

Cell [11], and zSeries [9] through their use of MMIO to

control logical partitions (LPARs). LPARs also spatially

protect differing OSes via memory mapped isolation but do

not solve the problem of protecting register mapped on-chip

network isolation as presented in this paper.

Capability based machines provide much of the same

fine-grain protection that CFP provides. In a capability

system, typically a capability is stored in memory that is

not modifiable without special privilege. This non-user-

modifiable memory can then describe an action that the

holder of that capability can perform such as accessing

memory or other hardware. While capability based systems

can provide much flexibility, their implementation can be

expensive as most capability based systems require an ex-

tra protection bit for every word in main memory. They

also require special hardware to access memory to validate

a capability when it is used, and they typically require dras-

tically different system software for effective use. Example

11

systems include System/38 [5], AS/400 [22], and i432 [7].

We feel that CFP provides many of the benefits of capability

based systems in that the protection system can be modified

to meet the needs of the system software without the cost

and complexity of a full capability based system. In addi-

tion, CFP is designed to work with standard OSes.

Hypervisors such as VM/370 [9], VMWare [6, 26], Sun’s

xVM [29], and POWER’s hypervisor [4] can run multiple

protected OSes on a single multiprocessor system. The

classic approach to virtualization takes a trap-and-emulate

model. As discussed in Section 2, a trap-and-emulate model

can cause performance overhead when a resource is shared

across multiple OSes. CFP moves many of the occur-

rences where trap-and-emulate are necessary into hardware

checked flows. With CFP, the hypervisor does not need to

get involved when interrupts are destined for lower PL soft-

ware or when MPLs need to be adjusted or delegated. Be-

cause resources can be split to such a fine-grain with CFP,

the likelihood of device sharing is reduced.

Memory protection and management can be done not

only in the processor, but also to restrict memory access

made by I/O devices. Workstations and mainframes have

long had I/O memory management units (IOMMUs), but

we have seen this technology make its way to the PC mar-

ket with the introduction of Intel’s VT-d [15] and AMD’s

IOMMU [1] hardware. CFP is orthogonal to IOMMUs as

CFP protects in-core resources and IOMMUs protect mem-

ory access done by I/O devices. The VT-d IOMMU ap-

proach along with page based MMIO access to I/O devices

can allow x86 processors protected access to off-chip de-

vices, but these techniques introduce large amounts of la-

tency; this makes them unsuitable for use in protecting in

core resources like inter-core on-chip networks.

References

[1] Advanced Micro Devices, Inc. AMD I/O Virtualization

Technology (IOMMU) Specification, 1.26 edition, 2009.
[2] A. Agarwal et al. APRIL: A Processor Architecture for Mul-

tiprocessing. In Proc. Int. Symp. Computer Architecture,

pages 104–114, June 1990.
[3] AMD. AMD64 Virtualization Codenamed Pacifica Technol-

ogy: Secure Virtual Machine Architecture Reference Man-

ual, May 2005.
[4] W. J. Armstrong et al. Advanced Virtualization Capabilities

of POWER5 Systems. IBM J. Res. Dev., 49(4/5):523–532,

2005.
[5] V. Berstis. Security and Protection of Data in the IBM Sys-

tem/38. In Proc. 7th Ann. Symp. Computer Architecture,

pages 245–252. ACM, 1980.
[6] E. Bugnion et al. Disco: Running Commodity Operating

Systems on Scalable Multiprocessors. In Proc. ACM Symp.

Operating System Principles, pages 143–156, 1997.
[7] R. P. Colwell, E. F. Gehringer, and E. D. Jensen. Perfor-

mance Effects of Architectural Complexity in the Intel 432.

ACM Trans. Comput. Syst., 6(3):296–339, 1988.

[8] Compaq Computer Corporation. Alpha Architecture Hand-

book, fourth edition, Oct. 1998.

[9] R. J. Creasy. The Origin of the VM/370 Time-Sharing Sys-

tem. IBM Journal of Research and Development, pages 483–

490, Sept. 1981.

[10] J. B. Dennis and E. C. V. Horn. Programming Seman-

tics for Multiprogrammed Computations. Commun. ACM,

9(3):143–155, 1966.

[11] M. Gschwind et al. Synergistic Processing in Cell’s Multi-

core Architecture. IEEE Micro, 26(2):10–24, 2006.

[12] C. Hales, C. Milsted, O. Stadler, and M. Vagmo. PowerVM

Virtualization on IBM System p: Introduction and Configu-

ration. IBM, fourth edition, May 2008.

[13] Intel Corporation. Intel Virtualization Technology Specifica-

tion for the IA-32 Intel Architecture, 2005.

[14] Intel Corporation. Intel 64 and IA-32 Architectures Soft-

ware Developer’s Manual Volume 3: System Programming

Guide, Nov. 2007.

[15] Intel Corporation. Intel Virtualization Technology for Di-

rected I/O, version 1.2 edition, 2008.

[16] T. Johnson and U. Nawathe. An 8-core, 64-thread, 64-bit

Power Efficient SPARC SOC (Niagara2). In Proc. 2007 Int.

Symp. Physical Design, ISPD ’07, pages 2–2. ACM, 2007.

[17] MIPS Technologies. MIPS R4000 Microprocessor Users

Manual, second edition, 1994.

[18] M. D. Noakes, D. A. Wallach, and W. J. Dally. The

J-machine Multicomputer: An Architectural Evaluation.

SIGARCH Comput. Archit. News, 21(2):224–235, 1993.

[19] G. J. Popek and R. P. Goldberg. Formal Requirements for

Virtualizable Third Generation Architectures. Communica-

tions of the ACM, 17(7):412–421, July 1974.

[20] K. Sankaralingam et al. Exploiting ILP, TLP, and DLP with

the Polymorphous TRIPS Architecture. In Proc. Int. Symp.

Computer Architecture, pages 422–433, June 2003.

[21] M. D. Schroeder and J. H. Saltzer. A Hardware Architec-

ture for Implementing Protection Rings. Commun. ACM,

15(3):157–170, 1972.

[22] F. G. Soltis. Inside the AS/400. Duke Press, second edition,

1997.

[23] Sparc International, Inc. The SPARC Architecture Manual,

version 8 edition, 1991.

[24] M. B. Taylor et al. Evaluation of the Raw Microprocessor:

An Exposed-Wire-Delay Architecture for ILP and Streams.

In Proceedings of the International Symposium on Com-

puter Architecture, pages 2–13, June 2004.

[25] S. Torii et al. A 600MIPS 120mW 70A Leakage Triple-CPU

Mobile Application Processor Chip. Proc. IEEE Int. Solid-

State Circuits Conf., Feb. 2005.

[26] VMWare, Inc. VMWare Website, 2009.

http://www.vmware.com/.

[27] D. Wentzlaff et al. On-Chip Interconnection Architecture of

the Tile Processor. IEEE Micro, 27(5):15–31, Sept. 2007.

[28] C. Whitby-Strevens. RISC and the I1 Instruction Set for the

Transputer. 12th Int. Symp. Computer Architecture, Boston,

pages 17–19, June 1985.

[29] C.-H. Yen. Solaris Operating System Hardware Virtualiza-

tion Product Architecture. Sun, fourth edition, Nov. 2007.

12

