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Abstract
As technology scales, the hardware reliability challenge

affects a broad computing market, rendering traditional redun-
dancy based solutions too expensive. Software anomaly based
hardware error detection has emerged as a low cost reliabil-
ity solution, but suffers from Silent Data Corruptions (SDCs).
It is crucial to accurately evaluate SDC rates and identify
SDC producing software locations to develop software-centric
low-cost hardware resiliency solutions.

A recent tool, called Relyzer, systematically analyzes an
entire application’s resiliency to single bit soft-errors using
a small set of carefully selected error injection sites. Relyzer
provides a practical resiliency evaluation mechanism but still
requires significant evaluation time, most of which is spent on
error simulations.

This paper presents a new technique called GangES (Gang
Error Simulator) that aims to reduce error simulation time.
GangES observes that a set or gang of error simulations that
result in the same intermediate execution state (after their
error injections) will produce the same error outcome; there-
fore, only one simulation of the gang needs to be completed,
resulting in significant overall savings in error simulation time.
GangES leverages program structure to carefully select when
to compare simulations and what state to compare. For our
workloads, GangES saves 57% of the total error simulation
time with an overhead of just 1.6%.

This paper also explores pure program analyses based tech-
niques that could obviate the need for tools such as GangES
altogether. The availability of Relyzer+GangES allows us to
perform a detailed evaluation of such techniques. We eval-
uate the accuracy of several previously proposed program
metrics. We find that the metrics we considered and their
various linear combinations are unable to adequately predict
an instruction’s vulnerability to SDCs, further motivating the
use of Relyzer+GangES style techniques as valuable solutions
for the hardware error resiliency evaluation problem.

1. Introduction
Moore’s law continues to provide increasing numbers of de-
vices on chip, but with increasing vulnerability to failures.
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Transient hardware errors from high-energy particle strikes
(or soft errors) are expected to become a dominant category of
in-field processor failures [1, 2, 5]. Traditional resiliency solu-
tions that rely on full hardware or software redundancy have
intolerable area, power, and/or performance costs for most
computing markets. Future systems must, therefore, deploy
low cost in-field resiliency solutions to guarantee continuous
error-free operation.

Error detection is an important component of a hardware
resiliency solution and must especially be low cost because
it is always on. Software anomaly based error detection has
emerged as an attractive approach that detects only those hard-
ware faults that propagate to software [7, 10, 13, 16, 21, 24,
27]. This approach places near-zero cost error monitors that
watch for anomalous software behavior. Recent evaluations
have shown that this approach is effective in detecting in-field
transient errors [16, 13]. A small fraction of errors, however,
still escape these detectors and silently corrupt application
outputs, producing Silent Data Corruptions (SDCs).

For widespread adoption of software anomaly based detec-
tion approaches, we therefore need systematic error analysis
techniques to evaluate their effectiveness. Such techniques
must identify any remaining SDC producing software loca-
tions so they can be appropriately protected with additional
anomaly monitors or other techniques, to achieve the SDC rate
acceptable for the application. We identify three classes of
error analysis techniques proposed in the literature, focusing
on transient errors:
(1) Error injection: The most widely used evaluation tech-
nique is error injection, where an error is injected (typically
one error at a time) in a given cycle in a real or simulated
system and its impact studied [17, 16, 15, 23, 22, 19]. This
technique can predict the impact of an error with high accuracy.
Unfortunately, comprehensively injecting each error of interest
at each cycle in an execution is prohibitively time consuming.
Most work therefore performs statistical fault injection which
injects selected error types in a randomly selected sample of
execution cycles. While such a technique can provide statisti-
cal summaries such as average SDC rate, it does not indicate
which remaining instructions in the unsampled set could result
in SDCs and hence must be protected.
(2) Program analysis: Some evaluation techniques exam-
ine certain (static or dynamic) program properties to iden-
tify program locations that are susceptible to producing
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SDCs [9, 20, 3, 25]. These techniques are much faster than
error injection based techniques (running time average of ap-
proximately 5 CPU hours for the techniques and applications
we study), but their accuracy in finding SDC-causing error
sites has previously been hard to validate.
(3) Hybrid injection+analysis: A recent technique, called
Relyzer, uses a hybrid of error injection and program anal-
ysis [12]. Analogous to previous work, it applies (simple)
dynamic analysis to predict when errors in certain application
locations will be detected. Unlike previous work, it also ap-
plies static and dynamic analyses (with some heuristics) to
determine when multiple dynamic instruction instances will
produce the same outcome (i.e., detection, masking, or SDC)
for a given error in the instructions’ operands. For a set of
dynamic instructions that are shown to produce equivalent
error outcomes, Relyzer performs error injection in only one
of these instructions (referred to as the pilot) to determine
that outcome. To search for equivalent-outcome instructions
(referred to as an equivalence class), Relyzer examines (i)
dynamic instances of the same static instruction and (ii) in-
structions that define a variable and first use it.

Relyzer was able to prune the number of error injections
needed to identify the error outcomes for virtually all instruc-
tions by 99.78% and its heuristics showed an aggregate ac-
curacy of >96% (for error outcome prediction) across all the
techniques and errors studied [12]. Although Relyzer is 2
to 6 orders of magnitude faster than comprehensive error in-
jection, it unfortunately still spends a significant amount of
time in error injection for the pilot instructions. Specifically,
unless the error is detected, an error injection experiment for a
pilot requires simulating the application to completion. The
simulated execution’s output is then compared to that of the
error-free execution output to determine if that error is masked
or produces an SDC. Thus, while Relyzer is certainly more
practical than comprehensive pure error injection, compared
to program analysis based techniques, its accuracy comes at
a significant cost in speed. For example, for a set of only 8
applications on our cluster of 188 nodes, Relyzer takes about
3.5 days of wall clock time to analyze about 95% of the error
sites; about 90% of this time is spent on error injections.

1.1. Contributions of this Work
All three error analysis techniques described above are limited
by speed or (potentially) accuracy. The ideal technique will
have the speed of pure program analysis based methods and
the accuracy of pure error injection based methods. This paper
makes two contributions towards such an ideal technique.
GangES: A new hybrid error analysis technique:

We propose a new technique and tool called Gang Error Sim-
ulator or GangES1 that takes a different, but complementary,
approach to Relyzer to reduce error simulation time. GangES
is based on the observation that a set or “gang” of error sim-
ulations that result in the same intermediate execution state

1Pronounced as gan-jeez.

(after their error injections) will produce the same error out-
come. If such an intermediate state can be detected, we need
only complete one simulation from such a gang – the others
can be terminated early and use the outcome of the single
completed simulation. This observation has the potential to
significantly reduce overall error simulation time, but requires
addressing two challenges: (i) when to compare the state of
error simulations and (ii) what state to compare.

A judicious choice for when to compare (which execution
points) is critical because the instruction sequences executed
by multiple error simulations may temporarily diverge but
merge again. A judicious choice of what to compare is also
critical because naively comparing all register and memory
locations can be prohibitively inefficient.

For when to compare, we select program locations where
multiple error simulations are likely to reach even if the error
(temporarily) exercised different system events and branch
directions. We leverage the previously proposed program
structure tree (PST) from the compiler literature for this pur-
pose [14]. A PST organizes an application’s control flow
graph (CFG) into nested single-entry single-exit (SESE) re-
gions (Section 2.2). If an execution exercises the entry edge
of a SESE region, then it will also exercise the exit edge,
as long as the dynamic control flow complies with the static
CFG. Therefore, if an error is injected in a particular SESE
region, the corresponding SESE exit edge will most likely be
exercised. Such SESE exit points provide common program
locations to compare execution states of error simulations. The
SESE exit points also represent program locations where po-
tentially few program variables are alive, limiting the amount
of state to compare. We compare all the (potentially) live
registers at these points and any memory locations to which
there have been stores before these points.

GangES can be used to determine error-outcome equiva-
lence for arbitrary sets of error simulations. Here we use it in
conjunction with Relyzer; i.e., its input is error sites (pilots)
that are not pruned by Relyzer. Without GangES, Relyzer
would run error simulations for each of the input pilot instruc-
tions until the error was detected or the application completed.
GangES instead checks for equivalence and terminates several
of these simulations. Overall, we found that after applying
GangES, only 36% of the error simulations in its input re-
quired running the application to completion and checking the
output to determine the fault outcome. 92% of the error sim-
ulations that were terminated early by our approach required
an average of only 3,025 instructions to be executed before
termination; the next 7% required about 16,000 instructions on
average. Overall, we found that GangES replaced Relyzer’s er-
ror simulation time of 14,225 CPU hours (for analysis of 95%
of all error sites) with a total time of 6,010 CPU hours, provid-
ing a wall-clock time savings of 57.7% for our workloads and
error model.
Accuracy of pure program analysis methods:

Although GangES significantly reduces the error simulation



time for Relyzer, it is still not as fast as pure program analysis
based techniques. A legitimate question therefore is whether
current program analysis based techniques obviate the need for
tools such as GangES altogether. It has been previously diffi-
cult to test the accuracy of program analysis based techniques
since there has not been a mechanism for comprehensive fault
injection. The availability of Relyzer (and GangES) allows us
to perform such a test.

Our second contribution, therefore, is an evaluation of the
accuracy of several program analysis based techniques using
Relyzer. We use program based metrics proposed by [20] and
some derivatives as examples of pure program analysis based
techniques.2 Using Relyzer, we find that these metrics and
their various derivatives and combinations that we study are
unable to adequately predict an instruction’s vulnerability to
SDCs. Although it is possible that other analysis based tech-
niques are more accurate, a comprehensive evaluation of all
such techniques is outside the scope of one paper. Neverthe-
less, the negative results provided here do indicate that there
is much work needed to develop accurate pure program anal-
ysis based techniques, and techniques like Relyzer+GangES
provide a valuable solution for the error resiliency evaluation
problem.

2. GangES: A hybrid error analysis technique
GangES presents a transient hardware error simulation tech-
nique that takes as input a set of errors to be simulated for an
application and outputs the outcome for each error (masked,
detected, or SDC). Each error in the error set specifies a dy-
namic instruction instance, a hardware resource used by that
instruction instance, and the type of error to be injected in that
hardware resource for that instruction instance. In our experi-
ments, we focus on single-bit flips in the integer architectural
registers used by the specified instruction instance (one bit flip
per simulation). For error detection, we use detectors similar
to those used in Relyzer (Section 3). In our experiments, the
input set of errors for GangES consists of errors that Relyzer is
not able to prune (i.e., pilots of instruction equivalence classes
as categorized by Relyzer). Relyzer must perform error injec-
tions for all of these errors – for those not detected, Relyzer
must execute the application to the end and compare the output
with that of the error-free execution to determine masked or
SDC outcomes.

GangES aims to reduce the overall evaluation time for its
input error set by terminating as many error simulations as
possible soon after error injection and well before the end
of the application (including those simulations that would
eventually be masked or produce SDCs). Our approach is
to repeatedly compare execution states of a set or gang of
multiple simulations in progress (hence the name Gang Error
Simulator). Any simulations in the gang that reach identical
states will produce the same outcomes and all but one of them

2Although the work in [20] is motivated by error detection analysis, it also
discusses the application to determining SDC vulnerability.
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Figure 1: Difference between Relyzer and GangES

can be terminated. Figure 1 illustrates the differences between
Relyzer and GangES.

A naive implementation would compare the entire system
state (processor and memory state) at every cycle to identify
the earliest point in the execution to terminate an error simula-
tion. Since the entire system state may consist of megabytes
to gigabytes of data, comparing it on every cycle can be pro-
hibitively expensive in time. Moreover, such comparisons
may not identify error equivalence effectively because even
a single mismatch in temporarily divergent state (e.g., due to
temporarily divergent control flow) or in dead values will flag
non-equivalent error outcomes. Hence, the challenge in devel-
oping a time-effective simulation framework is in identifying
what state to compare and when to compare it.

2.1. What state to compare?

The state to compare at an execution point can be divided
into two components – processor register state and memory
state. The size of the entire memory state at a given point
in the execution is significantly larger than the memory state
relevant to the processor. Ideally, we want to identify only the
live memory state (the memory locations that will be read in
the future before being overwritten) – this is potentially much
smaller than the full memory state. However, the live memory
state for different erroneous executions and for the error-free
execution may be different. Moreover, identifying the live
memory state is known to be a complex problem [18].

Our approach is to compare the memory addresses and data
that are touched (written) by the multiple error simulations.
This significantly reduces the amount of memory state to com-
pare. Consider a set (gang) of error simulations that are being
compared. Until the point of the first error injection, all these
simulations will touch the same addresses. We therefore need
to start comparing the touched addresses only after the point of
the first error injection in the gang. This motivates considering
errors that are “close-by” in execution time for grouping in
one gang. Section 3.1.2 describes our specific methodology
for ganging error sites together.

For processor register state, it would be efficient to com-
pare the values of all the registers at comparison points. This,



however, may not be effective in determining error equiva-
lence. Comparing just the live architectural registers may
provide more opportunity for simulation equalizations. The
live register state at a given point in a program for an error-free
execution can be obtained statically. However, an error in an
execution may result in a different control flow changing the
live state for that execution. Hence, we obtain a conservative
live set of registers dynamically by fast forwarding the exe-
cution to hundreds to thousands of instructions and removing
the registers that are written before being read from the set of
all the registers in this fast-forward phase.

2.2. When to compare executions?

For when to compare execution states, our approach is to se-
lect program locations where all executions would reach even
if different system events take place or different branch direc-
tions are exercised during error simulations. To select such
program locations, we identify single-entry single-exit (SESE)
regions from the control flow graph of the application. For-
mally, a SESE region is defined as an ordered edge pair (a,b)
of distinct control flow edges, a and b, where a dominates b;
i.e., every path from start to b includes a; b postdominates a;
every path from a to exit includes b; and every cycle contain-
ing a also contains b [14]. For every execution that exercises
the entry edge of a region, the exit edge will be exercised,
assuming control follows the static CFG. Therefore, for nearly
all simulations where errors are injected in a particular SESE
region, the corresponding SESE exit edge would be exercised,
providing a common program location to compare execution
states. An exception to this is an error that changes the dy-
namic control flow such that it does not comply with the static
CFG; in this case, our technique is still correct, but it may
loose an opportunity to show equivalence of error simulations.

Our algorithm to identify the comparison points is inspired
by and similar to the SESE regions identification algorithm by
Johnson et al. [14]. They provide a linear-time algorithm for
finding SESE regions and for building a hierarchical represen-
tation of program structure based on SESE regions called the
program structure tree (PST). This algorithm works by reduc-
ing the problem to that of determining a simple graph property
called cycle equivalence: two edges are cycle equivalent in a
strongly connected component iff for all cycles C, C contains
either both edges or neither edge. The algorithm is based on
depth-first search for solving the cycle equivalence problem,
thereby finding SESE regions in linear time.

In straight-line code, the region between any two points
is a SESE region; we will ignore these regions and focus
only on the block-level CFG where the straight-line code
has been coalesced into basic blocks. However, we modify
the CFG to potentially obtain more comparison (SESE exit)
points for a given error site as follows. We split the non-
SESE regions (with multiple entry and/or exit points) into
two or three regions such that a new SESE region is created
with as many static instructions as possible (and with many

potential error sites) in it. For a basic block with multiple
entry edges,3 we split it into two blocks such that the first one
with multiple entry edges has as few instructions as possible
and the second block has a single entry edge. If the original
block had only one exit edge, then the new second block
becomes a new SESE region providing error sites in it with
extra opportunity to compare state. Similarly, we also split
the blocks with multiple exit edges such that the first block
has a single exit edge and the second one has the minimal
instructions. We then apply Johnson et al.’s algorithm to obtain
the SESE regions [14]. Figure 2 shows a CFG and the SESE
regions obtained by applying the above algorithm on it.

Once all the SESE regions are obtained, which are typically
nested (see Figure 2), they are organized in a hierarchical
representation to obtain a program structure tree (PST) using
the algorithm proposed by Johnson et al. A SESE region that
immediately contains other regions is considered parent for
the containing regions; e.g., a becomes the parent for regions
b and d from Figure 2.

We modified this tree by adding new leaf nodes as children
to SESE regions that immediately contain non-SESE blocks
(Figure 3). A new leaf node contains instructions that do
not belong to any of its sibling SESE regions (SESE regions
that are immediately contained in its parent). For example,
a new leaf node containing instructions from blocks 1 and
16 is added as a child of a (Figure 3). This modified PST is
utilized to identify the next comparison point during an error
simulation. By traversing up the tree from a node where error
injection is being considered, exit points of subsequent parent
nodes become the comparison points.

In the example shown in Figure 2, state comparisons for
simulations for errors in basic block 3 are performed when
the exit edge of the current SESE region (c) is exercised and
when exit edges of all ancestors of the current SESE region
according to the modified PST are exercised (Figure 3); i.e.,
when edges 7 → 8, 8 → 16, and 16 → end are exercised. Sim-
ilarly, for simulations for errors in basic block 13, the checks
are performed at exit edges 14 → 15, 15 → 16, and 16 → end.

3. Methodology
3.1. GangES
We evaluate GangES by employing it to evaluate the resiliency
of applications when using software anomaly based error de-
tectors (e.g., fatal traps and application assertion failures). We
used eight single-threaded applications in our study – four
each (randomly selected) from the SPLASH-2 [29] and PAR-
SEC [4] benchmark suites. Table 1 provides a brief description
of these applications and inputs used. Extending GangES to
multithreaded applications is one of our future directions.

We use an instruction-level transient error model. Our
model injects a transient error in the form of a single bit flip

3Note that a basic block has a single entry instruction, but there may be
multiple edges into the instruction.
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non-SESE region 4 is added to c. These new nodes contain
instructions that do not belong to any of the sibling SESE re-
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in a specified bit of a specified architectural integer register
accessed by the specified dynamic instruction. Specifically,
we identify an error with a tuple consisting of a dynamic in-
struction count in an execution, the program counter of the
instruction that exercises the error, integer register operand,
and bit location.

As mentioned earlier, although Ganges can accept any set

Application Input

PARSEC 2.1

Blackscholes sim-large
Fluidanimate sim-small
Streamcluster sim-small

Swaptions sim-small

SPLASH 2

FFT 64K points
LU 512×512 matrix, 16×16 blocks

Ocean 258×258 ocean
Water 512 molecules

Table 1: Applications studied.

of error sites as input, we focus on the sites that Relyzer is not
able to prune. Even these require substantial time to determine
their outcome through error injection simulations (the full
simulations are required to determine Relyzer’s wall-clock
time and the speedup provided by Ganges). We therefore
restricted our input to Ganges to be the minimal set of error
sites that would provide 95% coverage; i.e., the outcomes
of error injection simulations for this set enable Relyzer to
determine the error outcomes for 95% of all our error sites (at
least 92% for each application).

We made one modification to Relyzer’s pruning algorithm.
Relyzer uses a control equivalence heuristic, where it decides
certain equivalence classes based on the outcomes of the next
5 branches after an error [12]. We modify this to consider 50
upcoming branch outcomes since the first use of the injected
error. Since examining the next 50 branches can potentially
create too many equivalence classes, we limit the number of
classes per static instruction to 50. This modification gave
substantially better accuracy in predicting the outcome of
certain error sites in our applications.4

The GangES implementation has two components: (1) static
program structure identification and (2) a framework to per-
form dynamic error injections and state comparisons.
3.1.1. Static program structure identification: We imple-
ment our static program analyses at the binary level. Since our
error injection infrastructure is developed for the SPARC V9
ISA model [28], we restrict our study to SPARC V9 binaries
using an in-house static binary analyzer. The tool constructs a
control flow graph from the binary and performs basic control
flow analyses. We implemented intra-procedural SESE region
identification and PST generation algorithms (Section 2.2) in
this infrastructure.
3.1.2. Framework performing dynamic error injections
and state comparisons: Once we identify when to compare
execution states, the next steps are to (1) identify when to
start an error simulation and how to group error simulations
together for efficiency, (2) inject the error, and (3) collect and
compare state at comparison points for early termination. Fig-
ure 4 explains how our technique works with an example. We
use Wind River Simics [26] to implement our error injection
and simulation state comparison algorithm.

Identifying when to start an error simulation and how to
group injections together: We take several application check-
points (using Simics’ checkpointing feature) at periodic points
(after every 100 million instructions) in the application. This
allows us to start simulations from intermediate execution
points(À in Figure 4), instead of starting from the beginning
of the application for every simulation, saving running time.
We group (gang) error injection sites such that each error site
in a gang has the same checkpoint immediately preceding

4The previous validations for Relyzer reported aggregate accuracy statis-
tics [12] – we additionally conducted a validation study (not reported here)
specifically for instructions with outcomes predicted as SDCs.
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it; we can therefore start all simulations in a gang from the
immediately preceding checkpoint.

Further, we ensure that any pair of errors in a gang are
separated by at most 100,000 instructions and there are at most
1,000 error sites in a gang. Since we need to compare touched
addresses from the first error site in a gang of error simulations,
the above parameters provide a bound on the amount of state
that needs to be stored and compared for these simulations.
We observe an average gang size of 279 with these parameters.
When we lowered the maximum distance between errors in
a gang from 100,000 to 1,000, the average gang size reduced
rapidly to 79. When we increased the maximum gang size to
2,000 errors, the average gang size increased to 410 with only
two applications (Blackscholes and Ocean) seeing a noticeable
increase in their gang sizes.

Starting a gang of error injections: We start the simulations
for a gang from an application checkpoint (À in Figure 4) and
create a Simics bookmark just before the first error injection
point (Á in Figure 4). A bookmark set at a particular point in
an execution allows Simics to move the simulation backwards
to that point from anywhere in the application, restoring the
execution state at that point. This feature allows us to move
backwards in an execution to start a different error injection
run from a particular gang. At an error injection point, we
inject the error directly into the architecture register, according
to our error model.

Collecting and comparing execution states: After an error
injection, we continue simulation until a comparison point,
the exit point of the (current) SESE region that contains the
instruction where the error was injected, is reached. We set
the breakpoint at the program counter of the instruction that
immediately follows the current SESE region’s exit edge (Â
in Figure 4). We also set breakpoints at the ancestor SESE
region exits according to the PST (e.g., we set breakpoints at
the exits of regions 3, c, b, and a for error injections in region 3
from Figure 3). Whenever a breakpoint is reached, we remove
it to avoid further interrupts in the simulation (which may be
caused by regions within loops).

At each comparison point, we compare the live register
state and touched memory state with other simulations that
reached this point previously; for example, the state at Ç is

compared with the state at Ä and Â in Figure 4. (The first
error simulation only collects the state for future comparisons.)
Since different error injection sites (in a gang) may belong to
different sub-trees in a PST (and different SESE regions), we
ensure that we only compare states when simulations reach
the same program location by comparing the program counter
of the breaking instruction.

For state collection, we identify live registers by listing all
processor registers, executing the next thousand instructions,
and removing the registers that are written before being read in
this period of 1000 instructions (we use Simics’ bookmark util-
ity to execute forward and return to the same execution point).
To determine touched memory state, we observe memory op-
erations (reads/writes) through a memory module attached to
Simics (which is added to the simulation just before the first
injection, at Á in Figure 4).

We continue state collection and comparisons to all previ-
ously collected states from prior error simulations until one
of the following occurs. If the compared states match (Å and
É in Figure 4), we terminate that simulation and declare it as
equivalent to the matching previous simulation and continue
to the next error simulation, which involves rolling back to
the bookmark at Á in Figure 4 and continuing to the next
injection point (Æ in Figure 4). We also terminate a simulation
if the error is detected. We use detection techniques similar
to those used by Relyzer and recent software anomaly based
systems; e.g., a fatal processor exception, application assertion
failure, application abort, out-of-bounds access, or timeout.
If an error simulation continues for too long (defined below)
without showing a state match or a detection, we mark the
error as needing full simulation and move to the next error
injection (Ã in Figure 4). We consider a simulation to run
for too long if it invokes 5 SESE exits or executes a threshold
number of instructions. We set the latter threshold to 100,000
instructions by default to limit the memory footprint to <2GB.
A small number of cases exceed this limit; we then adjust the
threshold to 100 for the remaining injections in that gang.

At the end of the above process, for each error, we know
that it either has an outcome equivalent to another error, or is
detected, or must be fully simulated.
3.1.3. Evaluation metrics: To evaluate GangES, we first de-
termine the wall clock time to identify the outcomes of all
its input error sites by performing full error injection simu-
lations (on all input error sites). We compare this with the
wall clock time that GangES needs to identify the number of
errors that need full simulations plus the time needed to run
such simulations to completion to obtain the outcomes. An
error simulation time is measured from the same application
checkpoint for both sets of wall clock times.

We also show the fraction of full simulations that were saved
by showing them equivalent to others and the fraction of error
injections that need full simulation after applying GangES.
In cases where equivalence was observed, we measure the
number of instructions simulated until equalization.



3.2. Pure program analyses based techniques

To evaluate the accuracy of pure program analyses based tech-
niques, we study metrics proposed by Pattabiraman et al. [20]
and some derivatives. Specifically, we explore the following
two metrics from [20] for a given static instruction, as an in-
dicator of its vulnerability to producing SDCs. (1) Fanout is
defined for a static instruction that writes to a register as the cu-
mulative fanout of all the dynamic instances of the instruction.
Fanout for a dynamic instruction that writes to a register R is
defined as the number of dynamic uses of R before the next
dynamic write to R. (2) Av.lifetime is defined for a static in-
struction that writes to a register as the average of the lifetimes
of dynamic instances of the static instruction. Lifetime for a
dynamic instruction Id that writes to a register R is defined as
the number of cycles from the execution of Id to the last use
of R before the next dynamic write to R.

We also explore the following three metrics. (1) Av.fanout,
which is the fanout averaged over all dynamic instances of an
instruction. (2) Lifetime, which is the cumulative lifetime over
all dynamic instances of an instruction. (3) Dyn.inst, which is
the total number of instances of the static instruction. The last
metric was also explored in the prior work, but did not show
promise – we present it here because it performed better than
other metrics in some cases in our results.

We evaluate our five metrics using five of our applications –
Blackscholes, Swaptions, FFT, LU, and Water. We collect the
values of these metrics at the instruction level using Simics.
We normalize all our metric values to one. Since lifetime and
fanout for an instruction are derived from its destination regis-
ter, we restricted our metrics evaluation to errors in destination
registers.

For a given static instruction, we also obtain the number
of SDCs it produces by employing Relyzer and use it as the
golden metric (sdc), also normalized to one. As mentioned in
Section 3.1, we limited Relyzer error simulation times to cover
95% of the errors. To ensure that the missing error information
did not skew the metrics evaluation, we added more error
simulations as follows. For each metric and application, we
ensured we have Relyzer provided error outcome information
for all error sites for the static instructions that cover at least
the top 75% of the metric values (this increased the aggregate
Relyzer coverage to over 97%). Any missing information,
therefore, is from static instructions that have among the lowest
metric values and the lowest dynamic instruction counts. This
is unlikely to affect our results since these instructions are
unlikely to contribute to a significant fraction of SDCs from
the point of view of the metrics or Relyzer.

3.2.1. Metric evaluation: We use three different methods to
evaluate our metrics. The first two methods quantify how
accurately the individual metrics predict SDCs in isolation
while the third evaluates combinations of our metrics.

Correlation coefficient: For each application, we measure

correlation coefficients5 between individual metrics and sdc
(golden metric) to study the linear relationship between them.
Cost vs. SDC reduction: We note that the objective of es-
timating SDCs with metrics is to identify an optimal set of
SDC-targeted error detectors. We therefore employ a 0/1
knapsack algorithm to find an optimal set of detectors that will
provide the largest SDC reduction at a given cost – we assume
duplication for detectors and charge one instruction as the cost
of duplicating and comparing results for one instruction on
average (similar to [11]). Thus, we obtain an SDC reduction
vs. cost graph for each application using the known SDC count
for each instruction from Relyzer. We call this the Relyzer
curve (RC).

We then apply the same knapsack algorithm using the metric
of interest, instead of Relyzer’s SDC count, and plot a similar
trade-off curve which we call the Prediction curve (PC). This
curve is the predicted SDC reduction vs. cost curve if the
metric were accurate. We also plot an Actual curve (AC) as
follows: for each point on the PC curve, we calculate and
plot the actual number of SDCs (from Relyzer) covered by the
instructions actually identified by the metric in the PC curve.
This gives us the actual SDC reduction vs. cost curve of the
metric. For a given cost, the gap between AC and RC tells us
how well the metric estimates SDCs (the smaller the gap, the
better).
Combining multiple metrics: We also evaluate combina-
tions of the above metrics using linear models based on regres-
sion techniques that use these metrics to predict SDCs being
produced by the instructions. We use the statistical tool R to
build (least square) linear regression models for each of the
benchmarks, which take the following form:

sdci = β0li f etimei +β1 f anouti +β2av.li f etimei+

β3av. f anouti +β4dyn.insti + εi
(1)

We also attempt to evaluate a nonlinear combination of our
metrics. Since some nonlinear relationships between variables
(or metrics) can be approximated using linear regression on
polynomials,6 we evaluated another linear regression to model
the following:

sdci = β0li f etimei +β1(li f etimei)2 +β3(li f etimei)3 +β4 f anouti+

β5( f anouti)2 +β6( f anouti)3 +β7av.li f etimei +β8(av.li f etimei)2+

β9(av.li f etimei)3 +β10av. f anouti +β11(av. f anouti)2 +β12(av. f anouti)3+

β13dyn.insti +β14(dyn.insti)2 +β15(dyn.insti)3 + εi
(2)

4. Results for GangES
We evaluated a total of about 1.33 million application error
sites identified by Relyzer. The error simulation experiments

5Correlation coefficients cc are a standard measure of the linear rela-
tionship between two variables X and Y giving a value between +1 and -1
inclusive. |cc| gives the strength of the correlation (1 indicates a perfect linear
correlation and 0 indicates no correlation between X and Y). We use Pearson’s
correlation coefficients in our analysis.

6The more complex the nonlinearity, the higher the order of polynomials
required.
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Figure 5: Effectiveness of GangES in reducing the total wall clock time needed for error simulations and the number of full error
simulations. For each application, the left bar in Figure (a) shows the total wall clock time needed for error simulations for all the
(Relyzer-identified) input error sites (baseline). The right bar shows the time used by GangES to determine which errors need
full simulation (GangES overhead) and the time needed to simulate the errors that need full simulations (need full). The bars in
Figure (b) show the fraction of error simulations that GangES saved from full execution, that need full simulation, and that were
identified as detections (detected).

for these sites (to determine the Relyzer wall clock baseline)
required approximately 14,225 hours of CPU time. Ganges
seeks to reduce this time and the number of full simulations.

Figure 5a shows the effectiveness of GangES. For each
application, the left bar shows the total wall clock time (in
CPU hours) to identify the outcomes of all the input error
sites by performing full error injection simulations on each
such site as the baseline. The right bar shows the wall clock
time to run GangES to identify the number of errors that
need full simulations (GangES overhead) and to run such full
simulations to completion (need full).

The figure shows that we obtain high simulation time sav-
ings of about 57%, averaged across our workloads. These
savings translate to hundreds of CPU hours of simulation time
savings for all our workloads (ranging from 272 CPU hours
for Streamcluster to 1,700 CPU hours for FFT). This figure
also shows that GangES consumes a small fraction of the total
simulation time, <1.6% for our workloads. Specifically, the
total wall clock time needed to determine which errors need
full simulations (and which are saved) was only 225 hours for
all our workloads together.

Figure 5b shows the fraction of the total error simulations
that were saved from full execution, that need full simulation,
and that result in a detection (these would be terminated early
regardless of GangES). On average, approximately 36% of
the total error simulations were saved; i.e., they were shown
equivalent to another execution, saving the simulation time
of running them to completion and comparing their output to
the error-free output. Overall, 39% of the total input error set
required full simulation.

Figure 6(a) shows when the equalization was performed
for the saved simulations (from Figure 5b). It shows that on
average about 92% of saved simulations were terminated at
the first SESE region exit from the point of error injection.
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Figure 6: When does simulation equalization occur? Part (a)
shows the fraction of the saved simulations (from Figure 5b)
that are equalized at the Nth SESE exit, averaged across our
workloads. Part (b) shows the average distance of the suc-
cessful comparison points (first, second, or third SESE exit)
from the point of error injection in terms of number of dynamic
instructions.

Approximately 7% and 1% of the saved simulations were
equalized at the second and third SESE exits respectively.

Figure 6(b) shows the average distance in the number of
executed instructions from the point of error injection to the
simulation state equalization (at a SESE exit). Specifically,
it shows that the distance to first successful comparison (av-
eraged across our applications) is approximately 3,000 in-
structions (where 92% of saved simulations are equalized).
Distance to successful comparisons varied significantly with
applications because the comparison points are identified ac-
cording to the PST, which is application-specific. We do not
show the application-specific breakdown here due to space
limitations.

Figure 7 explains why the simulations categorized as need
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Figure 7: Categorizing the errors that need full simulations
based on whether register state, memory state, or both mis-
matched during comparisons or whether no comparison was
made before the timeout condition was met.

full in Figure 5b were not equalized to other simulations. We
categorize these simulations based on the four following cri-
teria: (1) Register state mismatched at all exercised SESE
exits (Reg Only). (2) Register state matched but memory state
mismatched at all exercised SESE exits (Mem Only). (3) Com-
bination of categories (1) and (2) occurred at different SESE
exits; i.e., register state mismatched at some SESE exits and
when it matched the memory state did not match (Reg+Mem).
(4) No comparison was performed prior to the execution of a
threshold number of instructions (Timeout). From Figure 5b,
we observed that Ocean requires the highest number of full
simulations, requiring 59% of all the simulations to be run
until completion. From Figure 7, we note that over 46% of
simulations that were marked as need full were never com-
pared to any other simulation for Ocean. Hence, we need
to identify more reachable comparison points and a compact
way to store simulation state to allow more comparisons to
increase the savings of GangES. Increasing our threshold for
comparison should allow more comparison points and em-
ploying compression or encoding techniques should lower the
simulation state storage overhead. These alternatives are a
subject of our future research.

We also evaluated the benefit of comparing only the live
registers vs. all registers at SESE exits by observing the impact
on the wall clock time taken by GangES, shown in Figure 8.
Recall that we fast forward 1000 instructions to obtain a con-
servative live processor register state at a comparison point
(Figure 4). When we disallowed this step and compared all
processor registers, the average wall clock time needed by
GangES (including the overhead to determine which errors
need full simulations and the full simulations themselves)
increased by approximately 26% for our applications. This
clearly shows that comparing live processor registers provides
significant simulation savings over comparing all registers.
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Figure 8: Comparing GangES wall clock time for comparing
only live registers (left bar) vs. all registers (right bar) at SESE
exits. Each bar shows the time for GangES overhead and for
full error simulations.

5. Results for pure program analyses based met-
rics

5.1. Correlation coefficients

Table 2 shows the correlation coefficients between sdc and in-
dividual metrics for all our metrics and applications. It shows
that av.lifetime and av.fanout have virtually no correlation
with sdc for our workloads. Lifetime displays weak to virtu-
ally no correlation and fanout exhibits moderate correlation
for Blackscholes, FFT and LU. Although dyn.inst is the only
metric that shows high correlation with sdc for a few applica-
tions (FFT and LU), there is no single metric that uniformly
demonstrates a strong linear relationship with sdc for all our
workloads. Furthermore, when correlation is calculated on the
combined data points from all the benchmarks (represented by
All), none of the metrics display a strong association with sdc.

Applications vs lifetime fanout av.
lifetime

av.
fanout dyn.inst

Blackscholes

sdc

0.25 0.56 -0.05 -0.04 0.68
Swaptions -0.04 0.21 -0.03 -0.02 0.27

FFT 0.08 0.52 -0.03 -0.01 0.82
LU 0.19 0.56 -0.02 -0.01 0.80

Water 0.08 0.40 -0.02 -0.01 0.52
All 0.13 0.49 -0.02 -0.01 0.62

Table 2: Correlation coefficients between metrics and sdc for
different workloads.

5.2. Cost vs. SDC reduction

Here we compare optimal cost vs. SDC reduction curves for
our metrics vs. Relyzer+GangES by plotting the RC, PC, and
AC curves as described in Section 3.2. For brevity, we present
the cost vs. SDC reduction curves for a representative subset
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Figure 9: SDC reduction vs. execution overhead. The X axis plots % execution overhead (in terms of increase in dynamic
instructions) and the Y axis represents % reduction in SDCs.

from our workload and metric combinations in Figure 9.7

In the remainder of this section we use the term gap to
signify the difference in the Y axis (SDC) for a given value on
the X axis between the different curves.

Graphs for LU:dyn.inst and FFT:dyn.inst show a high cor-
relation between PC and AC, which was expected based on
Table 2. (The gap between the PC and AC curve – which
shows the inaccuracy in the SDC coverage claimed by the
corresponding metric – is lower for these graphs).

However, even for these best cases there is a significant gap
in SDC reduction between the AC and RC curves, showing
that these metrics do not pick the optimum set of detectors.
For example, at dynamic instruction overhead of 20%, the loss
in SDC reduction for LU:dyn.inst and FFT:dyn.inst is 37%
and 17%, respectively (compared to RC). This is primarily
because the instructions that do not produce SDCs were also
selected for protection (false positives) by the metrics.

Overall, the significant gaps we observed in the SDC reduc-
tion between AC and RC for a given overhead reveals that the
individual metrics are poor predictors of SDC causing instruc-
tions. This also indicates that correlation coefficient alone is
not a determining factor in predicting SDCs.

7For graphs that use av.lifetime and av.fanout, the PC curve immediately
goes up to very close to 100%. This is because the static instructions that have
very large values for av.lifetime and av.fanout have few dynamic instructions.
Hence, these static instructions account for a large fraction of these metrics
and the execution overhead of protecting them (based on dynamic instruction
count) is very small.

5.3. Combining multiple metrics

Table 3 shows the result of the linear regression (Equation 1)
for our workloads. It shows the metrics that are significant8 to
the model and the model’s adjusted R2. The adjusted R2 value
estimates the percentage of variance in sdc that is explained
by the metrics. If the adjusted R2 is high then the derived
model is considered robust. For example, 0.66 adjusted R2

for LU implies that only 66% of the variance in sdc can be
explained by the metrics, which leaves 34% as unexplained or
caused by randomness. However, a low adjusted R2 value can
be interpreted either as (a) the model is missing key additional
explanatory variables (other metrics), or (b) that a linear model
is not sufficient to explain the relationship between the metrics
and sdc. Overall, we make the following observations:
• No common model (formed by a linear combination of

our metrics) that offers a best fit for all our workloads was
identified. For different applications, different metrics were
identified as being significant contributors. For metrics
that prove to be significant for multiple applications, the
respective regression coefficients (βi) were different. For
example, even though fanout is identified as a significant
metric for Blackscholes, LU, and Water, the regression
coefficients (β1) were 0.60, -0.21, and -0.33 respectively.

• The adjusted R2 values varied between 0.07 (for Swaptions)
to 0.68 (for FFT) and were mostly lower than desired.

• The last three columns of Table 3 show the ratio of the Root
Mean Square Error (RMSE) to the Mean for K-fold cross

8A standard t-test is used to calculate the significance of the individual
linear regression coefficients.



Applications Significant Adjusted CV10 CV4 CV2
metrics R2 RMSE/Mean

Blackscholes fanout, av.fanout, dyn.inst, lifetime 0.61 [0.67] 1.46 [> 104] 264 [> 103] 285 [> 104]
Swaptions dyn.inst, lifetime 0.07 [0.26] 4.48 [4.16] 4.55 [4.25] 4.64 [4.44]

FFT dyn.inst, lifetime 0.68 [0.69] 6.91 [> 107] 10.1 [> 107] 5.94 [> 105]
LU dyn.inst, fanout 0.66 [0.77] 4.96 [152] 4.73 [85.1] 4.95 [201]

Water lifetime, fanout, av.lifetime, av.fanout, dyn.inst 0.28 [0.49] 5.82 [> 103] 6.03 [> 103] 10.3 [> 104]
All dyn.inst, lifetime, fanout, av.lifetime 0.39 [0.50] 4.55 [9.97] 4.40 [14.3] 4.45 [79.2]

Table 3: Linear regression summary. The significant metrics and the main number in each cell are the result of using linear
regression based on Equation 1. The numbers in the square brackets are results using linear regression on polynomials based
on Equation 2.

validations (CVK)9 with K = 10, 4 and 2. Even for models
that have relatively high adjusted R2 value (e.g., for LU or
FFT), the cross validation showed high errors (values >1)
in the predicted and observed SDCs. For example, for FFT,
the average error for CV4 is a very high 10.1 times the mean.
Our results from nonlinear regression (Equation 2 in Sec-

tion 3.2) are presented in brackets in Table 3. They show a
trend similar to that of linear regression – no common model
for our studied workloads is identified. The adjusted R2 has
improved for all our workloads, which indicates that a non-
linear combination of the metrics can perform better than a
linear combination in predicting SDCs. However, for several
applications the adjusted R2 value is still poor, indicating that
other metrics and/or different nonlinear regression models are
required. The last three columns show that the error from
cross validation is also high. In the data sets for some of the
applications, there are outliers that have significantly larger
metric values than others. During CV when these outlier met-
ric values are fed into the model, they produce large deviations
in the output which result in higher RMSE. Regression on
polynomials further exacerbates this problem as the model
exponentially increases the error. For example, in FFT just
one instruction accounts for approximately 96% of av.fanout
of the entire application and removing it brings the CV error
for polynomial regression down from approximately 107 to
approximately 5. Although removing these outliers may im-
prove the error rate, it also means that we are removing from
our analysis instructions that the metrics identify as the most
vulnerable. Since we are evaluating the predictive capacity of
the metrics, we choose to not remove these instructions.

In conclusion, simple linear and nonlinear models using
the pure program analyses based metrics we study do not
uniformly explain or predict SDCs in our workloads.

6. Conclusions and future research
As technology scales, the hardware reliability challenge is
expected to affect a broad spectrum of computing devices ren-
dering traditional redundancy based solutions too expensive.
Software anomaly based error detection has emerged as a low

9Cross validation (CV) is a model validation technique for accessing how
well the results of the analysis generalize to an independent set. A K fold
cross validation splits the population randomly into K parts. K-1 parts are
used for training the model and the remaining one part is used for testing.
This is done K times until all the parts have been used for testing.

cost resiliency solution, but it suffers from silent data corrup-
tions or SDCs. We therefore need mechanisms to accurately
evaluate SDC rates of current resiliency solutions, and identify
the remaining SDC producing program locations to develop
cost effective software-centric resiliency solutions.

Relyzer evaluates an application’s resiliency by analyzing
its execution trace and carefully selecting a small set of error
sites for thorough evaluation. This hybrid injection+analysis
based approach is practical but still incurs significant run time
(over 15,600 hours for our applications), most of which (about
90%) is spent in error simulations.

We have presented a new error evaluation framework called
Gang Error Simulator or GangES that can significantly im-
prove evaluation time of the hybrid injection+analysis ap-
proach. GangES observes that a set or gang of error simula-
tions that produce the same intermediate execution sate after
error injections would produce the same outcome. To check
for similar intermediate execution state, GangES periodically
compares states between multiple bundled simulations. Identi-
fying when to compare executions and what state to compare
can be challenging. GangES leverages the static structure of
a program to identify when to compare simulations and com-
pares limited live processor register state and touched memory
addresses at these comparison points. Our results show that
GangES saves 57% of the total error simulation time averaged
across our applications (saving a total of about 8,200 CPU
hours across all our workloads).

This paper also explores pure program analyses based tech-
niques that are much faster and could potentially eliminate the
need for tools such as GangES altogether. Relyzer+GangES
allows us to systematically evaluate the effectiveness of previ-
ously proposed pure program analyses based metrics in pre-
dicting SDC. For the metrics we are able to study, our results
show that these metrics and their various simple linear and
non-linear combinations are unable to adequately predict an
instruction’s vulnerability to producing SDCs. While other
program analysis based metrics may be more effective, our
results provide evidence that developing such metrics is not
straightforward and establish the value of Relyzer+GangES.

6.1. Limitations and future directions
We have evaluated GangES using an instruction-level transient
error model. Prior work has performed resiliency evaluations
using lower level error models [6, 15]. Extending our concepts



to such simulators is an interesting future direction. One of
the main challenges in directly employing GangES on lower
level error simulators (by collecting and comparing states at
the architecture level) is handling latent errors – errors that
are live at gate- or microarchitecture-level but not visible at
architecture level – at comparison points.

A prior evaluation framework achieves speedup by repeat-
edly comparing the entire simulation state with the golden
execution’s state [8], terminating simulations early if the error
is masked (not when the simulation becomes equivalent to
another one). Our solution, on the other hand, compares all
simulation states collected at a particular point in an applica-
tion to find and terminate equivalent simulations. The solution
in [8] uses CRC as a signature of the simulation state and
compares just the CRC to limit the comparison overhead. Ex-
ploring such an approach for compacting the state we collect
for comparisons (especially, touched memory addresses) is
one of our future directions.

GangES performs state comparisons at program points that
are identified using the modified PST to allow early termina-
tions. This scheme, however, misses some opportunities to
show equivalence (Figure 7). Prior research in software relia-
bility has studied a program indexing scheme [30] mainly for
software bug diagnosis. This scheme provides a mechanism
to uniquely identify individual execution points so that the
correlation between points in one execution can be inferred
and correspondence between execution points across multiple
executions can be established. This scheme can potentially
provide GangES more comparison points; however, the over-
head from more frequent state comparisons must be carefully
traded off against the potential savings from early termination
of simulations.
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