
Constructing a Weak Memory Model

Sizhuo Zhang∗ Muralidaran Vijayaraghavan∗ Andrew Wright∗ Mehdi Alipour† Arvind∗
∗MIT CSAIL †Uppsala University

{szzhang, vmurali, acwright, arvind}@csail.mit.edu mehdi.alipour@it.uu.se

Abstract—Weak memory models are a consequence of the
desire on part of architects to preserve all the uniprocessor
optimizations while building a shared memory multiprocessor.
The efforts to formalize weak memory models of ARM and
POWER over the last decades are mostly empirical – they try to
capture empirically observed behaviors – and end up providing
no insight into the inherent nature of weak memory models.
This paper takes a constructive approach to find a common base
for weak memory models: we explore what a weak memory
would look like if we constructed it with the explicit goal of
preserving all the uniprocessor optimizations. We will disallow
some optimizations which break a programmer’s intuition in
highly unexpected ways. The constructed model, which we
call General Atomic Memory Model (GAM), allows all four
load/store reorderings. We give the construction procedure
of GAM, and provide insights which are used to define its
operational and axiomatic semantics. Though no attempt is
made to match GAM to any existing weak memory model, we
show by simulation that GAM has comparable performance
with other models. No deep knowledge of memory models is
needed to read this paper.

Keywords-Memory model

I. INTRODUCTION

Software programmers never asked for weak memory
models. However, they have to deal with the behaviors, which
arise as a consequence of weak memory models in important
commercial machines like ARM and POWER. Many of
the complications and features of high-level languages (e.g.,
C++11) arise because of the need to generate efficient codes
for ARM and POWER, which have weak memory models [1].
Since the architecture community has unleashed the specter
of weak memory models to the world, it should answer the
following two questions:
1) Do weak memory models improve PPA (perfor-

mance/power/area) over strong models?
2) Is there a common semantic base for weak memory

models? This question is of practical importance because
even experts cannot agree on the precise definitions of
different weak models, or the differences between them.

The first question is way harder to answer than the
second one. While ARM and POWER have weak models,
Intel, which has dominated the CPU market for decades,
adheres to TSO. There are large number of papers in

A version of this paper appears in the 45th International Symposium on
Computer Architecture (ISCA), June, 2018. DOI: 10.1109/ISCA.2018.00021.
c©2018 IEEE.

ISCA/MICRO/HPCA [2]–[20] arguing that implementations
of strong memory models may be as fast as those of weak
models. It is unlikely that we will reach consensus on
this question in the short term, especially because of the
entrenched interests of different companies. Also there are
no studies that we are aware of showing that one weak
memory model is superior to another in terms of PPA.

This paper tries to answer the second question, i.e., find
a common base for weak memory models. Previous studies
have taken an empirical approach – starting with an existing
machine, the developers of the memory model attempt to
come up with a set of axioms or rules that match the
observable behavior of the machine. However, we observe
that this approach has drowned researchers in the subtly
different observed behaviors on commercial machines without
providing any insights into the inherent nature shared by all
weak models. For example, Sarkar et al. [21] published an
operational model for POWER in 2011, and Mador-Haim
et al. [22] published an axiomatic model that was proven
to match the operational model in 2012. However, in 2014,
Alglave et al. [23] showed that the original operational model,
as well as the corresponding axiomatic model, ruled out a
newly observed behavior on POWER machines. For another
instance, in 2016, Flur et al. [24] gave an operational model
for ARM, with no corresponding axiomatic model. One year
later, ARM released a revision in their ISA manual explicitly
forbidding behaviors allowed by Flur’s model [25], and this
resulted in another proposed ARM memory model [26].
Clearly, formalizing weak memory models empirically is
error-prone and challenging.

In this paper we take a different, a more constructive
approach to find a common base for weak memory models.
We assume that a multiprocessor is formed by connecting
uniprocessors to an atomic shared memory system, and then
derive the minimal constraints that all processors must obey.
We show that there are still choices left like same-address
load-load orderings and dependent load orderings, each of
which will result in a slightly different memory model. Not
surprisingly, ARM, Alpha and RMO differ in these choices.
Some of these choices make it difficult to specify matching
operational and axiomatic definitions of the model, and give
rise to confusing behaviors. After carefully evaluating the
choices, we have derived General Atomic Memory Model
(GAM). Our hope is this insight can help architects choose
a memory model before implementation and avoid spending

ar
X

iv
:1

80
5.

07
88

6v
3

 [
cs

.A
R

]
 1

8
Se

p
20

18

countless hours in reverse engineering the model supported
by an ISA.

We also give the formal operational and axiomatic defi-
nitions of GAM, which have been proven to be equivalent.
The axiomatic definition, which is a set of axioms that
every legal program behavior must satisfy, can be combined
with satisfiability-modulo-theory solvers to check whether a
specific program behavior is allowed or disallowed [23], [27],
[28]. The operational definition, which is an abstract machine
that executes programs, is a very natural representation of
actual hardware behaviors, and can be used in formal proofs
based on induction for both programs [29] and hardware [30].

Although no attempt is made to match GAM exactly to
any existing model, we show by simulation that GAM has
performance comparable with other models.

In summary, this paper makes the following contributions:
1) the common constraints shared by all weak memory

models;
2) GAM, a memory model based on the common constraints

to avoid couner-intuitive program behaviors;
3) the equivalent axiomatic and operational definitions of

the GAM; and
4) an evaluation showing that the performance of GAM is

competitive with other weak memory models.
Paper organization: Section II introduces the background
on memory models and related works. Section III shows
the construction procedure of GAM. Section IV gives the
formal definitions (i.e., axiomatic and operational definitions)
of GAM. Section V evaluates the performance of GAM.
Section VI offers the conclusion.

II. BACKGROUND AND RELATED WORKS

A. Formal Definitions of Memory Models

We use SC [31] as an example to explain the concepts of
operational and axiomatic definitions.
Operational definition of SC: Figure 1 shows the abstract
machine of SC, in which all the processors are connected
directly to a monolithic memory. The operation of this
machine is simple: in one step we pick any processor to
execute the next instruction on that processor atomically. That
is, if the instruction is a reg-to-reg (i.e., ALU computation)
or branch instruction, it just modifies the local register states
of the processor; if it is a load, it reads from the monolithic
memory instantaneously and updates the register state; and if
it is a store, it updates the monolithic memory instantaneously
and increments the PC. It should be noted that no two
processors can execute instructions in the same step.

As an example, consider the litmus test Dekker in Figure 2.
If we operate the abstract machine by executing instructions
in the order of I1 → I2 → I3 → I4, then we get the legal
SC behavior r1 = 0 and r2 = 1. However, no operation of
the machine can produce r1 = r2 = 0, which is forbidden
by SC.

Monolithic Memory

…
Processor

Reg State …

Figure 1. SC abstract machine

Proc. P1 Proc. P2
I1 : St [a] 1 I3 : St [b] 1
I2 : r1 = Ld [b] I4 : r2 = Ld [a]

SC allows 〈r1 = 1, r2 = 1〉,
〈r1 = 0, r2 = 1〉 and 〈r1 =
1, r2 = 0〉, but forbids 〈r1 =
0, r2 = 0〉.

Figure 2. Litmus test Dekker

Litmus tests: In the rest of the paper, we will use litmus
tests like Figure 2 to show the properties of memory models
or to differentiate two memory models. A litmus test is a
program snippet, and we focus on whether a specific behavior
of this program is allowed by each memory model. Since
we study weak memory models, we are mostly interested in
non-SC behaviors (e.g., 〈r1 = 0, r2 = 0〉 in Figure 2).
Axiomatic definition of SC: Before giving the axioms that
program behaviors allowed by SC must satisfy, we first need
to define what is a program behavior in the axiomatic setting.
For all the axiomatic definitions in this paper, a program
behavior is characterized by the following three relations:
• Program order <po: The local ordering of instructions

executed on a single processor according to program logic.
• Global memory order <mo: A total order of all memory

instructions from all processors, which reflects the real
execution order of memory instructions.

• Read-from relation
rf−→: The relation that identifies the

store that each load reads (i.e., store
rf−→ load).

The program behavior represented by 〈<po, <mo,
rf−→〉 will

be allowed by a memory model if it satisfies all the axioms
of the memory model.

Figure 3 shows the axioms of SC. Axiom InstOrderSC
says that the local order between every pair of memory
instructions (I1 and I2) must be preserved in the global
order, i.e., no rerodering in SC. Axiom LoadValueSC specifies
the value of each load: a load can only read the youngest
store among the older stores than the load in <mo, i.e.,
max<mo{set of stores}.

Axiom InstOrderSC (preserved instruction ordering):
I1 <po I2 ⇒ I1 <mo I2

Axiom LoadValueSC (the value of a load):
St [a] v

rf−→ Ld [a] ⇒
St [a] v = max<mo

{
St [a] v′

∣∣ St [a] v′ <mo Ld [a]
}

Figure 3. Axioms of SC

B. Atomic versus Non-atomic Memory

The coherent memory systems in implementations can
be classified into two types: atomic memory systems and
non-atomic memory systems, and we explain them separately.
Atomic memory: For an atomic memory system, a store
issued to it will be advertised to all processors simultaneously.
Such a memory system can be abstracted to a monolithic

memory which processes loads and stores instantaneously. Im-
plementations of atomic memory systems are well understood
and used pervasively in practice. For example, a coherent
write-back cache hierarchy with a MSI/MESI protocol can
be an atomic memory system [32], [33]. In such a cache
hierarchy, the moment a store request is written to the L1
data array corresponds to processing the store instantaneously
in the monolithic memory abstraction; and the moment a
load request gets its value corresponds to the instantaneous
processing of the load in the monolithic memory.

The abstraction of atomic memory can be relaxed by a
little if a private store buffer is added for each processor on
top of the coherent cache hierarchy. Store buffering makes
the issuing processor of a store able to see the store before
any other processor, but the store still becomes visible to
processors other than the issuing one at the same time.
Non-atomic memory: In a non-atomic memory system, a
store becomes visible to different processors at different times.
According to our knowledge, nowadays only the memory
systems of POWER processors are non-atomic. (GPUs may
have non-atomic memories, but they are beyond the scope
of this paper which is about CPU memory models only.)

A memory system becomes non-atomic typically because
of shared store buffers or shared write-through caches.
Consider the multiprocessor in Figure 4a, which contains
two physical cores C1 and C2 connected via a two-level
cache hierarchy. L1 caches are private to each physical core
while L2 is the shared last level cache. Each physical core
has enabled simultaneous multithreading (SMT), and appears
as two logical processors to the programmer. That is, logical
processors P1 and P2 share C1 and its store buffer, while
logical processors P3 and P4 share C2. If P1 issues a store,
the store will be buffered in the store buffer of C1. In this
case, P2 can read the value of the store while P3 and P4
cannot. Besides, if P3 or P4 issues a store for the same
address at this time, this new store may hit in the L1 of C2
while the store by P1 is still in the store buffer. Thus, the
new store by P3 or P4 is ordered before the store by P1 in
the coherence order for the store address. As a result, the
shared store buffers together with cache hierarchy form a
non-atomic memory system.

We can force each logical processor to tag its stores in the
shared store buffer so that other processors do not read these
stores in the store buffer. However, if L1s are write-through
caches, the memory system will be non-atomic for a similar
reason, and it is impractical to tag values in the L1s.

Even if we make L1s write-back, the memory system can
still fail to be an atomic memory system if it uses the DASH
coherence protocol [34] as shown in Figure 4b. Consider the
case when both L1s hold address a in the shared state, and
P1 is issuing a store to a. In this case, the L1 of core C1
will send a request for exclusive permission to the shared
L2. When L2 sees the request, it sends the response to C1
and the invalidation request to C2 simultaneously. When the

L1

Shared L2

P1 P2

Phys. core C1

Store buffer

L1

P3 P4

Phys. core C2

Store buffer

(a) Shared store buffers

L1 L1

Shared L2

3. Inv resp

P1 P2 P3 P4
Phys. core C1 Phys. core C2

(b) DASH protocol

Figure 4. Examples of non-atomic memory systems

L1 of C1 receives the response, it can directly write the
store data into the cache without waiting for the invalidation
response from C2. At this moment, P2 can read the more
up-to-date store data from the L1 of C1, while P3 can only
read the original memory value for a. Note that in case P3
or P4 issues another store for a at this moment, this new
store must be ordered after the store by P1 in the coherence
order of address a, because L2 has already acknowledged
the store by P1. This is different from non-atomic memory
systems with shared store buffers or shared write-through
caches.
Atomic and non-atomic memory models: Because of
the drastic difference in the nature of atomic and non-
atomic memory systems, memory models are also classified
into atomic memory model and non-atomic memory model
according to the type of memory systems that the model
supports in implementations. Most memory models are
atomic memory models, e.g., SC, TSO, RMO, Alpha, and
ARMv8. The only non-atomic memory model today is the
POWER memory model. In general, non-atomic memory
models are much more complicated. In fact, ARM has
recently changed its memory model from non-atomic to
atomic in its version 8. Due to the prevalence of atomic
memory models, this paper discusses atomic memory models
only.

C. Problems with Existing Memory Models

Here we review existing weak memory models and explain
their problems.
SC for data-race-free (DRF): Data-Race-Free-0 (DRF0) is
an important class of software programs where races for
shared variables are restricted to locks [35]. Adve et al. [35]
have shown that the behavior of DRF0 programs is contained
in SC. DRF0 has also been extended to DRF-1 [36], DRF-
x [37], and DRF-rlx [38] to cover more programming patterns.
There are also hardware schemes [39]–[41] that accelerate
DRF programs. While DRF is a very useful programming
paradigm, a memory model for an ISA needs to specify the
behaviors of all programs, including non-DRF programs.
Release Consistency (RC): RC [42] is another important
software programming model. The programmer needs to
distinguish synchronizing memory accesses from ordinary
ones, and label synchronizing accesses as acquire or release.

Intuitively, if a load-acquire in processor P1 reads the value
of a store-release in processor P2, then memory accesses
younger than the load-acquire in P1 will happen after memory
accesses older than the store-release in P2. Gharachorloo et
al. [42] have defined what is a properly-labeled program,
and shown that the behaviors of such programs are SC.

The RC definition attempts to define the behaviors for
all programs in terms of the reorderings of events, and an
event refers to performing a memory access with respect
to a processor. However, it is not easy to derive the value
that each load should get based on the ordering of events,
especially when the program is not properly labeled. Zhang
et al. [43] have shown that the RC definition (both RCSC and
RCPC) admits some behaviors unique to non-atomic memory
models, but still does not support all non-atomic memory
systems in implementation (e.g., it does not support shared
store buffers or shared write-through caches).
RMO and Alpha: RMO [44] and Alpha [45] can be viewed
as variants of RC in the class of atomic memory models.
They both allow all four load/store reorderings. However, they
have different problems regarding the ordering of dependent
instructions. RMO intends to order dependent instructions in
certain cases, but its definition forbids implementations from
performing speculative load execution and store forwarding
simultaneously [43]. Alpha is much more liberal in that it
allows the reordering of dependent instructions. However,
this gives rise to the out-of-thin-air (OOTA) problems [46].

Proc. P1 Proc. P2
I1 : r1 = Ld [a] I3 : r2 = Ld [b]
I2 : St [b] r1 I4 : St [a] r2
All models should forbid: r1 = r2 = 42

Figure 5. OOTA

Figure 5 shows an example OOTA behavior, in which
value 42 is generated out of thin air. If allowing all load/store
reorderings is simply removing the InstOrderSC axiom from
the the SC axiomatic definition, then the behavior would
be legal. To avoid such problems, Alpha introduces a
complicated axiom which requires looking into all possible
execution paths to determine if a younger store should not be
reordered with an older load to avoid cyclic dependencies [45,
Chapter 5.6.1.7].

To address the problems of dependencies and OOTA, the
recently proposed weak memory model WMM [43] relaxes
dependency ordering completely to avoid the complexity in
specifying dependencies, but always enforces load-to-store
ordering to avoid OOTA problems. This paper, in contrast,
explains where the dependency ordering constraints come
from via the construction procedure of GAM; and GAM
allows all four load/store reorderings.
ARM: As noted in Section I, ARM has been changing its
memory model. Besides, the ARM memory model also
introduces complications in the ordering of loads for the
same address, which we will discuss in Section III-E.

D. Other Related Works

The tutorial by Adve et al. [47] has described the relations
between some of the models discussed above as well as some
other models [48], [49]. Recently, there has been a lot of
work on the programming models for emerging computing
resources such as GPU [50]–[55], and storage devices such
as non-volatile memories [56]–[59]. There are also efforts
in specifying the semantics of high-level languages, e.g.,
C/C++ [1], [29], [60]–[64] and Java [65]–[67]. This paper
is about CPU memory models only. Model checking tools
are useful in finding memory-model related bugs; [23], [28],
[68]–[71] have presented tools for various aspects of memory-
model testing.

III. INTUITIVE CONSTRUCTION OF GAM

We begin by studying a highly optimized out-of-order
uniprocessor OOOU, and show that even such an aggressive
implementation still observes some ordering constraints to
preserve the single-thread semantics. When multiple OOOU

are connected via an atomic memory system to form a
multiprocessor OOOMP, these constraints can be extended
to form a base memory model that can characterize the
behaviors of OOOMP and meet the goal of preserving
uniprocessor optimizations.

However, the base model is not programmable, because
there is no way to restore SC for every multithreaded program.
Therefore, we introduce fence instructions to control the
exeuction order in OOOMP. We also want to make the
constructed memory model ameanable for programming, i.e.,
the model should not break the orderings that programmers
commonly assume even when programming machines with
weak memory models. To match programmers’ intuitions, we
introduce more constraints to the constructed model, which
means extra restrictions on implementations. We will study
the impact of these restrictions on performance in Section V.

A. Out-of-Order Uniprocessor (OOOU)

Figure 6 shows the structure of OOOU which is connected
to a write-back cache hierarchy. In case a memory access
gets a cache miss, the processor fetches the line to L1 and
then accesses it. The memory system can process multiple
requests in parallel and out of order, but will process requests
for the same address in the order that they are issued to the
memory system. To simplify the description, we skip details
that are unrelated to memory models. OOOU fetches the
next instruction speculatively, and every fetched instruction
is inserted into the ROB in order. Loads and stores will also
be inserted in the same order into the load buffer (LB) and
the store buffer (SB), respectively.

OOOU executes instructions out of order and speculatively,
but we assume the following two restrictions on speculations:
1) A store request sent to the memory system cannot be

withdrawn and its effect cannot be undone, i.e., a store
cannot be sent to memory speculatively.

ROB

LB SB
Fetch

L1 cache

Memory
…

Load req/resp Store req/resp

Write-back
cache
hierarchy

Figure 6. Structure of OOOU

2) The value of any destination register other than the next
PC of an instruction is never predicted (i.e., OOOU does
not perform any value prediction [72]–[78]).

While the first restriction is easy to accept, the second one will
be justified in Section III-D2. The restrictions on speculation
imply necessary conditions when an instruction can be issued
to start execution. For example, an instruction cannot be
issued until all its source operands are ready (i.e., have
been computed by older instructions). We will discuss later
about other constraints on issuing an instruction (especially a
store). After being issued, a reg-to-reg or branch instruction is
executed by just local computation. The execution of a store
sends a store request to the memory system. The execution
of a load first searches the SB for data forwarding from a
store that has not completed the store request in the memory
system.1 In case forwarding is not possible, the load will
send a request to the memory system.

In spite of out-of-order execution, OOOU still commits
instructions from ROB in order. A store does not need to
complete its store request in the memory system when being
committed, while load, reg-to-reg and branch instructions
should have got their values at commit time. In the following,
when we say an instruction I1 is older than another instruction
I2, by default we mean that I1 is before I2 in the commit
order (or equivalently, I1 is inserted into ROB before I2).
Instruction reordering in the uniprocessor: By instruction
reordering, we mean that the execution order of two instruc-
tions is different from the commit order. The execution order
is the order of the times when instructions finish execution.
A reg-to-reg or branch instruction finishes execution when
it computes its destination register value or resolves the
next PC, respectively. A load finishes execution when it gets
forwarding from SB or reads the data from L1. A store
finishes execution when it writes the store data into the data
array of the L1 cache. An instruction that is squashed (e.g.,
due to mis-speculation) before being committed is not a
member of the execution order.

B. Constraints in OOOU

All the constraints on the execution order in OOOU

are listed in Figure 7, and we will derive them one by

1Forwarding cannot be done after the store has been written into the L1
data array, because in the multiprocessor setting, other processors may have
overwritten the value of that store.

one in the following. These constraints can be classified
into two categories. The first set of constraints (SAMemSt
and SAStLd) are between memory instructions for the
same address, and are essential in maintaining single-thread
correctness. The second set of constraints (RegRAW, BrSt
and AddrSt) reflects the necessary conditions that need to be
met before issuing an instruction to start execution. Although
speculative execution can remove many of such conditions,
some still preserve since we have assumed some restrictions
on speculation.

• Constraint SAMemSt (same-address-memory-access-to-store): A store
must be ordered after older memory instructions for the same address.

• Constraint SAStLd (same-address-store-to-load): A load must be
ordered after every instruction that produce the address or data of
the immediately preceding store for the same address.

• Constraint RegRAW (register-read-after-write): An instruction must
be ordered after an older instruction that produce one of its source
operands other than PC.

• Constraint BrSt (branch-to-store): A store must be ordered after an
older branch.

• Constraint AddrSt (address-to-store): A store must be ordered after
an instruction which produces the address of a memory instruction that
is older than the store.

Figure 7. Constraints on execution orders in OOOU

Constraints for memory instructions of the same address:
Assume I1 and I2 are two memory instructions for the same
address a, and I1 is older than I2. If both I1 and I2 are
loads, then their executions do not need to be ordered. If I2
is a store, it cannot write L1 before I1 finishes execution no
matter whether I1 is a load or a store. Therefore we have
the SAMemSt constraint in Figure 7.

Now consider the case that I1 is a store and I2 is a load. If
I2 is executed by reading L1, then it cannot do so before I1
has written L1. Thus, the only way for these two instructions
to get reordered is when I2 gets forwarding from a store
S as shown in Figure 8. S should be the youngest store
that is older than I2. While there cannot be direct ordering
constraints between I1 and I2 due to the forwarding, if I2
eventually gets committed without being squashed, then I2
cannot start execution before the address and data of S have
been computed by older instructions. This gives the SAStLd
constraint in Figure 7.

Proc. P1
I1 : St [a] 1
S : St [a] r1
I2 : r2 = Ld [a]

Figure 8. Store forwarding

Proc. P1
I1 : r1 = Ld [a]
I2 : St [r1] 1
I3 : r2 = Ld [b]

Figure 9. Load speculation

Constraints for issuing to start execution: Since an
instruction cannot be issued to execution without all its source
operands being ready, we have the RegRAW constraint in
Figure 7. Note that we have excluded PC in this constraint.
This is because OOOU does branch prediction, and every
fetched instruction already knows its PC and can use it for
execution.

Constraint RegRAW has already covered the issuing
requirement for reg-to-reg, branch and load instructions. In
particular, there is no more constraints regarding the issue
of loads because of speculations. For example, consider the
program in Figure 9. OOOU can issue the load in I3 before
the store address of I2 is computed (i.e., before I1 finishes
execution), even though the address of I2 may turn out to
be the same as I3. In case I1 indeed writes value b into r1,
OOOU will squash I3 and re-execute it, and the execution
ordering between I1 and I3 has been captured by constraint
SAStLd.

Now we consider the constraints induced by the restriction
of no speculative store issue. A simple case is that a store
cannot be issued when an older branch is not executed, i.e.,
constraint BrSt in Figure 7. This is because the branch may be
mis-predicted at fetch time and will cause an ROB squash in
the future. Another case is that a store cannot be issued when
the address of an older memory instruction is not ready, i.e.,
constraint AddrSt in Figure 7. This is because if we issue the
store and later the address of the older memory instruction
turns out to be same as the store address, then we may violate
single-thread correctness (i.e., constraint SAMemSt).

C. Extending Constraints to Multiprocessors

Consider the multiprocessor OOOMP which connects
multiple OOOUs to an atomic memory system which may
be implemented as a coherent write-back cache hierarchy.
The constraints on local execution order in Figure 7 still
apply to each OOOU in OOOMP, but they are not enough
to describe the behaviors of the overall multiprocessor. The
only difference between a uniprocessor and a multiprocessor
is about the load values. In the uniprocessor setting, a load
always gets the value of the youngest store that is older than
the load. However, in OOOMP, if a load gets its value from
the atomic memory system, the value may come from a store
of a different processor.

In order to understand such interaction via the atomic
memory system, recall that the atomic memory system can
be abstracted by a monolithic memory, and the time that a
load/store request reads/writes the L1 data array in the atomic
memory system corresponds to the instantaneous processing
of the request in the monolithic memory (Section II-B).
Therefore, we can put all memory instructions into an atomic
memory order based on their L1 access times, which are also
their execution finish times. Hence, the atomic memory order
should respect local execution order (constraint LMOrdAtomic

in Figure 10), and the load that accesses the memory should
read from the immediate preceding store for the same address
in atomic memory order (constraint LdValAtomic in Figure 10).

In case the load does not access the memory, it gets data
forwarded from the immediate preceding store from the
same processor for the same address in the commit order
(constraint LdForward in Figure 10), same as OOOU.

• Constraint LMOrdAtomic (local-to-atomic-memory-order): The atomic
memory order of two memory instructions from the same processor
is the same as the execution order of these two instructions in that
processor.

• Constraint LdValAtomic (atomic-memory-load-value): A load that
executes by requesting the memory system should get the value of the
youngest store for the same address that is ordered before the load in
the atomic memory order.

• Constraint LdForward (load-forward): A load that executes by
forwarding should get the value of the immediate preceding store
from the same processor for the same address in the commit order.

Figure 10. Constraints for load values in OOOMP

These three constraints can be restated as the two con-
straints LMOrd and LdVal in Figure 11. To do so, we put all
memory instructions, including loads that forward from local
stores, from all processors for all addresses in OOOMP into a
global memory order according to their execution finish times.
Thus, the global memory order should respect the atomic
memory order and the execution order (constraint LMOrd).
Note that the way a load L is executed can be distinguished
by the global memory order of L and its immediate preceding
store S from the same processor for the same address in the
commit order. If L is ordered before S in the global memory
order (i.e., L finishes execution before S is written to L1),
then L must get its value forwarded from S. Otherwise, L
is ordered after S in the global memory order, and L should
be executed by sending a load request to the atomic memory
system. Therefore, the constraints for load values in the two
cases (LdValAtomic and LdForward) can be combined into
constraint LdVal using the following observations:

1) In case of forwarding, S is before L in the commit order,
and it is younger than (after) any store which is older
than (before) L in the global memory order.

2) In case of reading the memory system, all stores that are
before L in the commit order are also before L in the
global memory order.

Constraint LdVal also appears in RMO [44] and Alpha [45].

• Constraint LMOrd (local-to-global-memory-order): The global mem-
ory order of two memory instructions from the same processor is the
same as the execution order of these two instructions in that processor.

• Constraint LdVal (load-value): A load should get the value of the
youngest store for the same address in the global memory order that is
ordered before the load in either the global memory order or the local
commit order of the processor of the load.

Figure 11. Additional constraints in OOOMP

Atomic read-modify-write (RMW): There are multiple
choices for the constraints that an RMW should observe.
One simple way is to say that an RMW instruction for
address a should obey all the constraints that apply to a load
a or a store a, and that RMW must be executed by accessing
the memory system. Due to lack of space, we do not discuss
RMW in futher details in the rest of this paper.

D. Constraints Required for Programming

Up to now, the constraints in Figures 7 and 11 are
enough to describe the behaviors of loads and stores in
OOOMP: constraints in Figure 7 specify which local commit
order should be preserved in the local execution order,
constraint LMOrd translates the local execution order of
memory instructions to the global memory order, and finally
constraint LdVal specifies the value of each load given
the global memory order and the commit order of each
processor. However, these constraints are not enough for
parallel programming especially when programmers want
to restore SC. Memory fence instructions and enforceable
dependencies are two mechanisms to control load/store
reorderings. We will first introduce fence instructions and
associated new constraints, and then discuss enforceable
dependencies that have already been provided by the current
constraints. The inclusion of these new constraints results in
memory model GAM0, an initial version of GAM.

1) Fences to Control Orderings: Here we provide four
basic fences: FenceLL, FenceLS, FenceSL, and FenceSS.
These fences order all memory instructions of a given type
before the fence with all memory instructions of another
given type after the fence in the execution order. For example,
FenceLS orders all loads before the fence with all stores after
the fence in the execution order. To align with our previous
descriptions that each instruction has an execution finish time,
we can consider that a fence also needs to be executed but
acts as a NOP. A fence restricts execution order according
to the FenceOrd (fence-ordering) constraint in Figure 12. It
should be noted that a fence can only be ordered with a
memory instruction, and two fences are not ordered (directly)
with respect to each other. Because of constraint LMOrd, the
execution ordering enforced by fences will also apply to the
global memory order.

• Constraint FenceOrd (fence-ordering): A FenceXY must be ordered
after all older memory instructions of type X (from the same processor)
in the execution order, and ordered before all younger memory
instructions of type Y (from the same processor) in the execution
order.

Figure 12. Additional constraints for fences

These fences can be combined to produce stronger fences,
such as the following three which are commonly used.
• Acquire fence: FenceLL; FenceLS.
• Release fence: FenceLS; FenceSS.
• Full fence: FenceLL; FenceLS;FenceSL;FenceSS.

2) Data Dependencies to Enforce Ordering: The most
commonly used enforceable dependency in programming is
the data dependency. Consider litmus test MP+addr (message
passing with dependency on address) in Figure 13a. Since
the address of the load in I5 depends on the result of I4 (i.e.,
I4 and I5 are data-dependent loads), most programmers will
assume that the two loads in P2 should not be reordered,

and thus the non-SC behavior 〈r1 = a, r2 = 0〉 should never
happen even if there is no FenceLL between the two loads
in P2. GAM0 matches this intuition of programmers because
constraints RegRAW and LMOrd indeed keep I4 before I5
in the execution order and global memory order.

Programmers can in fact exploit the feature of data-
dependent load-load ordering to replace FenceLL with artifi-
cial data dependencies. Consider the program in Figure 13b.
The intent is that P2 should execute load b (I4) before
load a (I6). To avoid inserting a fence between the two
loads, one can create an artificial dependency from the
result of the first load to the address of the second load.
In this way, GAM0 will still forbid the non-SC behavior.
This optimization can be useful when only I6, but not any
instruction following I6, needs to be ordered after I4, i.e.,
the execution of instructions following I6 will not be stalled
by any fence. It should be noted that P2 should not optimize
I5 into r2 = a; otherwise there will not be any dependency
from I4 to I6. That is, implementations of GAM must respect
syntatic data dependency.

Proc. P1 Proc. P2
I1 : St [a] 1 I4 : r1 = Ld [b]
I2 : FenceSS I5 : r2 = Ld [r1]
I3 : St [b] a

GAM0 forbids r1=a, r2=0

(a) MP+addr

Proc. P1 Proc. P2
I1 : St [a] 1 I4 : r1 = Ld [b]
I2 : FenceSS I5 : r2 = a+ r1 − r1
I3 : St [b] 1 I6 : r3 = Ld [r2]
GAM0 forbids r1=1, r2=a, r3=0

(b) MP+artificial-addr

Proc. P1 Proc. P2
I1 : St [a] 1 I4 : r1 = Ld [b]
I2 : FenceSS I5 : St [c] r1
I3 : St [b] 1 I6 : r2 = Ld [c]

I7 : r3 = a+r2−r2
I8 : r4 = Ld [r3]

GAM0 forbids r1 = r2 = 1,
r3 = a, r4 = 0

(c) Dependency via memory

Proc. P1 Proc. P2
I1 : St [a] 1 I4 : r1 = Ld [a]
I2 : FenceSS I5 : r2 = Ld [b]
I3 : St [b] a I6 : r3 = Ld [r2]

GAM0 forbids r1 = 0,
r2 = a, r3 = 0

(d) MP+prefetch

Figure 13. Litmus tests of data-dependency ordering

Data dependencies can not only be created by read-after-
write (RAW) on registers, but also by RAW on memory
locations. GAM0 will still order two loads which are related
by a chain of data dependencies via registers and memory
locations. Consider the program in Figure 13c. P2 first loads
from address b, then stores the result to address c, next loads
from address c again, and finally loads from an address a
which is computed using the load result on c. There is a
chain of data dependencies from the first load to the last
load in P2, and programmers would assume that these two
loads are ordered. GAM0 indeed enforces this ordering by
constraint SAStLd, which says I6 should be ordered after
I4, i.e., the instruction that produce the data of I5.
Restrictions on implementations: Enforcing data-
dependency ordering does not come at no cost. As
mentioned in Section III-A, the processor should not
perform value prediction. To understand why, consider again

the program in Figure 13a. If P2 is allowed to perform value
prediction, then it can predict the result of I4 to be a, and
issues I5 to the memory system even before P1 issues any
store. This will make the non-SC behavior possible. Martin
et al. [75] have also noted that it is difficult to implement
value prediction for weak memory models that enforce
data-dependency ordering.

While value prediction is a still-evolving technique, a pro-
cessor can break data-dependency ordering by just allowing
a load to get data forwarding from an older executed load
(i.e., load-load forwarding). Consider the MP+prefetch litmus
test in Figure 13d. In case load-load forwarding is allowed,
P2 can first execute I4 by reading 0 from memory. Then,
P1 executes all its instructions in order, and finishes writing
both stores to memory. Next P2 executes I5 by reading the
up-to-date value a for address b from memory, and finally
executes I6 by forwarding the stale value 0 from I4. This
generates the non-SC behavior. To keep the data-dependency
ordering, OOOU is only allowed to forward data from older
stores as described in Section III-A.

Another technique that can break data-dependency ordering
is the delayed invalidation in the L1 cache. That is, L1 can
respond to an invalidation from the parent cache immediately
without truly evicting the stale cache line. To keep data-
dependency ordering, the stale lines must be evicted if L1
is waiting for any response from the parent. Even if the
memory model does not enforce data-dependency ordering,
fences have to do extra work to clear these stale lines in L1.

Enforcing data-dependency ordering is a balance between
programming and processor implementation. Nevertheless,
not enforcing this ordering will result in extra fences in
program patterns like pointer-chasing. In Section V, we will
show that forbidding load-load forwarding has negligible
performance impact. We do not evaluate the performance
impact of value prediction, because it strongly depends on
the effectiveness of the predictors and is beyond the scope
of this paper. Evaluation of delayed invalidation is also left
to future work, because it requires appropriate multithreaded
benchmarks to trigger load hits on stale lines and fence
penalties to clear stale lines.

The constraints in Figures 7, 11 and 12 have now formed
a complete memory model, which preserves uniprocessor
optimizations in implementations and has sufficient ordering
mechanisms for programming. Since this memory model
targets multiprocessors with atomic memory systems, we
refer to this model as General Atomic Memory Model 0
(GAM0).

E. To Order or Not to Order: Same-Address Loads

GAM0 does not have the per-location SC [79] property
which many programmers expect a memory model to have.
Per-location SC requires that all accesses to a single address
appear to execute in a sequential order which is consistent
with the commit order of each processor. In terms of the

orderings of memory instructions for the same address,
GAM0 already enforces the ordering between an older
memory instruction to a younger store. Although GAM0
allows a younger load to be reordered with an older store, the
load will get the value of the store, so these two instructions
can still be put into the sequential order. The only place
where GAM0 violates per-location SC is when there are
two consecutive loads for the same address. Consider the
CoRR (coherent read-read) litmus test in Figure 14a. Models
with per-location SC would disallow the non-SC behavior
〈r1 = 1, r2 = 0〉. However, OOOU can execute I2 and I3 out
of order and there is no constraint in GAM0 to order these
two loads. Thus, the global memory order in GAM0 can be
I3 → I1 → I2, causing the non-SC behavior. It should be
noted that GAM0 is not the only memory model that violates
per-location SC; RMO can also reorder two consecutive loads
for the same address.

1) Strengthen GAM0 for Per-Location SC: To meet the
programmers’ requirement of per-location SC, we introduce
the following SALdLd constraint.

• Constraint SALdLd (same-address-load-load): The execution order
of two loads for the same address (in the same processor) without any
intervening store for the same address in between should match the
commit order of these two loads.

After introducing the above constraint to GAM0, the new
memory model will forbid the non-SC behavior in Figure 14a,
and we refer to the new memory model as GAM. Note that in
constraint SALdLd, we do not order two loads with the same
address in case there is a store also for the same address
between them. This is because the younger load can get
forwarding from the intervening store before the older load
even starts execution, and this will not violate per-location
SC. To better illustrate this point, consider the program in
Figure 14b. I4 and I6 are both loads for address b, but there
is a also a store I5 for b between them. If we force I6 to be
after I4 in the execution order and global memory order, then
I7 will also be ordered after I4, forbidding I7 from getting
value 0. However, OOOU can have I6 bypass from I5 and
then execute I7 by reading 0 from memory before any store
in P1 has been issued. Note that all memory accesses to b
can still be put into a sequential order (I3 → I4 → I5 → I6)
which is consistent with the commit orders of P1 and P2.

To implement constraint SALdLd correctly, when a load
resolves its address, the processor should kill younger loads
for the same address which have been issued to memory or
have got data forwarded from a store older than the load. And
when a load attempts to start execution, it needs to search
not only older stores for the same address for forwarding
but also older loads for the same address which have not
started execution. In case it finds an older load before any
store, it needs to be stalled until the older load has started
execution. It should be noted that constraint SALdLd is
a restriction on implementations purely for the purpose of
matching programmers’ needs. In theory, the squashes caused

by this load-load ordering constraint should affect single-
thread performance. However, in Section V, we will show via
simulation that such squashes are very rare and the influence
on performance is actually negligible.

Proc. P1 Proc. P2
I1 : St [a] 1 I2 : r1=Ld [a]

I3 : r2=Ld [a]
Per-location SC forbids,
but GAM0 and RMO allow
r1 = 1, r2 = 0

(a) CoRR

Proc. P1 Proc. P2
I1 : St [a] 1 I4 : r1=Ld [b]
I2 : FenceSS I5 : St [b] 2
I3 : St [b] 1 I6 : r2=Ld [b]

I7 : r3=Ld [a+r2−r2]
Both per-location SC and GAM
allow r1 = 1, r2 = 2, r3 = 0

(b) Loads with an intervening store

Proc. P1 Proc. P2
I1 : St [a] 1 I4 : r1=Ld [b]
I2 : FenceSS I5 : r2=c+r1−r1
I3 : St [b] 1 I6 : r3=Ld [r2]

I7 : r4=Ld [c]
I8 : r5=a+r4−r4
I9 : r6=Ld [r5]

ARM allows but GAM forbids
r1 = 1, r2 = c, r3 = 0, r4 =
0, r5 = a, r6 = 0

(c) RSW

Proc. P1 Proc. P2
I1 : St [a] 1 I4 : r1=Ld [b]
I2 : FenceSS I5 : r2=c+r1−r1
I10: St [c] 0 I6 : r3=Ld [r2]
I11: FenceSS I7 : r4=Ld [c]
I3 : St [b] 1 I8 : r5=a+r4−r4

I9 : r6=Ld [r5]
Both ARM and GAM forbid
r1 = 1, r2 = c, r3 = 0, r4 =
0, r5 = a, r6 = 0

(d) RNSW

Figure 14. Litmus tests for same-address loads

2) Alternative Solution by ARM: The ARM memory
model uses a different constraint (shown below), which we
refer to as SALdLdARM, to enforce the ordering of same-
address loads and achieve per-location SC.

• Constraint SALdLdARM: The execution order of two loads for the
same address (in the same processor) that do not read from the same
store (not just same value) must match the commit order.

Constraint SALdLdARM is strictly weaker than constraint
SALdLd. To exploit the relaxation, the processor should not
kill younger loads when a load resolves its address. Instead,
when a load gets its value from the memory system, the
processor kills all younger loads whose values have been
overwritten by other processors. Such younger loads can be
identified by keeping track of evictions from L1. The above
implementation should have less ROB squashes than the
implementation of GAM with constraint SALdLd. However,
we already mentioned that the squashes in GAM are very
rare, so the relaxation in constraint SALdLdARM will not
lead to extra performance. We will confirm this point in
Section V.

Besides little gain in performance, constraint SALdLdARM
actually gives rise to confusing program behaviors. Consider
the RSW (read-same-write) litmus test in Figure 14c and
the RNSW (read-not-same-write) litmus test in Figure 14d.
These two tests are very similar. In both tests, P1 first stores
to a (I1) and then stores to b (I3); P2 first loads from b (I4)
and finally loads from a (I9); memory location c always has
value 0. The only difference between them is that in RNSW
(Figure 14d), P1 performs an extra store I10 which writes
the initial memory value 0 again into address c. We focus on

the following non-SC behavior: P2 first gets the up-to-date
value 1 from b (I4) but finally gets the stale value 0 from a
(I9). Given the similarity between these two tests, one may
expect that a memory model should either allow the non-SC
behavior in both tests or forbid the behavior in both tests.

GAM indeed forbids this non-SC behavior in both tests,
because I4 and I6 are data-dependent loads, I6 and I7 are
consecutive loads for the same address c, and I7 and I9 are
again data-dependent loads. As a result, in P2, the last load
must be after the first load in the global memory order in
GAM, forbidding I9 from getting value 0.

In contrast, ARM allows the non-SC behavior in RSW
but forbids it in RNSW. In RSW (Figure 14c), I6 and I7
both reads the initial memory value and are not ordered
by constraint SALdLdARM, so the behavior is allowed by
ARM. However, in RNSW (Figure 14d), if I6 and I7 are still
executed out of order to produce the non-SC behavior, then
I7 first reads the initial memory value and I6 later reads the
value of I10. Although the values read by I6 and I7 are equal,
the values are supplied by different stores (initialization store
and I10), violating constraint SALdLdARM. Therefore, ARM
forbids the non-SC behavior in RNSW. We can also verify
that per-location SC forbids that I7 reads the initial memory
value and I6 reads from I10 simultaneously, because I10
must be ordered after the initialization of c if all memory
accesses for c are put into a sequential order.

We believe it is confusing for constraint SALdLdARM to
allow RSW while forbidding RNSW, especially when the
difference between the tests is so small. Therefore, we resort
to the much simpler SALdLd constraint in GAM which
forbids both behaviors without losing any performance in
practice.

IV. FORMAL DEFINITIONS OF GAM

In this section, we give the axiomatic and operational
definitions of GAM in a formal manner. Since the axioms of
GAM are similar to the constraints derived in the previous
section, we give the axiomatic definition first.

A. Axiomatic Definition of GAM

As introduced in Section II-A, the axiomatic definition
is a set of axioms that check if a combination of program
order (<po), global memory order (<mo) and read-from
relation (

rf−→) is legal or not. Program order and global
memory order correspond to the commit order and the global
memory order in Section III, respectively. The core of the
axiomatic definition of GAM is to define a preserved program
order (<ppo). <ppo relates two instructions in the same
processor when their execution order must match the commit
order. That is, <ppo is a summary of constraints SAMemSt,
SAStLd, SALdLd, RegRAW, BrSt, AddrSt and FenceOrd.
After defining <ppo, we will give the two axioms of GAM,
which reflect constraints LMOrd and LdVal, respectively.

Before defining <ppo, we define the RAW dependencies
via registers as follows (all definitions ignore the PC register):

Definition 1 (RS: Read Set): RS(I) is the set of registers
an instruction I reads.

Definition 2 (WS: Write Set): WS(I) is the set of regis-
ters an instruction I can write.

Definition 3 (ARS: Address Read Set): ARS(I) is the set
of registers a memory instruction I reads to compute the
address of the memory operation.

Definition 4 (data dependency <ddep): I1 <ddep I2 if
I1 <po I2 and WS(I1) ∩ RS(I2) 6= ∅ and there exists
a register r in WS(I1) ∩ RS(I2) such that there is no
instruction I such that I1 <po I <po I2 and r ∈WS(I).

Definition 5 (address dependency <adep): I1 <adep I2
if I1 <po I2 and WS(I1) ∩ ARS(I2) 6= ∅ and there exists
a register r in WS(I1) ∩ ARS(I2) such that there is no
instruction I such that I1 <po I <po I2 and r ∈WS(I).

Data dependency, i.e., I1 <ddep I2 in Definition 4, means
that I2 will use the results of I1 as its source operand.
Address-dependency, i.e., I1 <adep I2 in Definition 5, means
that I2 will use the results of I2 as the source operands to
compute its load or store address. Thus, data dependency
includes address dependency, i.e., I1 <adep I2 =⇒
I1 <ddep I2.

Now we define <ppo as a summary of all the constraints
for execution order:

Definition 6 (Preserved program order <ppo):
Instructions I1 <ppo I2 if I1 <po I2 and at least one
of the following is true:
1) (Constraint SAMemSt) I1 is a load or store, and I2 is a

store for the same address.
2) (Constraint SAStLd) I2 is a load, and there exists a store

S to the same address such that I1 <ddep S <po I2, and
there is no other store for the same address between S
and I2 in <po.

3) (Constraint SALdLd) both I1 and I2 are loads for the
same address, and there is no store for the same address
between them in <po.

4) (Constraint RegRAW) I1 <ddep I2.
5) (Constraint BrSt) I1 is a branch and I2 is a store.
6) (Constraint AddrSt) I2 is a store, and there exists a

memory instruction I such that I1 <adep I <po I2.
7) (Constraint FenceOrd part 1) I1 is a fence FenceXY and

I2 is a memory instruction of type Y.
8) (Constraint FenceOrd part 2) I2 is a fence FenceXY and

I1 is a memory instruction of type X.
9) (Transitivity) there exists an instruction I such that

I1 <ppo I and I <ppo I2.
The last case in Definition 6 says that <ppo is transitive.

With <ppo, we now give the two axioms of GAM in
Figure 15. The LoadValueGAM axiom is just a formal way of
stating constraint LdVal. The InstOrderGAM axiom interprets
constraint LMOrd. That is, if two memory instructions
I1 <ppo I2, then I1 should be ordered before I2 in the

execution order, and thus they are also ordered in the global
memory order, i.e., I1 <mo I2.

Axiom InstOrderGAM (preserved instruction ordering):
I1 <ppo I2 ⇒ I1 <mo I2

Axiom LoadValueGAM (the value of a load):
St [a] v

rf−→ Ld [a] ⇒ St [a] v =
max<mo{St [a] v′ | St [a] v′ <mo Ld [a] ∨ St [a] v′ <po Ld [a]}

Figure 15. Axioms of GAM

B. An Operational Definition of GAM

The operational definition of GAM describes an abstract
machine, and how to operate the machine to run a program.
Figure 16 shows the structure of the abstract machine.

Monolithic Memory

…

Processor

ROB …PC

Figure 16. Abstract machine of GAM

The abstract machine contains a monolithic memory
(same as the one in SC) connected to each processor. Each
processor Pi contains an ROB and a PC register. The PC
register contains the address of the next instruction to be
fetched (speculatively) into the ROB. The ROB has one
entry per instruction; each ROB entry contains the following
information for the instruction I in it:
• A done bit to denote if I is done or not-done (i.e., has

finished execution or not).
• The execution result of I , e.g., load value or ALU result

(valid only when the done bit is set).
• The address-available bit, which denotes whether the

memory address has been computed in case I is a load or
a store.

• The computed load or store address.
• The data-available bit, which denotes if the store data has

been computed in case I is a store.
• The computed store data.
• The predicted branch target in case I is a branch.
An instruction in ROB can search through older entries to
determine if its source operands are ready and to get the
source operand values.

The abstract machine runs a program in a step-by-step
manner. In each step, we can pick a processor and fire one
of the rules listed in Figure 17. That is, no two processors
can be active in the same step, and the active processor in
this step can fire only one rule. Each rule consists of a guard
condition and an action. The rule cannot be fired unless the
guard condition is satisfied. When a processor fires a rule,
it takes the action described in the rule. The choices of the
processor and the rule are arbitrary, as long as the processor
state can meet the guard condition of the rule.

Rule Fetch: Fetch a new instruction.
Guard: True.
Action: Fetch a new instruction from the address stored in the PC register.
Add the new instruction into the tail of ROB. If the new instruction is a
branch, predict the branch target address of the branch, update PC to be
the predicted address, and record the predicted address in the ROB entry
of the branch; otherwise we just increment PC.
Rule Execute-Reg-to-Reg: Execute a reg-to-reg instruction I .
Guard: I is marked not-done and all source operands of I are ready.
Action: Do the computation, record the result in the ROB entry, and mark
I as done.
Rule Execute-Branch: Execute a branch instruction I .
Guard: I is marked not-done and all source operands of I are ready.
Action: Compute the branch target address and mark I as done. If the
computed target address is different from the previously predicted address
(which is recorded in the ROB entry), then we kill all instructions which
are younger than I in the ROB (excluding I). That is, we remove those
instructions from the ROB, and update the PC register to the computed
branch target address.
Rule Execute-Fence: Execute a FenceXY instruction I .
Guard: I is marked not-done, and for each older memory instruction I′
of type X, I′ is done.
Action: Mark I as done.
Rule Execute-load: Execute a load instruction I for address a.
Guard: I is marked not-done, its address-available bit is set and all older
FenceXL instructions are done.
Action: Search the ROB from I towards the oldest instruction for the first
not-done memory instruction with address a:
1) If a not-done load to a is found then instruction I cannot be executed,

i.e., we do nothing.
2) If a not-done store to a is found then if the data for the store is ready,

then execute I by bypassing the data from the store, and mark I as
done; otherwise, I cannot be executed (i.e., we do nothing).

3) If nothing is found then execute I by reading m[a], and mark I as
done.

Rule Compute-Store-Data: compute the data of a store instruction I .
Guard: The data-available bit is not set and the source registers for the
data computation are ready.
Action: Compute the data of I and record it in the ROB entry; set the
data-available bit of the entry.
Rule Execute-Store: Execute a store I for address a.
Guard: I is marked not-done and in addition all the following conditions
must be true:
1) The address-available bit of I is set,
2) The data-available bit of I is set,
3) All older branch instructions are done,
4) All older loads and stores have their address-available bits set,
5) All older loads and stores for address a are done.
6) All older FenceXS instructions are done,
Action: Update m[a] and mark I as done.
Rule Compute-Mem-Addr: Compute the address of a load or store
instruction I .
Guard: The address-available bit is not set and the address operand is
ready with value a
Action: We first set the address-available bit and record the address a
into the ROB entry of I . Then we search the ROB from I towards the
youngest instruction (excluding I) for the first memory instruction with
address a. If the instruction found is a done load, then we kill that load
and all instructions that are younger than the load in the ROB, i.e., we
remove the load and all younger instructions from ROB and set the PC
register to the PC of the load. Otherwise no instruction needs to be killed.

Figure 17. Rules to operate the GAM abstract machine

At a high level, these rules abstract the operation of
processor implementations OOOU and OOOMP, and preserve
the constraints in Section III. The order of accessing mono-
lithic memory is consistent with the global memory order

in OOOMP. Marking an instruction as done corresponds to
finishing the execution of the instruction in OOOU. Thus, the
order of marking instructions as done in this abstract machine
corresponds to the execution order in OOOU. Instructions,
especially loads, can be executed (i.e., marked as done)
speculatively; in case this eager execution turns out to violate
the constraints later on, the rules will detect the violation
and squash the ROB. Next we explain each rule.

Rule Fetch corresponds to the speculative instruction fetch
in OOOU. Rule Execute-Reg-to-Reg and Execute-Branch
corresponds to finishing the execution of a reg-to-reg or
branch instruction in OOOU; the guard conditions that source
operands should be ready preserves constraint RegRAW. The
guard of Rule Execute-Fence preserves constraint FenceOrd.
In rule Execute-Load, the guard that checks older fences
preserves constraint FenceOrd; doing nothing in case of
finding a not-done load the ROB search preserves constraint
SALdLd; doing nothing in case of finding a not-done store
without store data preserves constraint SAStLd. Notice that
a load can be issued without waiting for all older memory
instructions to resolve their addresses; this corresponds to the
speculative execution in OOOU. In the guard of rule Execute-
Store, case 3 preserves constraint BrSt, case 4 preserves
constraint AddrSt, case 5 preserves constraint SAMemSt, and
case 6 preserves cosntraint FenceOrd. In rule Compute-Mem-
Addr, in case a store address is computed and a younger load
is killed in the ROB search, constraints LdVal and SAStLd
are preserved; in case a load address is computed and a
younger load is killed, constraint SALdLd is preserved.

The proof of the equivalence of the axiomatic and
operational definitions of GAM can be found in [80].

V. PERFORMANCE EVALUATION

We evaluate the performance impact caused by enforcing
same-address load-load ordering and disallowing load-load
forwarding in GAM.

A. Methodology

As mentioned in Sections III-E, the same-address load-
load ordering constraint (SALdLd) places extra restrictions
on uniprocessor implementations to cater to the needs
of programmers. Disallowing load-load forwarding is also
mainly affecting single-thread performance. Therefore, we
study the performance of a single processor of the following
four memory models using the SPEC CPU2006 benchmarks:
• GAM: OOOU with constraint SALdLd.
• ARM: OOOU with constraint SALdLdARM.
• GAM0: OOOU (i.e., no constraint on same-address loads).
• Alpha*: OOOU with load-load data forwarding.
The comparison of GAM against ARM and GAM0 will
show the performance impact of same-address load-load
ordering constraint SALdLd, and the comparison of GAM
against Alpha* will illustrate the performance implications of
disallowing load-load forwarding to enforce data-dependency

astar.la
kes

astar.riv
ers
bwaves

bzip2.chicken

bzip2.combined

bzip2.liberty

bzip2.program

bzip2.source

bzip2.text

cactusadm
calculixdealii

gamess.c
ytosine

gamess.h
2ocu2

gamess.t
riazolium

gcc.1
66

gcc.2
00

gcc.c
-typeck

gcc.c
p-decl

gcc.e
xpr

gcc.e
xpr2
gcc.g

23
gcc.s

04

gcc.s
cila

b

gemsfdtd

gobmk.13x13

gobmk.nngs

gobmk.sco
re2

gobmk.tre
vorc

gobmk.tre
vord
gromacs

h264ref.fre
b

h264ref.fre
m

h264ref.se
m

hmmer.re
tro

hmmer.sw
iss4

1lbm
leslie

3d

libquantummcfmilc
namd
omnetpp

perl.ch
eckspam

perl.d
iffm

ail

perl.sp
litm

ail
povray

sjeng

soplex.pds

soplex.ref
sphinx3

tonto wrf
xalan

zeusmp
average

0.98

0.99

1.00

1.01

1.02

1.03

No
rm

al
iz

ed
 u

PC

ARM GAM0 Alpha*

Figure 18. Normalized uPC (baseline: GAM)

ordering. As a preliminary evaluation, we do not evaluate
value prediction or delayed invalidations for the reasons
explained in Section III-D2.

Besides, GAM0 can be viewed as a corrected version of
RMO [44] (they both allow the reordering of same-address
loads). Alpha* is similar to Alpha [45] in allowing load-load
forwardings; it is more liberal than Alpha in that it does not
enforce any same-address load-load ordering; but it does not
account for delayed invalidations. Thus, the comparison of
GAM versus ARM, GAM0 and Alpha* will be an estimate
of the performance comparison of GAM versus existing
memory models including ARM, RMO and Alpha.

We modeled these four processors in GEM5 [81]. The
implementation details have been described in Section III. For
ARM, we ignore the kills when loads read values from the
memory system, so the performance of ARM is an optimistic
estimation. Note that when a load is ready to issue in the
ARM processor, it still searches older loads for stalls. Table I
shows the detailed parameters; the sizes of the important
buffers (ROB, load buffer, store buffer and reservation station)
are chosen to match a Haswell processor.

Table I
PROCESSOR PARAMETERS

Single core @2.5GHz with x86 ISA (modified O3 CPU model)
Width 4-way fetch/decode/rename/commit, 6-way issue to

execution, 6-way write-back to register file
Function
units

4 Int ALUs, 1 Int multiply, 1 Int Divide, 2 FP ALUs, 1
FP multiply, 1 FP divide and sqrt, 2 load/store units

Buffers 192-entry ROB, 60-entry reservation station, 72-entry
load buffer, 42-entry store buffer (holding both specula-
tive and committed stores)

Classic memory system with 64B cache lines
L1 inst 32KB, 8-way, 4-cycle hit latency, 4 MSHRs
L1 data 32KB, 8-way, 4-cycle hit latency, 8 MSHRs
Unified L2 256KB, 8-way, 12-cycle hit latency, 20 MSHRs
L3 1MB, 16-way, 35-cycle hit latency, 30 MSHRs
Memory 80ns (200-cycle) latency and 12.8GB/s bandwidth

We run all reference inputs of all SPEC CPU benchmarks
(55 inputs in total) in full-system mode. For each input, we
simulate from 10 uniformly distributed checkpoints. For each
checkpoint, we first warm up the memory system for 25M
instructions, then warm up the processor pipeline for 200K
instructions, and finally simulate 100M instructions in detail.
We summarize the statistics of the 10 checkpoints to produce

the final performance numbers for this benchmark input.
Since GEM5 cracks an instruction into micro-ops (uOPs),

we will use uOP counts instead of instruction counts when
reporting performance numbers.

B. Results and Analysis

Figure 18 shows the uOPs per cycle (uPC) of ARM,
GAM0 and Alpha* for each benchmark input. The numbers
are normalized against the uPC of GAM. The last column
in the figure is the average across all benchmark inputs.
As we can see, the performance improvements of ARM,
GAM0 and Alpha* over GAM are all negligible (less than
0.3% on average) and never exceed 3%. This shows that the
performance penalty for GAM to enforce the same-address
load-load ordering and data-dependency ordering is very
small. Next we analyze the influence of these two orderings
in more details.
Same-address load-load ordering: Constraint SALdLd in
GAM puts the following two restrictions on implementations:
1) Kills: when a load L computes its address, the processor

kills any younger load which has finished execution but
has not got its value from a store younger than L.

2) Stalls: when a load L is ready to issue to start execution,
if there is an older unissued load for the same address
and L cannot get forwarding from any store younger than
the unissued load, then L will be stalled.

In contrast, ARM will not have any kills, but it is still subject
to the stalls; GAM0 is not affected by the kills or the stalls.
Table II shows the number of kills or stalls (caused by same-
address load-load ordering) per thousand uOPs in GAM and
ARM. Due to lack of space, we just show the maximum
and average numbers across all benchmarks. As we can
see, both kills and stalls caused by same-address load-load
orderings are very rare, so GAM can still have competitive
performance.

Table II
KILLS AND STALLS CAUSED BY SAME-ADDRESS LOAD-LOAD ORDERING

IN GAM AND ARM

Number of events per 1K uOPs
Average Max

Kills in GAM 0.2 3.24
Stalls in GAM 0.19 2.15
Stalls in ARM 0.19 2.15

Load-Load forwarding: In case data-dependency ordering
is not enforced, the processor (i.e., Alpha*) can forward
data from an older executed load to a younger unexecuted
load. However, this forwarding is beneficial only in case
that the younger load would get a cache miss if it were
issued to the memory system. Table III summarizes the
effectiveness of load-load forwardings in Alpha* (only the
average and maximum numbers across all benchmarks are
shown here). The first row shows the number of load-to-load
forwardings per thousand uOPs in Alpha*. The second row
shows the reduction of Alpha* over GAM in the number
of L1 load misses per thousand uOPs. As we can see, load-
load forwardings can happen quite frequently. However, the
number of L1 load misses is not reduced, i.e., the load that
gets the forwarding from the older load can also read the data
from the L1 cache. This explains why load-load forwardings
do not translate to performance improvement over GAM.

Table III
EFFECTS OF LOAD-LOAD FORWARDINGS IN ALPHA*

Number of events per 1K uOPs
Average Max

Load-load forwardings 22 104
Reduced L1 load misses over GAM 0.01 0.73

VI. CONCLUSION

This paper constructed a weak memory model, GAM,
which preserves all uniprocessor optimizations except those
breaking programmers’ intuitions. The construction of GAM
starts from the constraints on execution orders in uniproces-
sors, then extends the constraints to a multiprocessor setting,
and finally introduces additional constraints necessary for
parallel programming. This construction procedure makes
GAM a memory model that preserves most uniprocessor
optimizations. It also explains why each ordering constraint
is introduced, and which uniprocessor optimizations are
sacrificed for programming purposes. Our evaluation shows
that the performance of GAM is comparable to other weak
memory models. In particular, the number of kills and stalls
caused by enforcing same-address load-load ordering are
negligible.

ACKNOWLEDGMENT

We thank all the anonymous reviewers and especially our
shepherd Thomas Wenisch for their helpful feedbacks on
improving this paper. We have also benefited from the help
from Martin Rinard, Thomas Bourgeat, Daniel Lustig, and
Trevor Carlson. This work was done as part of the Proteus
project under the DARPA BRASS Program (grant number
6933218).

REFERENCES

[1] J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer, “A
promising semantics for relaxed-memory concurrency,” in POPL 2017.

[2] K. Gharachorloo, A. Gupta, and J. L. Hennessy, “Two techniques to
enhance the performance of memory consistency models,” in ICPP
1991.

[3] P. Ranganathan, V. S. Pai, and S. V. Adve, “Using speculative
retirement and larger instruction windows to narrow the performance
gap between memory consistency models,” in SPAA 1997.

[4] C. Guiady, B. Falsafi, and T. N. Vijaykumar, “Is sc+ ilp= rc?” in ISCA
1999.

[5] C. Gniady and B. Falsafi, “Speculative sequential consistency with
little custom storage,” in PACT 2002.

[6] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: bulk
enforcement of sequential consistency,” in ISCA 2007.

[7] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms
for store-wait-free multiprocessors,” in ISCA 2007.

[8] C. Blundell, M. M. Martin, and T. F. Wenisch, “Invisifence:
performance-transparent memory ordering in conventional multipro-
cessors,” in ISCA 2009.

[9] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end sequential consistency,” in ISCA 2012.

[10] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram, “Efficient sequential
consistency via conflict ordering,” in ASPLOS 2012.

[11] D. Gope and M. H. Lipasti, “Atomic sc for simple in-order processors,”
in HPCA 2014.

[12] X. Yu and S. Devadas, “Tardis: Time traveling coherence algorithm
for distributed shared memory,” in PACT 2015.

[13] X. Ren and M. Lis, “Efficient sequential consistency in gpus via
relativistic cache coherence,” in HPCA 2017.

[14] Y. Duan, A. Muzahid, and J. Torrellas, “Weefence: toward making
fences free in tso,” in ISCA 2013.

[15] M. Elver and V. Nagarajan, “Tso-cc: Consistency directed cache
coherence for tso,” in HPCA 2014.

[16] Y. Duan, N. Honarmand, and J. Torrellas, “Asymmetric memory fences:
Optimizing both performance and implementability,” ASPLOS 2015.

[17] G. Kurian, Q. Shi, S. Devadas, and O. Khan, “OSPREY: implemen-
tation of memory consistency models for cache coherence protocols
involving invalidation-free data access,” in PACT 2015.

[18] A. Morrison and Y. Afek, “Temporally bounding tso for fence-free
asymmetric synchronization,” in ASPLOS 2015.

[19] G. Zhang, W. Horn, and D. Sanchez, “Exploiting commutativity to
reduce the cost of updates to shared data in cache-coherent systems,”
in MICOR 2015.

[20] A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-speculative
load-load reordering in TSO,” in ISCA 2017.

[21] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams,
“Understanding power multiprocessors,” in PLDI 2011.

[22] S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave,
S. Owens, R. Alur, M. M. Martin, P. Sewell, and D. Williams, “An
axiomatic memory model for power multiprocessors,” in CAV 2012.

[23] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling,
simulation, testing, and data mining for weak memory,” TOPLAS 2014.

[24] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget,
W. Deacon, and P. Sewell, “Modelling the armv8 architecture,
operationally: Concurrency and isa,” in POPL 2016.

[25] ARM, ARM Architecture Reference Manual: ARMv8, for ARMv8-A
architecture profile, 2017.

[26] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell, “Sim-
plifying arm concurrency: Multicopy-atomic axiomatic and operational
models for armv8,” POPL 2017.

[27] J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides,
“Automatically comparing memory consistency models,” POPL 2017.

[28] D. Lustig, A. Wright, A. Papakonstantinou, and O. Giroux, “Automated
generation of comprehensive memory model litmus test suites,”
ASPLOS 2017.

[29] K. Nienhuis, K. Memarian, and P. Sewell, “An operational semantics
for c/c++11 concurrency,” in OOPSLA 2016.

[30] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind,
“Kami: A platform for high-level parametric hardware specification
and its modular verification,” ICFP 2017.

[31] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” TC 1979.

[32] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory

consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, 2011.

[33] M. Vijayaraghavan, A. Chlipala, N. Dave et al., “Modular deductive
verification of multiprocessor hardware designs,” in CAV 2015.

[34] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
“The directory-based cache coherence protocol for the dash multipro-
cessor,” in ISCA 1990.

[35] S. V. Adve and M. D. Hill, “Weak ordering a new definition,” in ISCA
1990.

[36] S. V. Adve and M. D. Hill, “A unified formalization of four shared-
memory models,” TPDS 1993.

[37] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy,
“Drfx: A simple and efficient memory model for concurrent program-
ming languages,” in PLDI 2010.

[38] M. D. Sinclair, J. Alsop, and S. V. Adve, “Chasing away rats: Semantics
and evaluation for relaxed atomics on heterogeneous systems,” in ISCA
2017.

[39] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C. Chou, “Denovo: Rethinking
the memory hierarchy for disciplined parallelism,” in PACT 2011.

[40] H. Sung and S. V. Adve, “Denovosync: Efficient support for arbitrary
synchronization without writer-initiated invalidations,” ASPLOS 2015.

[41] M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient gpu synchronization
without scopes: Saying no to complex consistency models,” in MICRO
2015.

[42] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy, “Memory consistency and event ordering in scalable
shared-memory multiprocessors,” in ISCA 1990.

[43] S. Zhang, M. Vijayaraghavan, and Arvind, “Weak memory models:
Balancing definitional simplicity and implementation flexibility,” in
PACT 2017.

[44] D. L. Weaver and T. Gremond, The SPARC architecture manual
(Version 9), 1994.

[45] Alpha Architecture Handbook, Version 4. Compaq Computer
Corporation, 1998.

[46] H.-J. Boehm and B. Demsky, “Outlawing ghosts: Avoiding out-of-
thin-air results,” in MSPC 2014.

[47] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer 1996.

[48] J. R. Goodman, Cache consistency and sequential consistency, 1991.
[49] M. Dubois, C. Scheurich, and F. Briggs, “Memory access buffering

in multiprocessors,” in ISCA 1986.
[50] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema,

D. Poetzl, T. Sorensen, and J. Wickerson, “Gpu concurrency: Weak
behaviours and programming assumptions,” ASPLOS 2015.

[51] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-free
memory models,” in ASPLOS 2014.

[52] B. R. Gaster, D. Hower, and L. Howes, “Hrf-relaxed: Adapting hrf to
the complexities of industrial heterogeneous memory models,” TACO
2015.

[53] M. S. Orr, S. Che, A. Yilmazer, B. M. Beckmann, M. D. Hill, and D. A.
Wood, “Synchronization using remote-scope promotion,” ASPLOS
2015.

[54] L. Alvarez, L. Vilanova, M. Moreto, M. Casas, M. Gonzàlez,
X. Martorell, N. Navarro, E. Ayguadé, and M. Valero, “Coherence
protocol for transparent management of scratchpad memories in shared
memory manycore architectures,” in ISCA 2015.

[55] L. Alvarez, M. Moretó, M. Casas, E. Castillo, X. Martorell, J. Labarta,
E. Ayguadé, and M. Valero, “Runtime-guided management of scratch-
pad memories in multicore architectures,” in PACT 2015.

[56] A. Kolli, V. Gogte, A. G. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
ISCA 2017.

[57] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with WHISPER,” in ASPLOS
2017.

[58] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist
barriers for multicores,” in MICRO 2015.

[59] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” ISCA 2017.

[60] R. Smith, Ed., Working Draft, Standard for Programming Language
C++. http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4527.
pdf, May 2015.

[61] H.-J. Boehm and S. V. Adve, “Foundations of the c++ concurrency
memory model,” in PLDI 2008.

[62] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber, “Mathematizing
c++ concurrency,” in POPL 2011.

[63] M. Batty, A. F. Donaldson, and J. Wickerson, “Overhauling sc atomics
in c11 and opencl,” POPL 2016.

[64] J. Kang, C.-K. Hur, W. Mansky, D. Garbuzov, S. Zdancewic, and
V. Vafeiadis, “A formal c memory model supporting integer-pointer
casts,” in PLDI 2015.

[65] J. Manson, W. Pugh, and S. V. Adve, “The java memory model,” in
POPL 2005.

[66] P. Cenciarelli, A. Knapp, and E. Sibilio, “The java memory model:
Operationally, denotationally, axiomatically,” in ESOP 2007.

[67] J.-W. Maessen, Arvind, and X. Shen, “Improving the java memory
model using crf,” OOPSLA 2000.

[68] D. Lustig, M. Pellauer, and M. Martonosi, “Pipecheck: Specifying
and verifying microarchitectural enforcement of memory consistency
models,” in MICRO 2014.

[69] Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi, “Ccicheck:
using µhb graphs to verify the coherence-consistency interface,” in
MICRO 2015.

[70] C. Trippel, Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi,
“Tricheck: Memory model verification at the trisection of software,
hardware, and ISA,” in ASPLOS 2017.

[71] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee, “Coatcheck:
Verifying memory ordering at the hardware-os interface,” in ASPLOS
2016.

[72] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” in MICRO 1996.

[73] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and
load value prediction,” ASPLOS 1996.

[74] W. J. Ghandour, H. Akkary, and W. Masri, “The potential of using
dynamic information flow analysis in data value prediction,” in PACT
2010.

[75] M. M. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and M. H.
Lipasti, “Correctly implementing value prediction in microprocessors
that support multithreading or multiprocessing,” in MICRO 2001.

[76] A. Perais and A. Seznec, “Practical data value speculation for future
high-end processors,” in HPCA 2014.

[77] A. Perais and A. Seznec, “Bebop: A cost effective predictor infras-
tructure for superscalar value prediction,” in HPCA 2015.

[78] R. Sheikh, H. W. Cain, and R. Damodaran, “Load value prediction
via path-based address prediction: avoiding mispredictions due to
conflicting stores,” in MICRO 2017.

[79] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “The complexity of
verifying memory coherence,” in SPAA 2003.

[80] S. Zhang, M. Vijayaraghavan, D. Lustig, and Arvind, “Weak memory
models with matching axiomatic and operational definitions,” arXiv
preprint arXiv:1710.04259, 2017.

[81] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, 2011.

http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4527.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4527.pdf

	I Introduction
	II Background and Related Works
	II-A Formal Definitions of Memory Models
	II-B Atomic versus Non-atomic Memory
	II-C Problems with Existing Memory Models
	II-D Other Related Works

	III Intuitive Construction of GAM
	III-A Out-of-Order Uniprocessor (OOOU)
	III-B Constraints in OOOU
	III-C Extending Constraints to Multiprocessors
	III-D Constraints Required for Programming
	III-D1 Fences to Control Orderings
	III-D2 Data Dependencies to Enforce Ordering

	III-E To Order or Not to Order: Same-Address Loads
	III-E1 Strengthen GAM0 for Per-Location SC
	III-E2 Alternative Solution by ARM

	IV Formal Definitions of GAM
	IV-A Axiomatic Definition of GAM
	IV-B An Operational Definition of GAM

	V Performance Evaluation
	V-A Methodology
	V-B Results and Analysis

	VI Conclusion
	References

