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Abstract—DRAM technology scaling has the undesirable side
effect of degrading cell reliability. One such concern of deeply
scaled DRAMs is the increased coupling between adjacent cells,
commonly referred to as crosstalk. High access frequency of
certain rows in the DRAM may cause data loss in cells of
physically adjacent rows due to crosstalk. The malicious exploit
of this crosstalk by repeatedly accessing a row to induce this
effect is known as row hammering. Additionally, inadvertent row
hammering may also occur due to the natural weighted nature
of applications’ access patterns.

In this paper, we analyze the efficiency of existing approaches
for mitigating wordline crosstalk and demonstrate that they have
been conservatively designed. Given the unbalanced nature of
DRAM accesses, a small group of dynamically allocated counters
in banks can deterministically detect “hot” rows and mitigate
crosstalk. Based on our findings, we propose a Counter-based
Adaptive Tree (CAT) approach to mitigate wordline crosstalk
using adaptive trees of counters to guide appropriate refreshing
of vulnerable rows. The key idea is to tune the distribution of the
counters to the rows in a bank based on the memory reference
patterns. In contrast to deterministic solutions, CAT utilizes fewer
counters, making it practically feasible to be implemented on-
chip. Compared to existing probabilistic approaches, CAT more
precisely refreshes rows vulnerable to crosstalk based on their
access frequency.

Experimental results on workloads from four benchmark
suites show that CAT reduces the Crosstalk Mitigation Refresh
Power Overhead in quad-core systems to 7%, which is an
improvement over the 21% and 18% incurred in the leading de-
terministic and probabilistic approaches, respectively. Moreover,
CAT incurs very low performance overhead (∼ 0.5%). Hardware
synthesis evaluation shows that CAT can be implemented on-chip
with only a nominal area overhead.

Index Terms—Row Hammering; DRAM; Technology Scaling;

I. INTRODUCTION
Dynamic random-access memory (DRAM) has been a

widely used storage element in computer systems. Over time,
process technology has scaled DRAM to achieve greater
storage density by reducing the technology feature size [1–
5]. However, shrinking process technology causes DRAM
cells to become significantly less reliable [2, 6, 7]. As the
chip density increases with technology scaling, the interaction
between circuit components, such as transistors, capacitors,
and wires increases, leading voltage fluctuations [8–10].
Specifically, when the cumulative interference to a DRAM
wordline becomes strong enough, the state of nearby cells
can change leading to memory errors [11, 12]. Vulnerability
to wordline electromagnetic coupling (crosstalk) exists in
recent sub 40nm commodity DRAM chips due to physical
limitations of these technologies. Kim [13] showed that through
frequently alternating the charge of specific memory locations,
crosstalk can be used, intentionally, to affect the charge
of adjacent cells [14]. However, in addition to intentional
malicious attacks [15, 16], inadvertent row hammering is also
possible due to the unbalanced nature of some applications’
access patterns that can lead to “hot” rows and induce crosstalk.

One simple solution to mitigate wordline crosstalk is to
increase the refresh rate for all rows. Although, this approach
is effective, it imposes an unnecessarily high power and

performance overhead [6, 15, 17–23]. There are two main
hardware approaches to mitigate wordline crosstalk in DRAM.
The first relies on a random number generator [24, 25] in the
memory controller to probabilistically refresh accessed rows
[26]. Although the idea behind this approach is simple, it results
in an early refresh of rows that can be potentially affected by
crosstalk [15], as well as unnecessary row refreshing in the
absence of hot rows.

The second approach detects the most frequently accessed
rows, or aggressor rows, and then refresh the rows that are
adjacent to it, or victim rows. To protect new DDR4 modules
against wordline crosstalk, DRAM architectures implement
the Targeted Row Refresh (TRR) mechanism that allows
victim rows to be refreshed on demand1. Intel has announced
the existence of pseudo-targeted row refresh in Xeon-class
Ivybridge architectures to help in the crosstalk mitigation, but
has not yet released the details of this mechanism. Several
methods have been proposed to identify rows for TRR. A
simple method to deterministically recognize aggressor rows,
called Static Counter Assignment (SCA), is to dedicate a
counter per row to keep track of the number of row activations.
However, having one counter per row induces a significant area
and power overhead to the memory system. To prevent this
high cost, row activation counters can be stored in a reserved
area of the main memory and a dedicated on-chip counter-
cache can be used to minimize the performance penalty of
retrieving counter values from main memory[26].

Due to row access locality in DRAM [28–30], many counters
in SCA would be underutilized [31]. Thus, we propose a
Counter-based Adaptive Tree (CAT) approach that dynamically
assigns counters to frequently accessed aggressor rows. Hence,
with a small number of on-chip counters it is possible to
deterministically refresh victim rows. When CAT results in a
highly unbalanced tree, it provides a significant advantage in
refresh energy over a block-based uniform counter distribution
with a similar number of counters, while CAT also converges
to a balanced tree when accesses in memory are uniform. The
dynamic counter tree of CAT is constructed by partitioning the
memory rows into groups, each governed by a counter, based
on the DRAM access pattern. To accomplish this, the refresh
threshold, defined as the number of aggressor row accesses
before crosstalk is known to occur in victim rows, is subdivided
into different split thresholds. These split thresholds identify
points at which a group is likely to contain an aggressor row and
increased precision is desired for more precise identification.
When crossing a split threshold, CAT subdivides the block
governed by a counter and provides a second counter to increase
the precision. Thus, CAT builds a uniform tree for workloads
with random row access frequency and a non-uniform tree for
workloads with biased row access frequency. The key feature
of CAT is that hot rows are instrumented using smaller groups,

1Note that Micron DDR4 documentation [27] suggests that the TRR module
is an optional module, thus there may exist future DDR4 systems that do not
incorporate TRR.
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while rows with low access frequency (cold rows) are unlikely
to induce crosstalk and are instrumented using larger groups.
Thus, the selection of appropriate split thresholds is a key
factor to the success of CAT.

CAT deterministically detects aggressor rows before they
reach the refresh threshold, whether they result from intentional
malicious attacks or applications’ unbalanced access pasterns.
It refreshes victim rows to prevent crosstalk and guarantee
reliability of the memory during normal operation as well as
defend against row hammering attacks. We make the following
contributions for wordline crosstalk mitigation:

• We demonstrate that, due to access locality in DRAM [28–
30], instead of over-provisioning with one counter per row,
a small number of counters can be implemented on-chip
to refresh victim rows, while achieving low latency, low
power consumption and satisfactory area overhead.

• We introduce a non-uniform counter assignment, CAT, to
more precisely determine the aggressor rows and refresh
vulnerable rows to improve the effectiveness of uniform
counter assignment.

• We determine the suitable number and values of split
thresholds for non-uniform counter assignment (i.e., CAT)
to best construct a, potentially unbalanced, tree for
optimized alignment of access counters to increasingly
small groups of rows that contain aggressor rows.

• We introduce a dynamically reconfigurable CAT scheme
(DRCAT), that tracks and reacts to the temporal changes in
memory access patterns resulting from either application
context switching or different phases of a particular
application in order to more precisely identify actual
victim rows and reduce DRAM refresh energy.

II. BACKGROUND AND RELATED WORK
DRAM-based main memory is a multi-level hierarchy of

structures. Each memory module is composed of a number
of chips and is connected to the memory controller through
a channel. Internally, each chip consists of multiple banks
and each bank is organized as rows of DRAM cells. Each
cell is composed of an access transistor and a capacitor, in
which the data is stored. While accessing a row, all cells
in the row are selected in parallel using a wordline. Due to
capacitive coupling between cells on adjacent wordlines, if
a wordline (aggressor row) is accessed frequently, voltage
levels on neighboring wordlines (victim rows) can be affected
leading to crosstalk. Mitigating wordline crosstalk is possible
by refreshing the victim rows before the aggressor rows reach
the refresh threshold.

A hardware approach to alleviate wordline crosstalk is for
each DRAM access to refresh the victim rows adjacent to
the accessed row based on a probability function [26]. In
this probabilistic approach, called PRA (Probabilistic Row
Activation), the memory controller uses a Pseudo-Random
Number Generator with a given probability (α) to determine
when the memory controller should issue a refresh signal to
refresh the two rows adjacent to the accessed row. When
either the number of memory accesses or the probability
α is high, this approach generates a significant number of
refresh commands, thus exacerbating memory contention and
increasing the energy cost [15].

As a hardware alternative to the probabilistic approach, a
deterministic approach can be used to prevent aggressor rows
from being accessed more than the refresh threshold before
refreshing the victim rows. Maintaining a counter for each
memory row is a significant overhead [32, 33]. To address this

problem, an approach was proposed that stores the counters in a
reserved area of DRAM and a set-associative counter cache was
established in the memory controller to improve accessibility to
frequently used counters [26]. Note that the primary idea in [26]
is similar to that used for Counter-based caches [34], where
threshold-based counters detect expired lines for proactive
eviction. While, using counters allows for accurate counts of
row accesses, caching the counters introduces the complexity
of maintaining a cache (e.g., tag matching, eviction policies)
within the memory controller. Moreover, misses to the cache
counter can be expensive.

Rewriting instructions, such as CLFLUSH [35], have
been proposed as software countermeasures against wordline
crosstalk and are now deployed in Google Native Client.
Similarly, access to the Linux pagemap interface is now
prohibited from userland [36]. These countermeasures have
already been proven insufficient to mitigate malicious kernel
attacks [37, 38]. In [15], a generic software mechanism,
ANVIL, is proposed to detect aggressor rows by monitoring the
last-level cache miss rate and row accesses with high temporal
locality. A similar approach is proposed in [39] to monitor
the number of last-level cache misses during a given refresh
interval. Both approaches rely on software access to CPU
performance counters.

III. MOTIVATION
In this section, we analyse the previously proposed hardware

approaches and make key observations to motivate the dynamic
counter assignment as a hardware solution that mitigates
wordline crosstalk and combats row hammering.

A. Probabilistic Refresh Analysis
Using a probabilistic approach, such as PRA, to mitigate

wordline crosstalk can protect against failure with a high
probability, depending on the value of the refresh threshold, T ,
and the probability, α , of triggering a refresh. The probability
of experiencing an error in Y years (defined as Y-years
unsurvivability) for PRA is computed as:

unsurvivability = (1− p)T ×Q0Q1 (1)

where p = α is the probability of refreshing TWO victim rows
on an access, Q0 is the number of refresh threshold windows
during a refresh interval, and Q1 is the number of 64ms periods
during Y years. The parameter T depends on the technology
node. Specifically, scaling down DRAM increases voltage
fluctuations in cells because of the interaction between circuit
components. Therefore, the refresh threshold is projected to
decrease for future memory technology [26].

Figure 1 compares the 5-years unsurvivability for different
refresh thresholds when p ranges from 0.001 to 0.006. As-
suming mild row accesses during refresh intervals, we set Q0
to 10, 15, 20, and 40. Figure 1 shows that for T=32K and
p > 0.001, PRA’s unsurvivability is lower than the Chipkill’s
unsurvivability of 1E-4. Our key observation from this figure
is that, for smaller values of T , larger values of p are
needed to match the 5-years survivability of chipkill2. In
fact, PRA’s failure probability increases exponentially when
the refresh threshold scales down, as is expected in future
technology nodes. This means that larger values of p (more
frequent random refreshes) are needed to guarantee acceptable
survivability.

2Similar analysis done in [26] shows that PRAp=0.001 probability of failure
is higher than 1E-4.
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Fig. 1: PRA unsurvivability for refresh thresholds 32k, 24k, 16k and
8k. PRA refreshes two victim rows with probability p.

Note that the reliability reported in Figure 1 assumes the use
of a true pseudo random number generator, PRNG, such as the
one proposed in [25]. This is important since the computed
reliability is contingent on the randomness of the numbers
generated by PRNG. Specifically, the unsurvivability in Eq. 1
will not apply if a simpler (less costly in terms of area and
power) PRNG is used since the randomness of the generated
numbers will not be independent enough. To study the effect
of the randomness of the generated numbers, we conducted
a Monte-Carlo simulation to estimate the unsurvivability of
PRA when a LFSR-based PRNG [40, 41] is used. The results
show that, using an LFSR-based PRNG largely increases
PRA’s unsurvivability. For example, for T=16K and p=0.005,
PRA’s unsurvivability reaches 1E-4 after only 25 refresh
intervals. To improve the reliability, a much larger value of
p should be used with LFSR-based PRNGs which increases
the refresh power and decreases the performance. A similar
conclusion was reached in [16]. Hence, PRA requires true
random number generators, which are known to be complex
and to consume relatively large power [24, 25, 42–44], to
achieve the probabilities shown in Figure 1.

B. Static Counter Assignment (SCA) Analysis
Using a deterministic approach for counting the number of

accesses per row with on chip counters using SCA requires a
large area and power overhead. One intuitive solution is to use
fewer counters by partitioning the rows in each memory bank
into fixed-size groups and assign one counter per group. To
illustrate SCA, we assume that every bank in DRAM includes N
rows and uses M counters. The refresh threshold, T , determines
the size of every counter as log2T -bits. This approach, called
SCAM , divides the rows into M groups, each including N

M
rows. For every row activation, the row address maps to the
appropriate counter. Then, the corresponding counter counts the
number of accesses. When the counter reaches the threshold,
it is reset and a refresh signal is sent to the memory controller
to refresh N

M +2 rows; the N
M rows in the group plus the two

rows adjacent to the group, which guarantees the refresh of
any row in or adjacent to the group subjected to the crosstalk.

The energy overhead in SCA originates from activating the
counters when memory is accessed and refreshing N

M +2 rows
when a counter exceeds T . Figure 2 breaks down the energy
overhead of SCAM during a 64ms auto-refresh period when
N = 65536 and the number of counters M ranges from 16 to
655363. For a small number of counters, the energy resulting
from refreshing victim rows (blue line) dominates the total
energy of activating counters in SCA. In contrast, the total
energy of activating counters in SCA is the dominant energy
as the number of counters significantly increases (orange line).

3The refresh energy includes the average refresh energy of victim rows for
18 real workloads (Details in Section VI). We modified CACTI [45] to model
the cache in the counter cache approach [26].
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Fig. 2: The energy overhead of SCA and counter caches [26] for
different number of counters.

Figure 2 shows that the total energy can be minimized at
M=128. In this case, SCA128 not only reduces the energy
overhead in comparison to SCA65536, but also decreases the
area overhead by two orders of magnitude (as will be explained
in Section VII). In comparison, the counter cache approach [26],
which stores counters in the reserved area of DRAM memory,
reports data for a much larger counter storage cache, requiring
capacity to store on the order of thousands of counters per
bank. Ostensibly, this is to allow for enough flexibility to store
the relevant counters to hot rows without a high miss rate due
to capacity misses and/or thrashing. Thus, the energy overhead
of counter storage cache will significantly exceed SCA128 due
to the increased static power. For example, Figure 2 shows
the optimistic energy (assuming no misses requiring accesses
to the DRAM) of 2K and 8K per bank counter caches as
horizontal lines. These lines intersect the SCA4096–SCA16384
points, respectively, as they have the same amount of total
counter storage4. Thus, the total energy consumption of SCA
with M ≤ 4K counters is lower than that of the counter caches
with different sizes. In particular, SCA128 can improve the total
energy overhead and area overhead by 1.5 orders of magnitude
in comparison to a 2K counter cache and nearly two orders
of magnitude compared to an 8K counter cache [26].

Thus, our key observation of these deterministic approaches
is that allocating one counter to each row in a DRAM bank with
a cache counter can be effective but are somewhat conservative
and leave room for improvement. Specifically, the analysis
of row access frequency of DRAM banks on real workloads
reveals that the row access frequency during the refresh interval
is not uniform and mostly a small group of rows are activated
in DRAM banks. For example, Figure 3 depicts the row access
frequency of a given bank for two typical real workloads,
blackscholes and facesim, within a time period of one refresh
interval (64ms). Figure 3 clearly shows that a small group of
rows dominate overall accesses. This motives us to propose a
dynamic counter assignment for wordline crosstalk mitigation.

C. Our Goal

Our goal is to take advantage of a small number of counters
per bank, but better target the aggressor rows to provide
further benefits to overall energy consumption while mitigating
crosstalk. Our novelty is the adaptive construction and dynamic
reconfigurability of a "potentially unbalanced" tree of counters
to match access patterns.

4The counter caches have additional storage to store the tag array. However,
this storage is typically less than the data array making it inconsequential on
a log plot.
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Fig. 3: Row address frequency in a DRAM bank with 64K rows.

IV. COUNTER-BASED ADAPTIVE TREE
In order to better assign row partitions to access counters,

the Counter-Based Adaptive Tree (CAT) is a new and practical
dynamic row partitioning technique that considers access
frequency of rows to more carefully assign counters to
appropriately sized groups of rows in order to improve energy
and area efficiency. To divide an initial group of rows (e.g.,
a bank or some other uniform coarse partition) into groups
of suitable sizes, CAT defines different split thresholds that
identify access frequency stages prior to reaching the refresh
threshold. These split thresholds are used to build a non-
uniform binary tree structure that maps hot rows to smaller
groups, while cold rows, i.e. rows with relatively low access
frequencies, are mapped to larger groups. This aligns access
counters to small groups of rows that contain an aggressor row
to more precisely identify actual victim rows.

A. A simple CAT Example
Figure 4 depicts two trees built by CAT, where a terminal

node,  , represents an active counter and intermediate node,
#, represents an expired counter, which had been split into two
counters. The level of a node is defined as its distance from the
root, with the root being at level zero. The levels of the CAT
are associated with unique split thresholds. Hence, when a
node reaches the next threshold, it further subdivides the group,
or splits the node, generating two children counters initialized
to the current count value. This is accomplished by activating
a second counter as a clone of the existing counter. The binary
tree of counters continues to grow until all available counters
are activated or a maximum allowed level, a parameter of the
CAT algorithm, is reached.

More precisely, assuming that we limit the number of levels
in the tree to L, we define L−1 split thresholds T0, ..., TL−2
where T0 ≤ ... ≤ TL−1 and TL−1 = T , recalling that T is
the refresh threshold. Each of the M counters in a bank,
C0, ..., CM−1, has log2T bits and, initially, only C0 is in active
mode. When a counter at level l reaches the split threshold,
Tl , it splits and two counters are activated at level l +1. This
process continues until all the counters are activated or l = L−1.
For example, Figure 4 shows two CATs for L = 6 and M = 8.
The CAT in Figure 4(a) results from a non-uniform row access
pattern, which causes more counters to be allocated to the hot
row area (smaller blocks) and grows the tree through level 5. In
contrast, when the row access frequency is uniform, counters
are distributed uniformly throughout the bank addresses as
shown in Figure 4(b). In this case, the CAT approach grows
the tree only through level 3 and mimics SCA.

In CAT, N rows in one bank are initially treated as a group
to which C0 is allocated. As soon as C0 reaches T0, CAT splits
C0 into C0 and C1 with the same starting value of T0. In this
case, C0 counts the number of accesses when the row address is
between 0 to N

2 −1 and C1 counts the number of accesses when
the row address ranges from N

2 to N −1. When C1 reaches T1,
CAT splits C1 into C1 and C2 with the new initial value T1
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Fig. 4: The adaptive tress of counters for the workload with (a) biased,
(b) uniform row address frequency. The number of row addresses in
the bank is N.

where C1 and C2 track row addresses in the ranges from N
2 to

3N
2 −1 and from 3N

2 to (N −1), respectively. CAT continues
this process until it activates all counters and no group can be
split into smaller sub-groups. At this point, the split thresholds
of counters are set to T . The minimum number of rows in a
given group depends on the number of defined split thresholds.
With L−1 split thresholds (a CAT with at most L levels), the
minimum number of rows per group is N

2L−1 .

B. Constructing the CAT
Algorithm 1 shows the process for refreshing rows under

the CAT structure per memory bank. It has two main modules:
the Counter Module (CM) that records the number of row
accesses and the Reconfiguration Counter Module (RCM) that
activates and initializes counters. Assuming M counters in a
given bank, CAT requires an array of M counter modules
that are implemented on-chip, and one RCM that can be
implemented either on-chip or in software. Each counter
module CMi maintains two registers, Li and Ui to store the
lower and upper row addresses assigned to this counter, and a
register li to store the index of the split threshold used for that
counter. The RCM maintains a last_activated counter register.

Initially, at the start of each refresh interval, CAT is reset
such that only the first counter module, CM0, is activated with
L0= 0, U0 = N −1, l0=0, and last_activated = 0. Each time
a row is accessed, its address is located in the range Li - Ui
of some active Ci, and this counter is incremented (lines 5-7).
When Ci reaches Tli , f lagi is raised (lines 8-10), which triggers
RCM to activate a new counter as long as the number of active
counters is less than M and the counter level li < L−1 (lines
15-16). When a new counter is activated, it is initialized by
Ci (line 17) and the interval between Li and Ui is split into
two equal-size ranges where the lower bound of Ci remains
unchanged and the upper bound of Ci is assigned to the upper
bound of the new counter. Then, Ui shrinks to Ui =

Ui+Li
2 and

the lower bound of the new counter is set to Ui +1 (lines 18-
20). The split thresholds of both counters are set to li+1 (lines
21-22). For example, after initialization, when CM0 reaches
Tl0 , CM1 is introduced by subdividing CM0 in half, such that
C1 =C0, L0 = 0, U0 =

N
2 −1, L1 =

N
2 , and U1 =N−1 with both

CM’s split thresholds being set to Tl1 and last_activated = 1.
This process continues until some CM, CMi, reaches the

highest threshold Tli = T (i.e., if li = L− 1, lines 10-12). In
this case, Ci is reset and the signal Ri is raised to cause the
memory controller to refresh all existing rows in the address
range of Li-1 and Ui+1. When all counters are activated, CAT
will set the index of all split thresholds to li = L− 1 which
causes Tli = T (line 25).

C. Efficient CAT Management Using SRAM
To directly implement Algorithm 1, maintaining the range

boundaries of row blocks requires more storage than the actual
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Algorithm 1: CAT structure per memory bank
1 Parameters: N : # rows per bank; M: # counters per bank;

L: # thresholds; Input: row_address; Output: Ri: Refresh
signal for refreshing all existing rows between Li-1 and Ui+1.

2 begin
3 Counter Module CMi /* i = 0, ...,M−1 */
4 if Li ≤ row_address ≤Ui then
5 if Ci < Tli then
6 Ci ++;
7 else
8 if li < L−1 then
9 f lagi = 1; /* Signal to trigger RCM /*

10 else
11 Ri=1; /* Signal to refresh corresponding rows*/
12 Ci = 0;

13 Reconfiguration Counter Module (RCM) /* Activated when
f lagi = 1*/

14 if f lagi == 1 for some i then
15 if last_activated < M−1 && li < L−1 then
16 last_activated++; /*Increase # of active counters*/
17 Clast_activated =Ci;
18 Ulast_activated=Ui;
19 Ui =

Ui+Li
2 ;

20 Llast_activated =Ui +1;
21 li ++;
22 llast_activated = li;

23 if last_activated==M-1 then
24 for i=0:M-1 do
25 li = L−1;

counters, themselves. Given that SRAM uses less area and
static power than registers [46], we are motivated to design and
optimize the CAT for SRAM. In this case, instead of storing
row range boundaries, we use pointers to store the structure
of the CAT as shown in Figure 5. During each access, the tree
structure is traversed sequentially by chasing the pointers to
find the counter assigned to a specific row address.

The CAT, shown visually in Figure 5(a), is composed of
two types of nodes: leaf nodes (shown in light blue) that
represent active counters and intermediate nodes (shown in
white) that determine the tree’s structure. Rather than store
all the nodes in our data structure, shown in Figure 5(b), we
store only the intermediate nodes. Thus, we use an array, I,
of size M−1 (the maximum number of intermediate nodes in
a tree with M leaves) to store information about intermediate
nodes. Separately, we use another array C, of size M to store
the counters, shown in Figure 5(c). For each intermediate node,
two pointers, L_ptr and R_ptr, point to information about its
two successors. If the successor is another intermediate node,
L/R_ptr contains the entry for that intermediate node. If the
successor is a leaf, L/R_ptr contains the entry for the counter
corresponding to that leaf. Two flags, L_lea f and R_lea f ,
indicate if the corresponding successor is an intermediate or leaf
node. The length of each counter is log(T ) bits and each pointer
is log(M) bits. The root of the tree, I0, is deterministically
stored in the first entry of the array I.

To determine whether to inspect the left or right entry, we
examine the address A (0 ≤ A < N). Starting at the root, the
high order bit of A determines the successor that covers row
A, thus accessing a leaf or an intermediate nodes as already
described. More generally, when traversing an intermediate
node at level l of the CAT, the lth bit of A, counting from the
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Fig. 5: (a) A CAT using pointer chasing with M = 8 counters and
6 levels. (b,c) The data structure used to represent the CAT. (d) An
array of weight registers used for reconfiguring the CAT (see section
5).

most significant bit, is used to select the successor, which may
be a leaf node or an intermediate node at level l +1. Before
the CAT is completely built, it is guaranteed that fewer that
M counters and M−1 intermediate nodes are utilized.

To illustrate the process of splitting a counter during the
building of the CAT, we consider the example CAT articulated
in Figure 5 by rolling back the last split operation. The last
counter, C7 was deployed by splitting C6 into C6 and C7 and
introducing I6. Let us assume that the current I6 still points
to a leaf node C6. At this point of the CAT construction, only
7 counters were deployed. This incomplete tree is represented
by the same array I of Figure 5 with the fourth entry of the
array being [C3, C6, 0, 0] (differences noted in bold) and the
last entry being still undefined. To reach the state shown in
Figure 5, C6 reached split threshold; I3’s R_ptr was replaced
by a pointer to the next available entry in I, I6; the last available
counter, C7, is initialized to match C6; and I6 is set to [C6,
C7, 0, 0] as is shown in the figure.

Given the above implementation, the maximum number of
sequential SRAM accesses for traversing the CAT is equal to
the maximum depth of the tree, L. That number of accesses
may be reduced if instead of starting to build the CAT tree
from its root, we start from a pre-set complete binary tree
with λ levels for some λ ≤ logM. Consequently, to traverse
the CAT, we can use the most significant λ bits of the row
address, A, to directly access the appropriate intermediate node
at level λ −1, which reduces the maximum number of SRAM
accesses to reach a leaf to L−λ +1. For example, if we start
from a uniform binary tree with λ = logM levels, the initial
CAT will be a complete tree containing M/2 counters and
M/2−1 intermediate nodes. The other M/2 counters can then
be used to grow the CAT non-uniformly beyond λ levels and
up to a maximum of L levels. Moreover, by pre-splitting the
counters uniformly up to level λ − 1 (that is starting from
a balanced CAT with λ levels), we can reduce the size of
the intermediate node array because we can avoid storing the
intermediate nodes at levels smaller than λ .

D. Determining Split Threshold Values
The CAT adapts the distribution of the available counters to

the rows in a bank depending on memory reference patterns.
Specifically, the CAT is dynamically shaped to minimize the
number of refreshed rows, and thus, the refresh power. Given a
sequence of row references, the split thresholds determine the
shape of the tree. In experimenting with the CAT technique,
we found that its performance is sensitive to the values of the
split thresholds. Given the combinatorial number of options
for selecting the split thresholds, we present in this section a
model to determine these thresholds in a way that minimizes
the number of refreshed rows. We explain that model assuming
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Fig. 6: Two possible evolutions of the CAT of (a) to a balanced tree
structure (b) or an unbalanced structure (c).
that we start from a uniform CAT with λ = m = logM levels,
and determine the split thresholds Tm−1, ...,TL−2 used to grow
the tree non-uniformly to a maximum of L levels.

For illustration, we consider a simple example in which 4
counters are used for the N rows in a bank. Specifically, assume
that after a number of references, the CAT is represented by the
tree structure shown in Figure 6(a). Depending on the reference
pattern and the values of the split thresholds T1 and T2, this
structure can evolve to either the balanced tree structure of
Figure 6(b) or the non-balanced tree structure of Figure 6(c).
That is, whether counter C1 splits first (Figure 6(b) or counter
C3 splits first (Figure 6(c)) depends on the relative value of
T1 and T2. After one of the counters splits, the CAT reaches
its final shape and the thresholds of all the counters are set to
the refresh threshold T . Hence, it is crucial to choose the split
thresholds so that the CAT assumes the form of the tree that
minimizes the number of refreshed rows.

Continuing with the 4-counter example, we note that a
counter at level 0, 1, 2 and 3 will be assigned 4w, 2w, w and
w/2 rows, respectively, where w = N/4. Now, assume that the
bank receives R row references (accesses) during the regular
refresh interval. If the references are uniformly distributed
across rows, then each counter in Figure 6(b) will receive R/4
references, and if the refresh threshold is T , then each counter
will reach this threshold R/4T times. Each time a counter
reaches T , the w rows assigned to it are refreshed. Hence the
total number of refreshes is

CostSCA = w×R/T (2)

An unbalanced CAT is expected to reduce the number
of refreshed rows if the R references are sufficiently biased
towards a small group of rows. To determine the “amount” of
bias that will favor the CAT of Figure 6(c) over the uniform
tree of Figure 6(b), we define this bias using a variable x such
that the group of rows assigned to counter C4 receives x more
references than the other rows. That is the ratio of references
caught by counters C1, C2, C3 and C4 is 2w : w : w/2 : x+w/2.
This means that each of the four counters will receive r1= 2wα ,
r2 = wα , r3 = 0.5wα and r4 = (x + 0.5w)α references,
respectively, where α = R/(x+4w). Consequently, the refresh
threshold T will be reached in counter C1 r1/T times, and
in each time the 2w rows assigned to it will be refreshed.
Similarly, T in C2 will be reached r2/T times, and in each
time the w rows assigned to it will be refreshed. Finally, T in
C3 and C4 will be reached r3/T and r4/T times, respectively,
and in each time the corresponding w/2 rows will be refreshed.
Hence, the total number of refreshed rows is

CostCAT = ((2w)2 +w2 +(
w
2
)2 +(x+

w
2
)

w
2
)

α

T
(3)

From (2) and (3), we conclude that CostCAT <CostSCA when

x > 3w. (4)

After determining the critical bias that causes the CAT to

outperform the uniform tree, we proceed to find the thresholds
T1 and T2 that will force, after a short sequence of accesses, say
Rs, the tree of Figure 6(a) to evolve to the tree of Figure 6(c)
if x > 3w and to the uniform tree otherwise. For this, we note
that if the reference bias is x = 3w, then after Rs references,
the counters C1, C2 and C3 in Figure 6(a) will record 2wβ ,
wβ and 4wβ accesses, respectively, where β = Rs/7w. Hence,
if T2 is set to be 2T1, then C3 will reach T2 before C1 reaches
T1 when x > 3w, thus converging to the CAT of Figure 6(c).
On the other hand, if x < 3w, then C1 will reach T1 before C3
reaches T2, thus leading to the uniform tree of Figure 6(b). To
completely specify the split thresholds, we chose T2 = T/2,
which guarantees that the CAT converges before any counter
reaches the threshold T . Consequently, T1 = T/4.

The same reasoning used in the 4-counter example can be
generalized to the case of M = 2m counters. Due to space
limitation, this extension is not presented in this paper and
is provided in the technical report. The generalized model is
used to determine the split thresholds for all the experiments
presented in this paper. For example, when applied to the tree
with M = 64 counters and L = 10 levels, the values of the
thresholds computed by the model are: T5 = 5155, T6 = 10309,
T7 = 12886, T8 = 16384, and T9 = T = 32768.

V. RECONFIGURING THE CAT TO TRACK
CHANGES IN ACCESS PATTERNS

The CAT assigns the available counters to the rows of
a bank according to the pattern of row accesses. However,
the row access pattern changes with time, which necessitates
a mechanism for the reconfiguration of the CAT to track
these changes. In the next two sections, we propose two such
mechanisms. The first, PRCAT, periodically reconstructs the
CAT and the second, DRCAT, dynamically reconfigures the
CAT by reassigning counters from cold to hotter regions of
the bank.

A. Periodically Reset CAT (PRCAT)
In this scheme, the CAT tree is rebuilt at epochs equal to

the auto-refresh interval (64ms for several DRAM generations
[47]). For LPDDRx devices that support burst refresh [48],
this simple scheme tracks the number of row accesses exactly.
It can also be applied to modern DDRx devices that support
distributed refresh at the expense of some inaccuracy in tracking
the number of accesses. Specifically, because row refreshes are
out of sync with the resetting of the CAT, recent information
about row accesses are lost when the CAT is reset. Moreover,
PRCAT resets the CAT periodically, even when the row access
patterns do not change, potentially incurring the overhead of
reconstructing the CAT unnecessarily. In the next section, we
describe a CAT reconfiguration scheme which avoids these two
shortcoming at a small cost for keeping additional information
about the usage of the counters in a CAT.

B. Dynamically Reconfigured CAT (DRCAT)
The DRCAT allocates weights to counters to track the

number of times each counter reaches the refresh threshold.
After the CAT is completely built, the DRCAT identifies the
counters allocated to regions that become cold and reallocate
them to regions that become hot. A 2-bit weight register is
used to record the weight of each counter. As described in
the last section, when a counter reaches the refresh threshold,
its corresponding rows are refreshed and its value is reset to
zero. However, to keep track of the hotness of row regions, the
weight corresponding to that counter is incremented (with an
upper bound of 3) and the weights corresponding to all other
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Fig. 7: The CAT of Figure 5 after reconfiguration.

counters are decremented (with a lower bound of 0). If the
weight of the incremented counter reaches its maximum limit,
two counters having zero weights (cold regions) are merged
and the released counter is used to split the hot counter.

To illustrate the scheme, consider the CAT example shown
in Figure 5, where all counters have been activated and the
weights of the counters are kept in the register W depicted in
Figure 5(d). Assume that at a given time during operation, the
values of the weight registers are [0,1,1,2,1,1,2,2] and counter
C6 reaches its limit (we used 2-bit counters). After the rows
corresponding to C6 are refreshed, the values of the weights
are updated to [0,0,0,1,0,0,3,1] and the following steps are
taken to reconfigure the CAT:
(1) From the table shown in Figure 5(b) an intermediate node
in the CAT which has two counters as children (L_leaf =
R_leaf = 0) with the weight of both being zero is selected.
If such a node is found, the two counters are merged, one
counter is freed and we go to step 2. In our example, C2
and C5 are leaves and both weight registers are zero. Hence,
C5 is promoted to its parent node and the fifth row of the
table is updated to I4=[C5,C4,0,0] as shown in Figure 7(b).
Furthermore, C2 and the sixth row, I5, of the table are released.
(2) We split the region tracked by the hot counter using the
counter freed in step 1. In our example, we show splitting C6
by replacing the L_ptr in its parent node (entry I6) by the
index of the released row (I5) and set its corresponding flag
to 1 to indicate that I5 will represent an intermediate node.
Finally, we update I5=[C6,C2,0,0] to point to C6 and C2 and
reset the corresponding flags.
(3) We update weight of the newly split counters to 1 to
ensure they remain split for a reasonable period of time while
preventing them from being quickly split in succession.

The DRCAT adds a negligible area overhead to the PRCAT
design. For example, PRCAT uses 2 bytes per counter for
T=16K and in this case, it occupies area overhead similar to
DRCAT. The reason is that DRCAT uses the first 16 bits for
the counter and the two last bits for the weight register. With
respect to latency, the DRCAT traverses the tree to find the
cold counters and their parent intermediate node. Since the
reconfiguration of the tree happens infrequently and traversing
the tree is not on the critical path, system’s performance is not
affected by the reconfiguration.

Note that, in addition to tracking the change in the hot spot
of memory accesses, the reconfiguration of the CAT according
to the weights of the counters has the flexibility of adapting
to multiple hot spots in the access patterns.

VI. EXPERIMENTAL METHODOLOGY
To evaluate the proposed technique, we performed simula-

tions using the memory system simulator USIMM modeling
55nm DRAM [47]. Unless stated otherwise (in Section VIII),
the default simulation environment was set to model memory

traffic from a dual core CPU. The total memory capacity is
16 GB with a total of 16 banks divided into two ranks, with
64K rows per bank. The Last level cache size is 512KB per
core in our simulation. Detailed simulation parameters for
USIMM are listed in Table I. The DRAM timing constraints
follow a Micron DDR3 SDRAM data sheet [46, 49]. Verilog
implementations of the control logic for the different wordline
crosstalk mitigation schemes were created to provide an area
and energy overhead comparison. These Verilog codes were
synthesized using Synopsys Design Compiler and evaluated for
power using Synopsys PrimeTime, targeting a 45nm FreePDK
standard cell library [50–55]5. We have changed the number
of counters per bank in the designs between 32 and 512 and,
for CAT, allowed the trees to grow up to 14 levels to study
the trade-off between performance, crosstalk mitigation refresh
power, and hardware overhead. For the evaluation of PRA, we
accounted for the energy to generate a random number every
row access.

To provide realistic workloads for evaluating the wordline
crosstalk mitigation schemes, we used workloads from the
Memory Scheduling Championship [56]. These workloads
cover a variety of benchmarks including commercial appli-
cations and selected benchmarks from the PARSEC, SPEC,
and Biobench suites. Furthermore, we use 12 kernel attacks to
mimic malicious codes in Section VIII-D.

One metric used to compare different crosstalk mitigation
schemes is the crosstalk mitigation refresh power overhead
(CMRPO). The CMRPO is the average power consumed for
deciding which rows to be refreshed in order to mitigate
crosstalk. It is computed relative to the regular refresh power
in the absence of any crosstalk mitigation (2.5mW to refresh
64K rows during a 64 ms refresh interval [17, 49]).

While rows are refreshed in a bank to mitigate crosstalk, that
bank cannot be accessed, possibly delaying subsequent memory
requests to that bank. To estimate this delay, we define the
execution time overhead (ETO) as the delay in execution time
due to memory requests to banks being refreshed (to mitigate
crosstalk) relative to the execution time when no provisions
are made to mitigate crosstalk.

TABLE I: System Configuration

Processor
Two 3.2GHz cores, Memory bus speed: 800 MHz
128-entry ROB, Fetch width: 4, Retire width: 2

Pipeline depth: 10

Memory
controller

Bus freq.: 800 MHz,Write queue capacity: 64
Address mapping: rw:rk:bk:ch:col:offset

Management policy: closed-page with FRFCFS

DRAM
2 channels(each 8GB DIMM), 1 rank/channel
8 banks/rank, 64K rows/bank, 64B cache line

VII. EVALUATION
We compare crosstalk mitigation schemes: DRCAT, PRCAT,

SCA (implemented with SRAM) and PRA (refreshes two
victim rows but not the aggressor row). In this section, we
conduct experiments on a dual-core system using refresh
thresholds of T=32K and T=16K and a maximum of L=11
levels for DRCAT and PRCAT. In Section VIII-A, we will
study the effect of the maximum number of CAT levels and

5It is commonplace for DRAM to trail CMOS by a technology generation.
Systems with 45nm CPUs were concurrent with 55nm DRAM.
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TABLE II: Hardware energy (per bank) and area of DRCAT, PRCAT and SCA for different number of counters, M, and the specification of
the PRNG used for PRA [25]. The reported energy for PRNG (eng_PRNG) is for generating 9-bits per row access.

M
Energy:dynamic (nJ per row access) and static (nJ per refresh interval) Area (mm2)

DRCAT PRCAT SCA
DRCAT PRCAT SCA PRNG

dynamic static dynamic static dynamic static

32 3.05E-04 5.77E+03 2.91E-04 5.55E+03 1.41E-04 3.16E+03 3.16E-02 3.04E-02 1.86E-02 Area 4.004E-3

64 4.30E-04 1.39E+04 4.09E-04 1.32E+04 1.92E-04 8.81E+03 6.12E-02 5.86E-02 4.04E-02 Throughput(Gbps) 2.4

128 5.83E-04 2.77E+04 5.50E-04 2.63E+04 2.22E-04 1.44E+04 1.16E-01 1.11E-01 6.04E-02 Power(mW) 7

256 8.72E-04 5.44E+04 8.25E-04 5.13E+04 3.12E-04 2.39E+04 2.23E-01 2.11E-01 1.00E-01 Eff.(nj/b) 2.90E-3

512 1.17E-03 1.06E+05 1.10E-03 1.02E+05 4.25E-04 4.52E+04 3.93E-01 3.75E-01 1.72E-01 eng_PRNG(nj) 2.625E-2

the value of the refresh thresholds on power and performance.
Moreover, we will report results for quad-core systems. We
assume that either the memory controller knows which rows
are physically adjacent to each other [57] or the DRAM chip
is responsible for refreshing the row and its neighbors [58].

A. Hardware Overhead

Table II shows the hardware cost for managing and main-
taining the counters for SCA, DRCAT and PRCAT with L=11
levels and T = 32K as the number of counters per bank
ranges from 32 to 512. We separately report the dominant
sources of hardware energy overhead. These sources include:
(1) the dynamic energy per access of the designed circuits
plus the SRAM storage, and (2) the static energy during a 64
ms refresh interval of circuits plus the SRAM storage. The
SRAM energy is extracted from CACTI [45] and the circuit
energy (combinational and io-pad) is derived from Synopsys
PrimeTime. Note that for DRCAT and PRCAT, the dynamic
energy per memory access accounts for multiple accesses to
SRAM (from 2 to L− log(M/4)) while for SCA, SRAM is
accessed only twice to read and write the counters. A modified
version of Table II is used for DRCAT and PRCAT when the
maximum tree depth changes in the experimental tests.

The results show that the dynamic energy per access of
PRCAT is roughly twice that of SCA for the same number
of counters. With respect to area overhead and static energy,
Table II clearly shows that PRCAT and SCA occupy equal area
and consume similar static power when the number of counters
of SCA is twice that of PRCAT. For example, PRCAT64 and
SCA128 occupy iso-area. Moreover, this area is one order of
magnitude smaller than the area needed by the leading counter-
based approach that stores in memory one counter per row and
uses a 32KB on-chip counter cache [26] (equivalent storage
to 2,048 counters per bank). Thus, implementing 64 or even
256 counters per bank is feasible. Our implementation shows
that the average latency for PRCAT is 3.6ns (circuit latency
plus repeated access to SRAM) which is much lower than the
row activation latency in the DRAM memory [59].

In comparison to PRCAT for T=32K, DRCAT uses a 2-
bit weight register per counter to reconfigure the structure of
CAT. The results in Table II show that the circuit design and
SRAM storage of DRCAT, on average, augments 4.2% area
overhead to the system compared to PRCAT. Also, DRCAT
increases the dynamic energy per row access by 5% over
PRCAT. Furthermore, it incurs 4ns latency. When DRCAT
reconfigures counters, its latency is about 7.5ns. The main
reason for the extra latency is the traversal of the tree as
explained in Section V-B. However, updating the DRCAT and
accessing the memory can be done in parallel.

Table II also shows the specification of a PRNG [25] for
PRA in 45nm technology6. We select one PRNG for PRA that
is applied for all banks during row accesses. The energy per bit
(the efficiency) for PRNG is computed as Power/Throughput.
For p = 0.002 and p = 0.003, PRNG generates 9 bits (∼
log(1/0.003 or log(1/0.002)) so that PRA can decide if victim
rows should be refreshed when a row is accessed. The energy
for generating 9 random bits is denoted by eng_PRNG. A
similar conclusion was reached in [16].

B. CMPRO
We use the results shown in Table II to compute CMRPO

for a benchmark during its execution by adding the following
components needed to mitigate crosstalk: (1) The dynamic
power (product of dynamic energy per memory access and the
total number of memory accesses during execution divided by
the execution time), (2) the static power (static energy during
a refresh interval divided by the refresh interval), and (3) the
refresh power (product of the average number of rows refreshed
to prevent crosstalk with the energy to refresh one row (1nJ
per row [60]) divided by the execution time).

Figure 8 shows the CMRPO for different approaches when
T = 32K. It reveals that both DRCAT64 and PRCAT64 with
L=11 achieve a CMRPO of 4%, which is an improvement
over the 11% in the cases of PRA and SCA. Note that the
CMRPO for PRA includes refreshing an average of two victim
rows every 500 accesses and generating 9 PRNG bits every
access, with the PRNG generation being dominant. According
to Table II, on average, for every 50 row accesses, PRA
consumes energy equal to that of refreshing one row in DRAM.

For T=16K, we use PRA0.003, rather than PRA0.002 since
the probability of failure for PRA0.002 is greater than 1E-4
(Chipkill reliability) according to Figure 1. Figure 8 shows that
CMRPO for DRCAT64 in dual-core systems is 4.5%, which is
an improvement over the 12% and 22% incurred in PRA0.003
and SCA64, respectively. Also, considering iso-area, DRCAT64
achieves a CMRPO improvement over the 13% incurred in
SCA128. Figure 8 indicates that reducing T from 32K to 16K
will increase considerably CMRPO for SCA while slightly
increasing CMRPO for PRCAT and DRCAT.

C. Execution Time Overhead
To evaluate performance, we report the execution time

overhead (ETO) resulting from refreshing victim rows. When
rows vulnerable to crosstalk are refreshed, any read or write
request to the bank containing the refreshed rows is stalled,
which leads to the execution time overhead.

6An PRNG design with low static power is reported in [24]. However,
this design is much slower than the design in [25] which leads to a larger
Energy/bit consumption.
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Fig. 8: The CMRPO (as a percent of the regular refresh power). DRCAT and PRCAT use 64 counters and up to 11 levels.
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Fig. 9: ETO resulting from refreshing vulnerable rows. DRCAT and PRCAT use 64 counters and up to 11 levels.

Figure 9 shows the ETO for different workloads. For
T = 32K, PRA0.002, SCA64, SCA128, PRCAT64 and DRCAT64
incur low ETO of 0.26%, 1.32%, 0.43%, 0.23%, and 0.16%
respectively. For T = 16K, the ETOs of PRA0.003, SCA64,
SCA128, PRCAT64 and DRCAT64 are 0.39%, 3.42%, 1.38%,
0.49% and 0.35% respectively. Note that ETO for PRA0.003
when T = 16K is roughly 1.5 times larger than ETO for
PRA0.002 when T = 32K because it probabilistically refreshes
50% more rows. On the other hand, ETO for SCA128 when
T = 16K is higher than ETO for SCA64 when T = 32K. This
shows that when the refresh threshold is reduced, doubling the
number of counters statically does not reduce the number of
refreshed rows, which results in less accurate row tracking and
thus larger refresh energy.

VIII. SENSITIVITY STUDY

A. Sensitivity to the Number of Counters and the Maximum
CAT depth

Figure 10 shows CMRPO for DRCAT when the number of
counters changes from 32 to 512 and the number of levels
changes from 6 to 14, and compares results with those of
SCA. From the figure, we note that increasing the number of
CAT levels does not significantly impact CMRPO when the
number of counters is relatively large. This is because, in this
case, the static power consumed by the counters dominates
the CMRPO, and hence, any improvement in the number of
refreshed rows has minimal effect. Conversely, with a small
number of counters, the energy for refreshing vulnerable rows
is a large component of the CMRPO. Thus, having more levels
in the tree saves refresh energy by targeting vulnerable row.

Due to the trade-off between static power and the power
consumed to refresh vulnerable rows, the minimum CMRPO
happens when DRCAT employs 64 counters and when SCA
employs 128 counters for T=32K. Note that the refresh power
of DRCAT64 with L7 is close to SCA64 since it only increases
row resolution one more level beyond SCA64. However,
DRCAT64 incurs more static and dynamic power than SCA64;
hence, its CMRPO is larger. The same argument applies to
explain why for fewer counters, CMRPO of SCA32 is smaller
than that of DRCAT32. When the threshold decreases from
32K to 16K, SCA will refresh victim rows more frequently

and its CPRMO grows by 12% while the minimum CMRPO
of DRCAT64 changes very little.

We studied the sensitivity of ETO to the number of counters
and the tree depth (the results are not shown in this paper).
The key observation is that, for both refresh thresholds, when
using at least 64 counters and L ≥ 9, DRCAT incurs an ETO
< 1%. Results also show that ETO is inversely correlated to
the refresh threshold. Another observation is that for a given
fixed number of counters, increasing the tree depth does not
necessarily reduce the number of refreshed victim rows; with
a deeper tree, the number of rows associated with a certain
counter will be reduced, but the number of rows associated
with other counters will increase. In other words, trying to
be precise in one area of the memory may lead to a gross
imprecision in another area of the memory, which creates a
trade-off that leads to an optimum value for the maximum tree
depth.

We conclude that for DRCAT, the optimal number of
counters and the maximum CAT depth affect both the CMRPO
and the ETO. For T = 32K and T = 16K and using between
32 and 128 counters, a maximum of L = 11 levels minimizes
CMRPO and results in a low ETO. For CAT with more counters,
the maximum CAT depth is inconsequential for CMRPO. In
fact, using DRCAT leads to larger CMRPO than using SCA.
We did the same analysis for PRCAT and our results show
that CMRPO for PRCAT is about 4% and 7% for T=32K and
T=16K with 10 and 11 CAT levels, respectively. Also it incurs
very low performance overhead (<0.5%) for both thresholds.

B. Sensitivity to Mapping Policy and Number of Cores
To analyze the effect of address interleaving, we experiment

with dual-core systems using two standard mapping policies
of USIMM [47]: (1) the 2-channel mapping policy (used in
the experiments so far) and (2) a 4-channel mapping policy
that maximizes memory access parallelism. Note that when
keeping the size of each memory bank fixed, the 4-channel
policy in USIMM quadruples the number of banks in the
system. We also experiment with a quad-core system using
the 2-channel and 4-channel mapping policies. The CMRPO
of DRCAT, PRCAT and SCA are reported in Figure 11 for
iso-area storage. Figure 11 shows that, when using the 2-
channel mapping policy, the CMRPO for quad-core systems
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Fig. 10: Crosstalk mitigation power overhead per bank for DRCAT using from 32 to 512 counters and different maximum CAT levels (6 to
14).
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Fig. 11: Effect of different mapping polices and number of cores on CMRPO (per bank). The banks in dual core and quad core systems
include 64K and 128K rows, respectively.

is larger than the dual-core systems. This is because having
more cores reduces the spatial locality in the L2 cache, thus
generating more memory traffic and forcing more refreshes.
SCA is affected more than the other schemes by the increased
traffic because of the inability to accurately track the row
accesses due to the uniform distribution of counters to rows.
This effect is amplified when T = 16K resulting in the CMRPO
for SCA exceeding that of PRA for the quad-core system. In
this case, DRCAT reduces the CMRPO in quad-core systems to
7%, which is an improvement over the 21% and 18% incurred
in SCA and PRA, respectively. Figure 11 shows that for quad-
core systems, the 4-channel policy reduces CMRPO versus the
2-channel policy for all schemes. This is expected since in the
4-channel policy, the number of banks increases from 16 to
64, thus decreasing the number of refreshed rows.

Although we do not show the results for ETO in this
section, we should note that ETO remains low for all schemes
irrespective of the mapping policy or the number of cores. The
largest ETO is incurred when the 2-channel policy is used with
quad-cores and T = 16K. Specifically, in this case ETOs for
PRA0.003, SCA, PRCAT and DRCAT are 0.47%, 1.45%, 0.6%,
0.38% respectively. The relatively high ETO for SCA is due
to the fact that the number of refreshed rows is relatively high.

C. Sensitivity to Refresh Thresholds

Scaling down DRAM technology exacerbates the crosstalk
problem leading to a decrease in the refresh threshold [26]. This
motivates the sensitivity analysis on different refresh thresholds
presented in Figure 12, which shows the CMRPO for four
refresh thresholds on a dual-core system with the 2-channel
mapping policy. We used PRA0.001, PRA0.002, PRA0.003 and
PRA0.005 for T = 64K, 32K, 16K and 8K, respectively to
guarantee that the unsurvivability is better than 1.0E-4. The
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Fig. 12: CMRPO for refresh thresholds T = 64K/32K/16K/8K.

figure shows that, for thresholds 64K to 16K and dual core
systems, DRCAT incurs CMRPO less than 5% which is an
improvement over PRA’s 12%. Also, it improves the CMRPO
over PRCAT because the CAT is dynamically reconfigured
rather than being periodically reset. Note that for T=8K,
DRCAT and PRCAT need to double the number of counters
to mitigate crosstalk, but still incur less than 10% CMRPO.
With respect to ETO, all approaches incur very low overhead.
Specifically, for T = 8K, the ETOs for PRA, SCA, PRCAT,
DRCAT are 0.58%, 1.44%, 0.8%, and 0.48%, respectively. We
conclude that CAT improves CMRPO relative to the other
schemes for both current and future technologies.

D. Performance Under Malicious attacks

To evaluate the performance of the counter-based approaches
under malicious attacks, we use 12 kernel attacks [16] that
randomly select few target rows (4 rows per bank and a total
of 64 target rows for 16 banks with dual-core/2-channels
configuration) and access the target rows more frequently than
other rows in DRAM. We integrate the kernel attacks with
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Fig. 13: ETO for three kernel attack modes: Heavy (75% target rows
+ 25% benign access rows), Medium (50% target rows + 50% benign
access rows) and Light (25% target rows + 75% benign access rows).

regular access rows of memory-intensive workloads (which we
call benign workloads). We select three attack modes Heavy
(75% target rows + 25% benign access rows), Medium (50%
target rows + 50% benign access rows) and Light (25% target
rows + 75% benign access rows). Note that the distribution
of target rows in the kernel attacks follows the Gaussian
distribution. Figure 13 shows the average execution time
overhead for the benign workloads for three refresh thresholds.
As expected, more intensive attacks leads to higher ETO since it
causes more refreshes. While the ETO for PRCAT and DRCAT
is less than 0.9% and 0.6% for different attacks and refresh
thresholds, the ETO of SCA grows to 4.5% for T=16K under
heavy attacks. ETO for T = 8K is lower than for T = 16K
because the number of counters is doubled.

We conclude that when malicious attacks target specific
rows in DRAM, CAT-based approaches are more efficient than
SCA approaches at mitigating the attacks since they confine
attacked rows to smaller groups of rows to be refreshed.

IX. CONCLUSION
We introduce the notion of a tree-based non-uniform row

partitioning for detecting rows vulnerable to crosstalk in
memory banks. We develop a low-cost implementation of
this notion with three key ideas: (1) we propose a low-cost
implementation to maintain and access Counter-based Adaptive
Trees that assign counters to rows non-uniformly and detects
more precisely rows vulnerable to crosstalk. (2) We introduce
a scheme to compute the split thresholds that cause the trees to
dynamically evolve and match the row access patterns. (3) We
introduce a scheme, DRCAT, for dynamically reconfiguring the
CAT to track the temporal changes in memory access patterns
resulting from either changing the running applications or
changing the phases of a running application.

Our results show that DRCAT outperforms the leading
approaches for wordline crosstalk mitigation. Specifically, for
quad-core systems and refresh threshold of T = 16K, DRCAT
reduces the CMRPO to 7%, which is an improvement over
the 21% and 18% incurred in deterministic and probabilistic
approaches, respectively. Moreover, DRCAT incurs very low
performance overhead (< 0.5%). Hence, we conclude that
dynamic row partitioning is an effective solution to detect
rows vulnerable to crosstalk in DRAM. Clearly, this hardware
solution avoids wordline crosstalk during normal execution and
protects against malicious attacks that explore vulnerability to
wordline crosstalk.
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