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There are three domains in a modern thermally-constrained
mobile system-on-chip (SoC): compute, IO, and memory. We
observe that a modern SoC typically allocates a �xed power
budget, corresponding to worst-case performance demands, to
the IO and memory domains even if they are underutilized. The
resulting unfair allocation of the power budget across domains
can cause two major issues: 1) the IO and memory domains
can operate at a higher frequency and voltage than necessary,
increasing power consumption and 2) the unused power budget
of the IO and memory domains cannot be used to increase the
throughput of the compute domain, hampering performance.
To avoid these issues, it is crucial to dynamically orchestrate the
distribution of the SoC power budget across the three domains
based on their actual performance demands.
We propose SysScale, a new multi-domain power manage-

ment technique to improve the energy e�ciency of mobile SoCs.
SysScale is based on three key ideas. First, SysScale introduces
an accurate algorithm to predict the performance (e.g., band-
width and latency) demands of the three SoC domains. Second,
SysScale uses a new DVFS (dynamic voltage and frequency scal-
ing) mechanism to distribute the SoC power to each domain
according to the predicted performance demands. This mecha-
nism is designed to minimize the signi�cant latency overheads
associated with applying DVFS across multiple domains. Third,
in addition to using a global DVFS mechanism, SysScale uses
domain-specialized techniques to optimize the energy e�ciency
of each domain at di�erent operating points.
We implement SysScale on an Intel Skylake microprocessor

for mobile devices and evaluate it using a wide variety of SPEC
CPU2006, graphics (3DMark), and battery life workloads (e.g.,
video playback). On a 2-core Skylake, SysScale improves the
performance of SPEC CPU2006 and 3DMark workloads by up
to 16% and 8.9% (9.2% and 7.9% on average), respectively. For
battery life workloads, which typically have �xed performance
demands, SysScale reduces the average power consumption by
up to 10.7% (8.5% on average), while meeting performance
demands.

1. Introduction
A high-end mobile microprocessor is built as a system-on-

chip (SoC) that integrates multiple components into a single
chip. It typically has three main domains: compute (e.g., CPU
cores, graphics engines), IO (e.g., display controller, image
signal processing (ISP) engine), and memory (i.e., memory
controller, memory interface, and DRAM) as illustrated in Fig.
1. A mobile SoC operates in a thermally-constrained envi-
ronment, limited by what is known as thermal design power
(TDP) [17,19,25,34,59,66,73,83,84,86,87,93,107]. To keep the

system running below a TDP, the SoC power-management-
unit (PMU) employs a power budget management algorithm
(PBM) to dynamically distribute the total power budget to
each SoC domain [6, 18, 42, 57, 71, 80, 82, 84, 87, 111]. This
allows each domain to operate within its allocated power
budget. For instance, CPU cores and graphics engines in
the compute domain share the same power budget. When a
graphics-intensive workload is executed, the graphics engines
consume most of the compute domain’s power budget. To
keep the power consumption of the compute domain within
its allocated power budget, PMU applies dynamic voltage
and frequency scaling (DVFS) to 1) reduce the CPU cores’
power consumption and 2) increase the graphics engines’
performance [48, 51, 62, 77, 83, 84, 85, 87, 102, 109].

In this work, we demonstrate that the power budget the
PBM allocates to the IO and memory domains is ine�ciently
managed, making the energy and performance of a high-end
mobile SoC suboptimal. We make four key observations.

Observation 1. In a typical high-end mobile SoC, the power
budget management algorithm assigns a �xed power budget
to the IO and memory domains corresponding to the worst-
case performance demands (bandwidth/latency) from the IO
interconnect and the memory subsystem resources. How-
ever, we observe that common use cases of mobile systems
have only modest demands relative to the worst-case. Un-
fortunately, these systems do not apply DVFS to the IO and
memory domains based on the actual demands of the three
domains, making these SoCs energy ine�cient.
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Figure 1: A modern mobile SoC (Intel Skylake [18]) with
three domains (compute, IO, memory). Voltage regulators
(VRs) are highlighted, e.g., IO engines/controllers, IO inter-
connect, and memory controller share the same VR, V_SA.

Observation 2. While mobile SoCs employ a power budget
redistribution mechanism between components within a do-
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main, such as between cores and graphics engines in the com-
pute domain [84, 85, 87], we observe that current power bud-
get management algorithms do not support dynamic power
redistribution across di�erent domains. Therefore, when a
domain’s power budget is underutilized, the remaining bud-
get is wasted, making system performance suboptimal. This
unused power budget could have been allocated to another
domain (e.g., the compute domain) to increase performance.
Observation 3. In modern mobile SoCs, we observe that
multiple components in the IO and compute domains have
widely-varying main memory bandwidth demands across
di�erent workloads. However, due to over-provisioning of
IO and memory demands, SoC energy e�ciency remains low
while running many workloads, as we demonstrate in Sec. 3.
Observation 4. Unoptimized DRAM con�guration register
values can signi�cantly reduce the energy e�ciency bene�ts
of multi-domain DVFS (e.g., they provide 22% less power
reduction than optimized values).

Unfortunately, there are three main challenges that make
it di�cult for existing high-end mobile systems to apply
DVFS to the IO and memory domains based on demands
of multiple domains. First, accurate prediction of 1) the actual
bandwidth/latency demands of the multiple domains, and 2)
the potential e�ect of DVFS on power/performance of the
SoC, in the presence of multiple domains, is challenging. A
modern high-end SoC integrates several components that
share the IO interconnect and memory subsystem. Some
of these components have strict quality of service (QoS) re-
quirements [99] with respect to latency (e.g., isochronous
tra�c [5, 12, 103]) and bandwidth (e.g., display [9, 38, 94, 99]).
Mispredicting a component’s actual demand can violate the
QoS requirements and/or signi�cantly degrade system per-
formance. Second, the DVFS process of the IO and memory
domains is a global system optimization. It requires monitor-
ing the demands of the three SoC domains and subsequently
con�guring multiple components in the SoC to carry out the
actual DVFS. Therefore, a power management transition �ow
for applying this global optimization can be computationally
expensive. If it is not done correctly, the transition from one
voltage/frequency operating point to another can degrade
SoC performance by stalling the SoC domains. Third, the
DVFS process should be holistic, e�cient, and optimized to
maximize power savings. For instance, previous works on
memory subsystem DVFS [10, 11, 13, 14, 16, 20, 35, 58, 111] do
not dynamically optimize the DRAM interface (i.e., DDRIO)
con�guration registers [52,75,79] and voltage during the DVFS
process. Unoptimized DRAM con�guration registers and volt-
age can signi�cantly reduce, or even negate, the potential
power/performance bene�ts of memory subsystem DVFS, as
we show in this paper (Sec. 3).

Recent works in memory DVFS [11, 13, 14, 15, 16, 20, 35,
58, 111] for modern SoCs focus only on improving energy
e�ciency of a single domain (or limited components of two
domains) and do not address all three challenges mentioned
above. For example, MemDVFS [13] and MemScale [16] focus
only on improving the energy e�ciency of the main mem-
ory subsystem. CoScale [14] and other works [11, 20, 58]

consider coordinating the DVFS of only CPU cores and the
main memory subsystem. To our knowledge, no previous
work on SoC DVFS 1) coordinates and combines DVFS across
three domains, or 2) optimizes the DRAM con�guration reg-
isters [52, 75, 79] and voltage.

To enable more holistic power management in a mobile
SoC and thereby to improve overall SoC power e�ciency
and performance, we propose SysScale, a new power man-
agement technique. SysScale is based on three key ideas.
First, SysScale can accurately and dynamically predict the
bandwidth/latency demand of multiple SoC domains by im-
plementing new performance counters and utilizing exist-
ing system con�guration registers. Second, SysScale uses
a highly-e�cient global DVFS mechanism to dynamically
distribute the SoC power budget across all three domains,
according to the predicted performance requirements. SysS-
cale’s DVFS mechanism minimizes latency overheads by 1)
performing DVFS simultaneously in all domains to overlap
the DVFS latencies and 2) storing the required con�gura-
tion registers in on-chip SRAM near each domain. Third,
to maximize power savings, SysScale optimizes the energy
e�ciency of each domain at di�erent DVFS operating points
with domain-speci�c mechanisms. For instance, we optimize
the energy e�ciency of the DRAM interface by adding a
dedicated scalable voltage supply and optimizing the con�g-
uration registers for each DVFS operating point.

This work makes the following contributions:

• To our knowledge, SysScale is the �rst work to enable
coordinated and highly-e�cient DVFS across all SoC
domains to increase the energy e�ciency of mobile SoCs.
SysScale introduces the ability to redistribute the total
power budget across all SoC domains according to the
performance demands of each domain.

• We propose an e�ective algorithm to accurately predict
the performance (e.g., bandwidth and latency) demands
of the three SoC domains, utilizing newly-implemented
performance counters and existing system con�guration
registers.

• We introduce a new global DVFS mechanism that min-
imizes the performance overhead of applying DVFS
across multiple domains.

• We implement SysScale on the Intel Skylake SoC for
mobile devices [2, 18, 97] and evaluate SysScale using a
wide variety of workloads: SPEC CPU2006 [95], graphics
(3DMark [100]), and battery life workloads for mobile
devices [1] (e.g., web browsing, light gaming, video con-
ferencing, and video playback). On a 2-core Skylake
with a 4.5W TDP, SysScale improves the performance
of SPEC CPU2006 and 3DMark workloads by up to 16%
and 8.9% (9.2% and 7.9% on average), respectively. For
battery life workloads, which typically have �xed per-
formance demands, SysScale reduces the average power
consumption by up to 10.7% (8.5% on average), while
meeting performance demands. As the TDP reduces,
SysScale’s relative bene�ts signi�cantly increase. For
example, for a 3.5W TDP system, SysScale enables up
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to 33% (19% on average) performance improvement on
SPEC CPU2006 workloads.

2. Background
We provide a brief overview of a modern mobile SoC ar-

chitecture and memory subsystem, with a focus on power
consumption and DVFS.
2.1. Mobile SoC Architecture
Main Domains. A high-end mobile processor is a system-
on-chip (SoC) that typically integrates three main domains
into a single chip, as Fig. 1 shows: 1) compute (e.g., CPU
cores and graphics engines), 2) IO (e.g., display controller,
ISP engine, IO interconnect), and 3) memory (i.e., the mem-
ory controller, DRAM interface (DDRIO), and DRAM). The
CPU cores, graphics engines, and IO controllers share the
memory subsystem. Similarly, the IO controllers share the IO
interconnect.
Clocks and Voltages. In a modern high-end mobile SoC,
each one of the IO controllers/engines, IO interconnect, mem-
ory controller, and DDRIO typically have an independent
clock. However, in current systems, there are three main
voltage sources for the IO and memory domains. First, the
IO controller, IO interconnect, and memory controller share
the same voltage regulator, denoted as V_SA1 1 in Fig. 1.
Second, DRAM 2 and the analog part of the DRAM inter-
face (DDRIO-analog) 3 share the same voltage regulator,
known as VDDQ. Third, the digital part of the DRAM inter-
face (DDRIO-digital) 4 typically shares the same voltage as
the IO interfaces (e.g., display IO, ISP IO), denoted as V_IO
in Fig. 1. The compute domain 5 typically has two voltage
sources (not depicted in Fig. 1): 1) a voltage regulator that is
shared between CPU cores and LLC and 2) a voltage regulator
for the graphics engines [7, 8, 70, 74, 78, 91, 92, 97, 98].
2.2. Memory System Organization

We provide a general overview of the structure of a DRAM
device. A set of DRAM chips placed together on a DRAM
module comprises a rank. A DRAM chip is typically divided
into multiple banks along with IO hardware (drivers and
receivers) that enables access to the contents of the storage
cells from outside the chip via the memory interface (DDRIO).
Each bank includes peripheral logic to process commands and
a grid of rows (wordlines) and columns (bitlines) of DRAM
cells. A DRAM cell consists of a capacitor and an access
transistor. A single bit of data is encoded by the charge level
of the capacitor. For more detail, we refer the reader to prior
works on DRAM organization and operation (e.g., [21, 22, 30,
31, 32, 49, 53, 54, 55, 56, 61, 68, 69, 88, 89, 90]).
2.3. Memory Power Consumption

The power consumption of a DRAM system comprises
background power, operation power, and the memory con-
troller power, which we brie�y describe. We refer the reader
to [10, 13, 21, 22] for a more detailed overview.

1SA stands for System Agent which houses the traditional Northbridge
chip. SA contains several functionalities, such as the memory controller and
the IO controllers/engines [106].

Background Power. A DRAM chip continuously consumes
a certain amount of power in the background with or without
memory accesses. The background power consumption has
two main sources. First, the maintenance task that the pe-
ripheral circuitry performs to ensure signal integrity between
the processor and DRAM chip. Second, periodic refresh op-
erations that restore a leaky DRAM cell’s charge level to
ensure that a cell does not leak enough charge to cause a bit
�ip [22, 60, 61, 76].
Operation Power. Operation power is a DRAM chip’s active
power consumption when it executes memory commands
for a memory access. It includes the DRAM array power, IO
power, register power, and termination power.

DRAM array power is consumed by the core of the mem-
ory (e.g., banks, row/column decoders, and sense ampli-
�ers). Thus, DRAM array power consumption correlates with
DRAM access count (i.e., memory bandwidth consumption).
The array draws a constant active-state power when a read,
write, or precharge command is active. The IO power is con-
sumed by input bu�ers, read/write latches, delay-locked loop
(DLL), data interface drivers, and control logic that are used
to transfer data from/to a DRAM chip. The register power is
consumed by the input/output registers placed on clock and
command/address DRAM interface lines, and their clock cir-
cuits (e.g., phase-locked loop (PLL)). The termination power
includes the power used in terminating the DDRIO during
active operation. Termination power depends on interface
utilization and it is not directly frequency-dependent [13].
Memory Controller Power. Memory controller power is
the combination of 1) the static power consumption, which
is proportional to operational voltage and temperature, and 2)
the dynamic power consumption, which is proportional to
voltage2 × frequency of the memory controller.
2.4. Memory DVFS

Dynamic voltage and frequency scaling (DVFS) is a tech-
nique that reduces the power consumption of an SoC com-
ponent (e.g., a CPU core, a graphics engine) by reducing its
voltage and frequency, potentially at the expense of perfor-
mance [11, 13, 14, 15, 16, 20, 24, 26, 35, 58, 111]. While DVFS
can allow a quadratic reduction in energy consumption and a
cubic reduction in average power dissipation at the expense
of a linear reduction in performance of the SoC component,
the overall system energy consumption may increase due to
longer execution time and higher utilization (i.e., less time
spent in the idle power state) of other system components
[24, 26]. Therefore, techniques such as race-to-sleep [85, 110]
increase the frequency (and voltage) of an SoC component
to reduce system-level energy. System architects use various
metrics, such as the energy delay product (EDP2) to measure
energy e�ciency [23,26], in a way that combines both energy
and performance (delay).

The main objective of using DVFS in the memory subsys-
tem of a mobile SoC is to improve energy e�ciency (i.e., re-

2Energy-delay product (EDP) [23] is a commonly used metric for quanti-
fying a computing system’s energy e�ciency. The lower the EDP the better
the energy e�ciency.
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duce EDP). To do so, memory DVFS reduces the background,
operation, and memory controller power consumption by re-
ducing the frequency and voltage of the memory subsystem.
Current approaches scale the frequencies of the memory con-
troller, DDRIO (both analog and digital), and DRAM device,
while the voltage is reduced only for the memory controller.
Modifying the operating voltage of the DDRIO-analog and the
DRAM device is not yet supported by commercially-available3

DRAM devices [10, 16, 46]. To maximize the energy savings
while applying memory DVFS, we also concurrently apply
DVFS to DDRIO-digital ( 4 in Fig. 1) and the IO interconnect.
Impact of Memory DVFS on the SoC. Reducing the fre-
quency of the memory subsystem a�ects the power consump-
tion and performance of the SoC. Performance is a�ected
because reducing the frequency 1) makes data bursts longer,
2) increases memory access time as it slows down both the
memory controller and the DRAM interface, and 3) increases
the queuing delays at the memory controller.
Power and energy consumption are also a�ected by reduc-

ing the memory subsystem frequency in four ways. First,
background power reduces linearly. Second, memory con-
troller power reduces approximately by a cubic factor due
to the reduction of memory controller voltage (V_SA 1 in
Fig. 1) [11, 13, 14, 15, 16, 20, 24, 26, 35, 58, 111]. Third, lowering
the DRAM operating frequency increases read, write, and
termination energy linearly, because each access takes longer
time. Fourth, due to the degradation in performance, the
utilization of other components in the system can increase,
which increases the overall SoC energy.
2.5. Memory Reference Code

Memory reference code (MRC [52, 75, 79]) is part of the
BIOS code that manages system memory initialization. The
purpose of MRC training is to 1) detect the DIMMs and their
capabilities, 2) con�gure the con�guration registers (CRs)
of the memory controller (MC), DDRIO, and DIMMs, and
3) train the data and command interfaces (DDRIO) for cor-
rect operation and optimized performance as de�ned by the
JEDEC standard [47].

MRC training is typically carried out with a single DRAM
frequency. Therefore, the con�guration register values of
MC, DDRIO, and DIMMs are optimized for this particular
DRAM frequency. When dynamically switching the memory
subsystem between multiple frequencies (e.g., during DVFS),
the con�guration register values should be updated to the
optimized values corresponding to the new DRAM frequency.
Otherwise, the unoptimized con�guration registers can de-
grade performance and negate potential bene�ts of DVFS, as
we show in Sec. 3.
3. Motivation

To experimentally motivate building SysScale, we carry
out an experiment on the Intel Broadwell processor [70], the
previous generation of our target Skylake processor [18]. The
goal of this experiment is to evaluate the potential bene�ts of

3There are substantial challenges in operating a DRAM array at multiple
voltages, which requires precisely tuned timing, transistor sizing, and voltage
partitioning [46].

employing DVFS across three SoC domains. We use multiple
workloads from SPEC CPU2006 [95] and 3DMark [100], and
a workload that exercises the peak memory bandwidth of
DRAM [63]. We use two setups for our experiment, as we
show in Table 1: 1) To examine the performance of the proces-
sor without applying DVFS across multiple domains, we use
a baseline setup in which we set the CPU core frequency to
1.2GHz and maintain the default voltage and frequency values
of the other SoC components (e.g., DRAM, IO interconnect,
and DDRIO digital). 2) To evaluate the bene�ts of applying
DVFS across multiple domains, we use a multi-domain DVFS
setup (MD-DVFS) in which the CPU cores have the same
frequency as the �rst setup, but we reduce the frequency
and voltage values of other SoC components in the IO and
memory domains.

Table 1: Our two real experimental setups

Component Baseline MD-DVFS
DRAM frequency 1.6GHz 1.06GHz
IO Interconnect 0.8GHz 0.4GHz
Shared Voltage V_SA 0.8·V_SA
DDRIO Digital V_IO 0.85·V_IO
2 Cores (4 threads) 1.2GHz 1.2GHz

We attain the reduced-performance setup by changing four
parameters. First, we reduce the DDR frequency by one bin4

(i.e., 1.06GHz). Doing so proportionally reduces the memory
controller (MC) frequency that normally operates at half the
DDR frequency. Since MC and IO interconnect share the
same voltage (V_SA 1 in Fig. 1), we also proportionally
reduce the IO interconnect clock frequency to align it with
the voltage levels of the IO and memory domains based on the
voltage/frequency curves of both domains. Second, we reduce
the shared voltage (V_SA 1 ) and DDRIO-digital voltage
(V_IO 4 ) proportionally to the minimum functional voltage
corresponding to the new frequencies in the IO and memory
domains. Third, we maintain the CPU core 5 frequency and
VDDQ 3 voltage unchanged across the two experimental
setups. Fourth, to optimize the power/performance of the
SoC in each setup, we con�gure the DRAM device, MC, and
DDRIO with optimized MRC values for the selected DRAM
frequency, as we explain in Sec. 2.5. Based on our evaluation
of the SoC using the two setups, we make the following four
key observations.
Observation 1. Current mobile systems have substantial
energy ine�ciency with respect to managing the voltage and
frequency of the IO and memory domains.

We show in Fig. 2(a) the impact of the MD-DVFS setup
on the average power consumption, energy consumption,
performance, and energy-delay-product (EDP) compared to
the baseline (without applying DVFS) using the three SPEC
CPU2006 benchmarks. Fig. 2(a) also shows the performance
of the MD-DVFS setup, compared to the baseline setup, when
we increase the CPU core frequency from 1.2GHz to 1.3GHz.

4DRAM devices support a few discrete frequency bins (normally only
three). For example, LPDDR3 [45] supports only 1.6GHz, 1.06GHz, and
0.8GHz. The default bin for most systems is the highest frequency [18, 70].
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(a)

(c)

(b)

400.Perlbench 470.lbm436.cactusADM

Figure 2: (a) Summary of the impact of MD-DVFS over the
baseline on di�erent metrics. (b) Bottleneck analysis of the
three workloads, showing what fraction of the performance
is bound bymainmemory latency, mainmemory bandwidth
or non-main memory related events. (c) Memory bandwidth
(BW) demand of the three benchmarks.

We make three key observations from Fig. 2(a): First, the
average power consumption of all three benchmarks reduces
(by 10%–11%) with MD-DVFS. Second, while power consump-
tion reduces in all evaluated workloads, in several workloads
(e.g., cactusADM and lbm), there is a signi�cant loss in per-
formance (>10%) as result of the reduction in frequency of
the memory domain. Third, the e�ect of energy consumption
varies widely across workloads. Workloads such as perlbench
has reduced energy consumption by 11%. For workloads such
as cactusADM and lbm, which experience a performance
degradation with MD-DVFS, energy consumption only im-
proves slightly or increases.

Fig. 2(b) shows a bottleneck analysis of the same three
workloads evaluated in Fig. 2(a). We plot what fraction of
the performance is bound by main memory latency, main
memory bandwidth or non-main memory related events. We
observe from Fig. 2(b) that cactusADM and lbm are heavily
main memory bottlenecked, and the main bottleneck in cac-
tusADM is main memory latency. Fig. 2(c) plots the memory
bandwidth demand of the three benchmarks, showing that
the memory bandwidth demand varies both over time and
across workloads. Overall, the core-bound perlbench has low
demand, but demand spikes at times, lbm has constant high
demand, and cactusADM has moderate demand (but even
then MD-DVFS hurts its performance by more than 10%).

We conclude that for workloads that are not memory la-
tency or bandwidth bound, scaling down the voltage and
frequency of the memory and IO domains can signi�cantly
reduce power and energy consumption with minimal e�ect
on performance.
Observation 2. While mobile SoCs employ a power budget
redistribution mechanism between SoC components within a
domain, such as between CPU cores and the graphics engines
in the compute domain [84, 85, 87], we observe that current
mobile SoCs do not support dynamic power redistribution
across di�erent domains. Fig. 2(a) shows the performance im-

pact of increasing the CPU cores’ frequency of the MD-DVFS
setup from 1.2GHz to 1.3GHz when reassigning the saved
average power budget from the IO and memory domains to
the compute domain. Performance of perlbench improves sig-
ni�cantly by 8% over the baseline with MD-DVFS. Workloads
that are not limited by compute bandwidth (e.g., cactusADM
and lbm) do not experience performance improvement over
the baseline with higher core frequency.

We conclude that 1) scaling down the voltage and fre-
quency of the IO and memory domains when demands from
these domains is low and 2) redistributing the saved power
budget between domains can improve performance in work-
loads that are compute bound.
Observation 3. In modern mobile SoCs, we observe that mul-
tiple components in the IO (e.g., display controller, ISP engine)
and compute (e.g., CPU cores, graphics engines) domains have
widely-varying main memory bandwidth demands. Fig. 3(a)
illustrates this by showing how the main memory bandwidth
demand of three SPEC CPU2006 workloads and a 3DMark
graphics workload varies over time. These workloads typ-
ically require di�erent memory bandwidth over time.5 Fig.
3(b) shows the memory bandwidth demand of the display en-
gine, ISP engine, and graphics engines (GFX) using di�erent
con�gurations and workloads. We observe that the display
engine has widely-varying memory bandwidth demands de-
pending on the display quality: HD display consumes approx-
imately 17% of the peak memory bandwidth of a dual-channel
LPDDR3 (25.6GB/s at 1.6GHz DRAM frequency), while a sin-
gle 4K display (the highest supported display quality in our
system) consumes 70% of the peak memory bandwidth.

(a)

(b)

Figure 3: (a) Memory bandwidth (BW) demand over time for
three SPEC CPU2006 benchmarks and the 3DMARK [100]
graphics benchmark. (b) Average memory bandwidth de-
mand of the display engine, ISP engine, and graphics engines
(GFX) using di�erent con�gurations and workloads.

5The memory bandwidth demand was measured on the Intel Broadwell
system [70] without scaling the voltage or frequency of any domain or
component.
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We conclude that typical workloads have modest demands
yet the SoC IO and memory demands are provisioned high,
making existing mobile SoCs energy ine�cient for typical
workloads.
Observation 4. We observe that choosing optimized MRC
values for the DRAM con�guration registers is important
for improving multi-domain DVFS energy e�ciency. In Fig.
4, we show the impact of using unoptimized MRC values
on the overall performance and power consumption of the
MD-DVFS setup. We use a microbenchmark that was de-
signed to exercise the peak memory bandwidth of DRAM
(similar to STREAM [63, 67]). This helps us to isolate the
impact of unoptimized MRC values on power/performance of
the memory subsystem. We observe that unoptimized MRC
values can greatly degrade both average power (by 22%) and
performance (by 10%) compared to using optimized MRC
values.
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Figure 4: Impact of using unoptimizedMRC values on power
consumption and performance for a memory-bandwidth-
intensive microbenchmark.

Based on our four key observations, we conclude that
a holistic power management approach is needed to miti-
gate the power management ine�ciencies in current mobile
SoCs. This holistic approach should 1) redistribute the power
budget of SoC domains based on the actual demands of a
workload from each domain, 2) simultaneously scale the fre-
quency/voltage of all domains, and 3) be optimized separately
for each domain to minimize ine�ciencies in the DVFS mech-
anism (e.g., by using optimized MRC values in the DRAM
interface).

4. SysScale Architecture
We design SysScale with two design goals in mind: 1) re-

duce power consumption by dynamically scaling the volt-
age/frequency of all SoC domains based on performance
demands from di�erent domains, and 2) improve system
throughput by redistributing the power budget across SoC
domains based on performance demands.

SysScale achieves these two goals with three key compo-
nents. The �rst component is a power management �ow that
is responsible for 1) scaling the multiple voltages and frequen-
cies in the IO and memory domains and 2) recon�guring the
DRAM interface with optimized MRC values for the selected
DRAM frequency.

The second component of SysScale is a demand prediction
mechanism that uses both the system con�guration and dedi-
cated performance counters to predict the static and dynamic
performance demands from the SoC domains. This compo-
nent is important, as mispredicting the actual demand of the
workload or an IO device places the system in an improper

DVFS operating point, which can signi�cantly degrade work-
load performance or violate quality of service requirements
that the IO device might have.

The third component of SysScale is a holistic power manage-
ment algorithm that is responsible for scaling the voltage and
frequency of the IO interconnect and memory subsystem to
meet the system’s dynamic performance demand. The power
management algorithm uses the additional power budget
saved as a result of DVFS in the IO and memory domains, to
increase the performance of the compute domain (i.e., CPU
cores and graphics engines). This leads to improved overall
system throughput while maintaining the average system
power within the thermal design power limit.

The three components of SysScale work together to orches-
trate the voltage and frequency of each of the SoC domains
and signi�cantly reduce the overall energy consumption of
a mobile SoC. We describe them in detail in the next three
subsections.
4.1. Power Management Flow

SysScale power management �ow, implemented by the
PMU, is responsible for adjusting the frequencies and volt-
ages of the IO interconnect and memory subsystem, as de-
picted in Fig. 5. First, SysScale’s demand prediction mecha-
nism 1 (described in Sec. 4.2) initiates a frequency change
by determining new target frequencies/voltages for the SoC
domains. If the demand prediction mechanism decides to
increase (decrease) the IO and memory domain frequencies,
then the �ow increases (decreases) the voltages before 2
(after 7 ) the actual increase (decrease) of the PLL/DLL clock
frequencies 6 . Subsequently, the �ow blocks and drains the
IO interconnect and the tra�c from cores/graphics into the
memory domain (i.e., LLC tra�c to memory controller) 3 .
To safely block the interconnect, all the outstanding requests
are completed and new requests are not allowed to use the
interconnect during this period. After all requests are com-
pleted, DRAM enters self-refresh mode 4 , and the �ow loads
the new optimized MRC values for the new DRAM frequency
from on-chip SRAM into the memory-controller, DDRIO and
DRAM con�guration registers 5 . Next, the SysScale �ow
sets the clocks to the new frequencies by re-locking both the
phase-locked loops (PLLs) and delay-locked loops (DLLs) to
the new IO interconnect and memory subsystem frequen-
cies 6 . Finally, DRAM exits self-refresh mode 8 and both
the IO interconnect and the LLC tra�c to the memory con-
troller 9 are released. This resumes SoC execution with the
new frequencies/voltages for SoC domains and an optimized
DRAM interface for the new DRAM frequency.
4.2. Demand Prediction Mechanism

The SysScale demand prediction mechanism uses periph-
eral con�guration registers (e.g., the number of active displays
or cameras) and new performance counters that we propose,
to predict the performance demands of the SoC domains.
We divide the performance demands into two categories:
static and dynamic performance demands. We consider a
performance demand as static if it is only related to system
con�guration (e.g., number of active displays or cameras).
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Figure 5: SysScale power management �ow which carry out the DVFS of SoC domains.

System con�guration typically changes at the time-scale of
tens of milliseconds as it is normally controlled by software
(e.g., OS, drivers). Therefore, the PMU has enough time to re-
spond to any con�guration change that requires, for example,
transition from a low- to high-bandwidth operating point of
SysScale, without a�ecting system performance or quality of
service. Such a transition can be completed within several
microseconds. Dynamic performance demands are related to
workload phase changes, which could happen much more
frequently (e.g., hundreds of cycles). Next, we explain how
the performance demand prediction is performed based on
each demand category.
Static Performance Demand Estimation. To estimate
static performance demand, SysScale maintains a table in-
side the �rmware of the power-management unit (PMU) that
maps every possible con�guration of peripherals connected
to the processor to IO and memory bandwidth/latency de-
mand values. The �rmware obtains the current con�guration
from control and status registers (CSRs) of these peripher-
als. For example, modern laptops support up to three display
panels [104, 105]. When only one display panel is active (con-
nected), it requires a certain bandwidth, but when three of
the same display panel are connected, the bandwidth demand
is nearly three times higher, as depicted in Fig. 3(b). In this
case, the number of active displays and the resolution and
refresh rate for each display are available in the CSRs of the
display engine.

Our method enables accurate estimation of the static band-
width demand based solely on the peripheral con�guration
as the bandwidth demand of a given peripheral con�guration
is known and is deterministic.
Dynamic Performance Demand Estimation. We catego-
rize the bandwidth/latency demand of a workload as dynamic
as it changes over time. For instance, SPEC CPU2006 work-
loads [95] demand di�erent amounts of main memory band-
width over time, as illustrated in Fig. 3. Similarly, mobile
workloads have dynamically varying memory latency de-
mands, as shown in [28].

We �nd that we are able to use existing performance coun-
ters to predict the dynamic bandwidth and latency demand
when running a workload at a reduced frequency. We select
performance counters for predicting dynamic IO and main
memory bandwidth and latency demands using two steps: 1)
among tens of internal processor performance counters, we
build an initial selection based on intuition, and 2) we empir-
ically prune our selection using an iterative process until the
correlation between the performance counters and the work-

load’s performance degradation is closer to our target (e.g.,
>90% of our target). In the �rst stage, we choose an initial
set of (15) internal performance counters related to memory
requests from the three domains of the SoC (i.e., compute, IO,
and memory). Subsequently, we run a large number of repre-
sentative mobile workloads6 with the two setups, baseline and
multi-domain DVFS (MD-DVFS). We run the workloads on a
real system with the same setup shown in Table 1, while se-
lecting multiple DRAM frequencies for both the baseline and
the MD-DVFS setup. We examine the performance of each
run in addition to the values of the performance counters. Fig.
6 shows the actual versus the predicted performance impact
of reducing DRAM frequency from a baseline frequency to
a lower frequency used in MD-DVFS setup when running
more than 1600 workloads. The �gure also shows the correla-
tion coe�cient of the prediction when using the �nal list of
performance counters. The �nal list of performance counters
used in our prediction algorithm is as follows:
• GFX_LLC_MISSES counts the number of Last-Level-

Cache (LLC) misses due to graphics engines (GFX). This
performance counter is indicative of the bandwidth re-
quirements of the graphics engines.

• LLC_Occupancy_Tracer provides the number of CPU
requests that are waiting for data to return from the
memory controller. This counter indicates whether the
CPU cores are bandwidth limited.

• LLC_STALLS counts the number of stalls due to a busy
LLC. This indicates that the workload is main memory
latency limited.

• IO_RPQ (IO Read Pending Queue occupancy) counts
the stalls due to busy IOs. This counter indicates that
the workload is IO limited.

To determine the threshold value corresponding to each per-
formance counter, we perform an o�ine phase that uses the
results of the representative workloads (from the performance
counter selection phase). For these runs, we set a bound on
the performance degradation (e.g., 1%) when operating in
MD-DVFS. We mark all the runs that have a performance
degradation below this bound, and for the corresponding
performance counter values, we calculate the mean (µ) and
the standard deviation (σ). We set the threshold for each
performance counter as Threshold = µ + σ [81].

Our prediction algorithm uses the performance counters
to predict if the performance degradation of the running

6The workloads comprise of representative performance and o�ce pro-
ductivity workloads including SPEC06 [95], SYSmark [4], MobileMark [3],
and computer graphics intensive workloads (e.g., 3DMARK [100]).
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Figure 6: Actual vs. Predicted performance impact of reducing DRAM frequency in more than 1600 workloads. We examine
three pairs (high/low) of DRAM frequencies: 1.6GHz/0.8GHz, 1.6GHz/1.06GHz and 2.13GHz/1.06GHz. Performance is normalized to
that with the higher DRAM frequency. We also show the correlation coe�cient between the Actual vs. Predicted performance
impact values.

workload is less than a bound (e.g., 1%) when operating in
MD-DVFS. To do so, the algorithm compares the value of
each of the selected performance counters to its threshold.
If the counter value is greater than its threshold, then the
algorithm keeps the SoC at the current DVFS operating point;
otherwise, the algorithm decides to move the IO and memory
domains to the lower DVFS operating point.

Our prediction algorithm has an accuracy of 97.7%, 94.2%,
and 98.8% for single threaded CPU, multi-threaded CPU, and
graphics workloads, respectively (see Fig. 6). The prediction
algorithm has no false positive predictions. This means that,
there are no predictions where the algorithm decides to move
the SoC to a lower DVFS operating point while the actual
performance degradation is more than the bound.
4.3. Holistic Power Management Algorithm

SysScale implements a power distribution algorithm in
the PMU �rmware to manage multi-domain DVFS and re-
distribute power among the domains. PMU executes this
algorithm periodically at a con�gurable time interval called
evaluation interval (30ms by default). PMU samples the per-
formance counters and CSRs (the con�guration and status
registers) multiple times in an evaluation interval (e.g, every
1ms) and uses the average value of each counter in the power
distribution algorithm.

PMU switches the system between di�erent performance
levels (i.e., DVFS operating points) based on the predicted
performance demand. Here we show the power distribu-
tion algorithm that switches the SoC between two operating
points: high- and low-performance operating points. The
system moves to the high-performance operating point if any
of the following �ve conditions is satis�ed.

1. The aggregated static demand requires higher
memory bandwidth than a prede�ned threshold
(STATIC_BW_THR).

2. The graphics engines are bandwidth limited
(GFX_LLC_Misses > GFX_THR).

3. The CPU cores are bandwidth limited
(LLC_Occupancy_Tracer > Core_THR).

4. Memory latency is a bottleneck (LLC_STALLS >
LAT_THR)

5. IO latency is a bottleneck (IO_RPQ > IO_THR).
If none of these �ve conditions are true, PMU moves the

system to the low-performance operating point. In the gen-
eral case, where we have more than two SysScale operating
points, the above algorithm decides between two adjacent
operating points with dedicated thresholds.

When the SoC moves to the low-performance operating
point, the PMU reduces the power budgets of the IO and
memory domains and increases the power budget of
the compute domain [18, 57, 84, 87].

The compute domain power budget management algo-
rithm (PBM) distributes the received power budget between
CPU cores and the graphics engines according to the char-
acteristics of the workloads that run on these units. The
additional power budget can increase the frequency of a ther-
mally limited compute domain. PBM is designed to keep the
average power consumption of the compute domain within
the allocated power budget.
4.4. Interaction with CPU and Graphics DVFS

CPU cores and the graphics engines support indepen-
dent DVFS mechanisms. DVFS states are known as P-
states [24, 26, 37, 86]). The OS and the graphics driver nor-
mally initiate DVFS requests for the CPU cores and graphics
engines, respectively. Each request is handled by the PBM
algorithm inside the PMU �rmware. PBM attempts to obey
the DVFS request within the compute domain power budget
constraint. If the request violates the power budget, then
PBM demotes the request and places the requestor in a safe
lower frequency that keeps the domain power within budget.

Compute domain DVFS mechanisms operate indepen-
dently and are not directly tied to SysScale. SysScale interacts
with compute domain DVFS mechanisms only via power bud-
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get management. When SysScale redistributes power budget
from IO and memory domains to the compute domain, PBM
initiates DVFS in the compute domain to utilize the new bud-
get and increase the domain’s frequencies. Similarly, when
SysScale reduces the power budget of the compute domain
(e.g., due to high IO or memory demand), PBM adjusts (if
needed) the compute domain’s DVFS to keep the domain
within the new power budget.

5. Implementation and Hardware Cost
SysScale requires the implementation of the three compo-

nents inside the SoC.
First, SysScale requires the implementation of the four

performance counters (as we describe in Sec. 4.2). The imple-
mentation of these counters in any SoC is straightforward.

Second, SysScale requires the implementation of hardware
and �rmware power management �ow that enables the tran-
sition from one frequency/voltage operating point to another
(as we summarize in Fig. 5). To implement this �ow, two
capabilities are needed: (1) the interconnect should support
block and drain, which enables a seamless transition between
frequencies; and (2) the �ow should be able to con�gure the
memory controller and DDRIO with the relevant MRC val-
ues for each frequency to support multiple optimized DRAM
frequencies. The MRC values can be determined at reset
time by performing MRC calculations for every supported
frequency and saving the values inside an SRAM. The values
are retrieved from the SRAM during the �ow transition. To
support MRC updates, we need to dedicate approximately
0.5KB of SRAM, which corresponds to less than 0.006% of
Intel Skylake’s die area [18]. Additional capabilities, such as
PLL/DLL re-locking and voltage adjustment, are supported in
many SoCs. All of these capabilities exist inside the Skylake
processor.

Finally, the actual demand prediction and power manage-
ment algorithms are implemented inside the PMU �rmware.7
The additional �rmware code to support this �ow is approx-
imately 0.6KB —corresponding to less than 0.008% of Intel
Skylake’s die area [18].
SysScale Transition Time Overhead. The actual latency
of SysScale �ow is less than 10µs. The latency has the fol-
lowing components: 1) voltage transitions (approximately
±100mV ) of SA_V and IO_V voltage regulators (approxi-
mately 2µs with a voltage regulator slew rate of 50mV /µs),
2) draining IO interconnect request bu�ers (less than 1µs), 3)
exiting DRAM self-refresh (less than 5µs with a fast training
process), 4) loading the optimized DRAM con�guration reg-
ister from SRAM into con�guration registers (less than 1µs),
and 5) �rmware latency and other �ow overheads (less than
1µs).

6. Evaluation Methodology
We evaluate SysScale using real systems that employ Intel

Broadwell [70] and Intel Skylake [18] SoCs. We use two

7A fully-hardware implementation is also possible. However, such
power management �ows are normally error-prone and require post-silicon
tuning. As such, we choose to implement most of the �ow within the power-
management �rmware (e.g., Pcode [24]).

distinct methodologies for 1) collecting motivational data and
2) evaluating SysScale. The reason is that we would like to
demonstrate the potential bene�ts of SysScale on the previous
generation SoC (i.e., Broadwell) of our target Skylake SoC,
before we implement it in the Skylake SoC.

Methodology for Collecting Motivational Data. To col-
lect motivational data, we use a Broadwell-based system on
which we emulate a crude version of SysScale’s static behav-
ior, i.e., the multi-domain DVFS setup (MD-DVFS) that we
use in Sec. 3. We use three steps to attain MD-DVFS setup.
First, we reduce the DRAM frequency (to 1.06GHz) using the
BIOS settings. Doing so boots the system with optimized
MRC values for the DRAM interface (as we explain in Sec.
2.5), which exist in the BIOS. Second, since the memory con-
troller and IO interconnect share the same voltage (V_SA
1 in Fig. 1), we also proportionally reduce the IO intercon-

nect clock frequency (to 0.4GHz) to align the voltage levels
of the IO interconnect and memory controller. Third, we
reduce the shared voltage and DDRIO voltage (i.e., V_SA and
V_IO) by approximately 20% and 15%, respectively, which we
determine based on the voltage/frequency curves of all com-
ponents that share these voltages. To con�gure the voltage
and frequency to the new values, we use the In-Target Probe
(ITP) hardware debugger unit, which we explain below.

Methodology for Evaluating SysScale. We implement
SysScale on the Intel Skylake SoC [18]. Table 2 shows the
major system parameters. For our baseline measurements we
disable SysScale on the same SoC.

Table 2: SoC and memory parameters

SoCs
M-5Y71 [40] Broadwell microarchitecture.
M-6Y75 [41] Skylake microarchitecture.
CPU Core Base Frequency: 1.2GHz
Graphics Engine Base Frequency: 300MHz
L3 cache (LLC): 4MB.
Thermal Design Point (TDP): 4.5W
Process technology node: 14nm

Memory LPDDR3-1600MHz [45], non-ECC,
dual-channel, 8GB capacity

In-Target Probe (ITP). ITP is a silicon debugger tool that
connects to an Intel SoC through the JTAG port [108]. We use
ITP 1) to set breakpoints at which the SoC halts when a speci-
�ed event occurs and 2) con�gure the SoC’s control and status
registers (CSRs) and model speci�c registers (MSRs) [36].

Power Measurements. We measure power consumption
by using a National Instruments Data Acquisition (NI-DAQ)
card (NI-PCIe-6376 [72]), whose sampling rate is up to 3.5
Mega-samples-per-second (MS/s). Di�erential cables transfer
multiple signals from the power supply lines on the mother-
board to the NI-DAQ card in the host computer that collects
the power measurements. By using NI-DAQ, we measure
power on up to 8 channels simultaneously. We connect each
measurement channel to one voltage regulator of the SoC.
The power measurement accuracy of the NI-PCIe-6376 is
99.94%.
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Workloads. We evaluate SysScale with three classes of
workloads that are widely used for evaluating mobile SoCs:
1) To evaluate CPU core performance, we use the SPEC
CPU2006 benchmarks [95]. We use the SPEC CPU2006 bench-
mark score as the performance metric. 2) To evaluate com-
puter graphics performance, we use the 3DMARK bench-
marks [100]. We use frames per second (FPS) as the perfor-
mance metric. 3) To evaluate the e�ect on battery life, we
use a set of workloads that are typically used to evaluate the
battery life of mobile devices such as, web browsing, light
gaming, video conferencing, and video playback [1]. We use
average power consumption as our battery life evaluation
metric.
Methodology for Comparison to Prior Works. We com-
pare SysScale to the two most relevant prior works, Mem-
Scale [16] and CoScale [14]. Unfortunately, 1) there is no real
system available that implements these techniques , and 2)
MemScale and CoScale techniques save only average power
consumption without having the ability to redistribute ex-
cess power to other domains. In other words, they cannot
boost the performance of the compute domain when apply-
ing DVFS to the memory domain. Therefore, to make our
comparison useful, we assume that MemScale and CoScale
can redistribute their saved power in the memory domain
to increase the compute domain power budget (similar to
SysScale). We call these improved versions of MemScale and
CoScale, MemScale-Redist and CoScale-Redist, respectively
(sometimes abbreviated as MemScale-R and CoScale-R).

We project the performance improvements of MemScale
and CoScale compared to our baseline using three steps. First,
we estimate the average power savings of MemScale and
CoScale by using per-component measurements that we carry
out on our Skylake system using power measurement tools
that we describe in this section. Second, we build a per-
formance/power model that maps an increase in the power
budget of the compute domain to an increase in the CPU core
or the graphics engine frequencies. For example, the model
can show that a 100mW increase in compute power budget
can lead to an increase in the core frequency by 100MHz. To
build this model, we use performance and power measure-
ments that we carry out on our Skylake system using multiple
CPU core and graphics engine frequencies. Third, we use the
performance scalability8 of the running workload with CPU
frequency to project the actual performance improvement of
the workloads with MemScale-Redist and CoScale-Redist.

7. Results
We present performance and average power bene�ts9 ob-

tained with SysScale when it is implemented in an Intel Sky-
lake SoC compared to the same SoC with SysScale disabled.
We also compare SysScale to two prior works MemScale [16]

8We de�ne performance scalability of a workload with respect to CPU
frequency as the performance improvement the workload experiences with
unit increase in frequency.

9Energy e�ciency, i.e., energy-delay-product (EDP) [23], improves
proportionally to performance or average power consumption, since SysScale
improves either performance within a �xed power budget or average power
consumption within a �xed performance requirement.

and CoScale [14]. SysScale’s performance and average power
bene�ts are measured results, while the results for MemScale-
Redist and CoScale-Redist are projected, as we explain in
Sec. 6. We evaluate three workload categories: CPU (Sec.
7.1), graphics (Sec. 7.2), and battery life workloads (Sec. 7.3).
We also analyze sensitivity to di�erent SoC thermal-design-
power (TDP) levels and DRAM frequencies (Sec. 7.4).
7.1. Evaluation of CPUWorkloads

Fig. 7 reports the performance improvements of MemScale-
R, CoScale-R, and SysScale over our baseline system. We
make four key observations.

First, SysScale improves real system performance by 9.2%
on average. This result is signi�cant as it is obtained on a
real system.

Second, SysScale provides 5.4× and 2.4× the performance
improvement of MemScale-R and CoScale-R, respectively.
This is because 1) SysScale is holistic, taking into account
all SoC domains (and components in each domain), whereas
MemScale and CoScale consider only memory DVFS and co-
ordinated (CPU and memory subsystem) DVFS, respectively,
and 2) MemScale and CoScale do not dynamically optimize
the DRAM interface con�guration registers and voltage after
each DVFS change. Also recall that the performance improve-
ment of MemScale-R and CoScale-R is projected based on
the estimated average power reduction of each technique
(Sec. 6), whereas SysScale improvements are real measured
improvements.

Third, the performance bene�t of SysScale correlates with
the performance scalability of the running workload with
CPU frequency. Highly-scalable workloads (i.e., those bottle-
necked by CPU cores, such as 416.gamess and 444.namd) have
the highest performance gains. In contrast, workloads that are
heavily bottlenecked by main memory, such as 410.bwaves
and 433.milc, have almost no performance gain. We note
that a highly scalable workload (e.g., 416.gamess) bene�ts
in two ways from SysScale: 1) because the workload is not
bottlenecked by main memory, reducing memory frequency
reduces power consumption without a�ecting performance,
2) because the workload is bottlenecked by CPU performance,
redistributing the power budget from memory and IO to the
CPU increases the workload’s performance.

Fourth, if a workload has di�erent execution phases bot-
tlenecked by di�erent SoC domains (e.g., compute versus
memory), then SysScale dynamically adjusts the frequencies
of the multiple domains to improve system performance. For
example, 473.astar has execution phases of up to several sec-
onds of low memory bandwidth demand (e.g., ∼1GB/s) and
high memory bandwidth demand (about ∼10GB/s), as illus-
trated in Fig. 3(a), and SysScale signi�cantly improves its
performance by 13%.

We conclude that SysScale signi�cantly improves CPU core
performance by holistically applying DVFS to SoC domains
based on dynamic performance demands and dynamically
redistributing the excess power budget between domains,
while carefully optimizing the memory interface during DVFS
transitions.
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Figure 7: Performance improvement of MemScale-Redist, CoScale-Redist, and SysScale on SPEC CPU2006 workloads.

7.2. Evaluation of Graphics Workloads
Typically, the performance of a graphics workload is highly

scalable with the graphics engine frequency. When running
graphics workloads, the power budget management algo-
rithm (PBM [57, 83]) of the PMU normally allocates only 10%
to 20% of the compute domain power budget to the CPU
cores, while the graphics engines consumes the rest of the
power budget [82,84,87]. For a mobile system, while running
a graphics workload, the CPU cores normally run at the most
energy e�cient frequency Pn [26] (i.e., the maximum possible
frequency at the minimum functional voltage (Vmin)). More-
over, at a very low TDP (e.g., 3.5W and 4.5W ), the e�ective
CPU frequency is reduced below Pn by using hardware duty
cycling (HDC10) [37].

Fig. 8 shows the performance improvement of MemScale-
R, CoScale-R, and SysScale, compared to our baseline when
running three di�erent 3DMark [100] graphics workloads.
We make two key observations. First, SysScale improves the
system performance of 3DMark06, 3DMark11, and 3DMark
Vantage by 8.9%, 6.7% and 8.1%, respectively. SysScale im-
proves performance because it boosts the graphics engines,
frequency by redistributing the power budget across three
SoC domains.
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Figure 8: Performance improvement ofMemScaleR, CoScale-
R, and SysScale on computer graphics workloads.

Second, SysScale provides approximately 5× the per-
formance improvement of MemScale-R and CoScale-R.
MemScale-R and CoScale-R have similar performance im-
provements because the average power savings of these two
techniques is identical. The reason is that, in these workloads,
the CPU cores run at the lowest possible frequency, and there-
fore CoScale (which applies DVFS to CPU cores in addition to
the memory subsystem) cannot further scale down the CPU
frequency.

10Hardware Duty Cycling, also known as SoC Duty Cycling, implements
coarse grained duty cycling by using C-states with power gating in contrast
to T-states that use clock gating [37].

We conclude that the saved power budget from IO and
memory domains can be used to raise the frequency of the
graphics engines and improve graphics performance.
7.3. Evaluation of Battery Life Workloads

Unlike CPU and graphics workloads that always bene�t
from higher performance, the battery life workloads have
two characteristics: 1) their performance demands are �xed;
for example, in video playback running at 60 frames per sec-
ond, each frame needs to be processed and displayed on the
display panel within 16.67 milliseconds, and 2) they have long
idle phases where the system enters into idle power states
(C-states [24, 26, 27, 101]). We note that according to our mea-
surements, the active state (i.e., C0 power state) residency of
these workloads is between 10%-40%, while the SoC is in idle
state (e.g., C2, C6, C7, or C8 [24,26,27,101]) during the remain-
ing execution time of the workload. In the C0 power state,
typically the compute domain (i.e., CPU cores and graphics
engines) operates in the lowest possible frequencies, while in
all other power states, the compute domain is idle (i.e., clock-
or power-gated).

Fig. 9 shows the SoC average power reduction when run-
ning four representative battery life workloads [1], web-
browsing, light-gaming, video conferencing, and video-
playback, with a single HD display panel (e.g., the laptop
display) is active. We make three key observations.
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Figure 9: Average power reduction of MemScale-R, CoScale-
R, and SysScale on representative battery life workloads.

First, SysScale reduces average power consumption of web
browsing, light gaming, video conferencing, and video play-
back workloads by 6.4%, 9.5%, 7.6%, and 10.7%, respectively,
on our real system.

Second, SysScale provides approximately 5× the power
reduction of MemScale-R and CoScale-R. MemScale-R and
CoScale-R provide similar average power reduction bene�ts
to each other, since in battery life workloads, the CPU cores

11



run at the lowest possible frequency, and therefore CoScale
cannot further reduce the CPU cores, frequency.

Third, SysScale provides signi�cant power savings for bat-
tery life workloads for all SoC power states in which DRAM
is active (i.e., not in self-refresh). For example, in the video
playback workload, the SoC transitions between three power
states during the processing of each video frame: C0, C2, and
C8 with residencies of 10%, 5%, and 85%, respectively (not
graphed). DRAM is active only in C0 and C2 power states,
while in C8, DRAM is in self-refresh. Therefore, SysScale
applies DVFS to the IO and memory domains only during C0
and C2 states in the video playback workload.

We conclude that for battery life workloads, which have
�xed performance requirements, applying SysScale as a holis-
tic DVFS mechanism for all three SoC domains signi�cantly
reduces the average SoC power consumption.

7.4. Sensitivity Analysis
In this section, we investigate the e�ect of system parame-

ters on SysScale performance and power gains.
SoC Thermal Design Point (TDP). The evaluation results
presented in Sections 7.1, 7.2, and 7.3 are for an SoC (i.e.,
Skylake M-6Y75 [41]) with a TDP of 4.5W , as we show in
Table 2. This SoC has a con�gurable TDP ranging from 3.5W
up to 7W . The Skylake architecture itself can scale up to a
TDP of 91W [39] for a high-end desktop.

Fig. 10 shows the average performance improvement on
SPEC CPU2006 workloads when running SysScale on systems
with di�erent TDPs. Violin plots show the distribution and
density of performance improvement points across di�erent
workloads compared to each TDP’s baseline. We make two
key observations. First, at a constrained TDP of 3.5W, SysS-
cale improves performance by up to 33% (19.1% on average).
Second, as TDP increases, SysScale’s performance bene�t
reduces. This is because power becomes ample and there is
less need to redistribute it across domains.
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Figure 10: SysScale performance bene�t vs. TDP on SPEC
CPU2006 workloads.

We also evaluate battery life workloads and found that
SysScale’s average power savings are not a�ected by the TDP.
In these workloads, the compute domain typically operates
at the lowest possible frequencies for the CPU cores and
graphics engines (i.e., the Pn P-state [24, 26]) regardless of
the TDP of the SoC.

We conclude that SysScale signi�cantly improves the per-
formance of especially TDP-constrained SoCs while it im-
proves battery life (energy consumption) across the entire
TDP range (e.g., 3.5W–91W [39, 41]).

More DRAM Frequencies. In our previous experimental
results, we use a system with a base DRAM frequency of
1.6GHz. We also evaluate a system with di�erent DRAM
devices and frequencies. Based on our evaluation of SysScale
with di�erent DRAM types and frequencies, we make three
key observations.

First, SysScale supports other DRAM devices with di�er-
ent DRAM frequencies. The average power savings (freed-up
power budget that is dynamically utilized to boost the com-
pute domain) obtained by SysScale when scaling DDR4’s
operating point from 1.86GHz to 1.33GHz is approximately
7% lower than that when scaling LPDDR3 operating point
from 1.6GHz down to 1.06GHz.

Second, SysScale supports multiple operating points for
the same DRAM device. For example, we could use 0.8GHz as
the lowest DVFS operating point of the memory subsystem.
However, we observe that the 0.8GHz operating point is not
energy e�cient when compared to 1.06GHz due to two main
reasons. 1) The system agent voltage (V_SA) already reaches
the minimum functional voltage (Vmin) when scaling DDR
frequency to 1.06GHz. Therefore, reducing the DRAM fre-
quency beyond 1.06GHz does not provide signi�cant bene�ts
as the V_SA voltage remains the same. 2) When comparing
Figures 6(a,d,g) and Figures 6(b,e,h), we observe that the av-
erage performance degradation of the traces when reducing
the DRAM frequency from 1.6GHz down to 0.8GHz is 2×-
3× higher than that when reducing it from 1.6GHz down to
1.06GHz. As such, we implement only two operating points
(i.e., 1.6GHz and 1.06GHz) in our real system.

Third, a �ner-grained DVFS of the three SoC domains
can increase the bene�ts of SysScale. For instance, supporting
additional DDR frequencies between the 1.6GHz to 0.8GHz
range can increase the performance and/or the average power
of workloads with memory demand that fall in between ex-
isting frequencies. Unfortunately, current commercial DDR
devices support only few frequencies (e.g., LPDDR3 supports
only 1.6GHz, 1.06GHz, and 0.8GHz).

We conclude that the bene�ts of SysScale can be higher
with more control over the DRAM frequencies. To achieve
this, we recommend that the DRAM vendors enable �ner-
grained control on DDR frequency in future generations to
help increase the energy e�ciency of modern mobile SoCs.

8. Related Work
To our knowledge, this is the �rst work to 1) enable coor-

dinated and highly-e�cient DVFS across all SoC domains to
increase the energy e�ciency of mobile SoCs and 2) provide
multi-domain DVFS results from real a modern mobile SoC
(Intel Skylake) running real mobile system benchmarks.
Compute Domain DVFS. Many prior works propose DVFS
for the compute domain (i.e., the CPU cores and graphics
engines) [24, 26, 29, 33, 35, 37, 42, 43, 44, 48, 50, 64, 65, 86, 96,
111]. DVFS operating points for the compute domain, known
as P-states [24, 26, 37, 86], are typically managed by the OS
and the graphics drivers for the CPU cores and graphics
engines, respectively. These mechanisms optimize voltage
and frequency assuming a �xed power budget for the compute
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domain. Unlike SysScale, they do not enable optimization and
distribution of power budget across di�erent SoC domains
and thus provide limited energy e�ciency bene�ts in mobile
SoCs.
Memory DVFS and Coordinated DVFS. Recent works in
memory DVFS [10, 11, 13, 14, 15, 16, 20, 35, 58, 111] for mod-
ern SoCs focus only on improving energy e�ciency of the
memory domain (e.g., MemDVFS [13], Voltron [10], and
MemScale [16]) or limited components of two domains (e.g.,
CoScale [14] and other works [11, 20, 58]).

In Sections 7.1, 7.2, and 7.3, we qualitatively and quantita-
tively compare SysScale to two closely related prior works,
MemScale [16] and CoScale [14]. We show that SysScale sig-
ni�cantly increases system performance and reduces energy
consumption compared to the two mechanisms due to two
reasons: 1) SysScale is holistic, taking into account all SoC do-
mains (and components in each domain), whereas MemScale
and CoScale consider only memory DVFS and/or compute
domain DVFS and 2) MemScale and CoScale do not dynami-
cally optimize DRAM interface con�guration registers and
voltage after each DVFS change.

Current memory DVFS approaches [10,11, 13, 14, 16, 20, 35,
58, 111] all have one or more of three main drawbacks that
make them ine�cient for modern mobile SoCs. First, many
of these prior works are not directly optimized for modern
mobile SoC architectures that integrate many components
into the three SoC domains in a very thermally constrained
environment. Many works target server architectures, which
have di�erent structure, constraints, and workloads than in
mobile systems. Second, past works scale only one or two
system domains at a time. Such limited scaling provides small
bene�ts for mobile SoCs (as we show in Sections 3 and 7)
and, when accounting for the relatively high DVFS transition
costs, the bene�ts diminish even further. Third, past works do
not dynamically optimize the DRAM interface con�guration
registers [52, 75, 79], which degrades performance and may
negate potential gains (as we show in Sections 3 and 7).

9. Conclusion
We propose SysScale, the �rst work to enable coordinated

and highly-e�cient DVFS across all SoC domains to increase
the energy e�ciency of mobile SoCs. SysScale introduces the
ability to optimize and e�ciently redistribute the total power
budget across all SoC domains according to the performance
demands of each domain. SysScale is implemented in the
Intel Skylake SoC for mobile devices. We show that it signi�-
cantly improves the performance of real CPU and graphics
workloads (by up to 16% and 8.9%, respectively, for 4.5W
TDP) and reduces the average power consumption of battery
life workloads (by up to 10.7%) on a real Intel Skylake system.
We conclude that SysScale is an e�ective approach to bal-
ance power consumption and performance demands across
all SoC domains in a sophisticated heterogeneous mobile SoC
to improve energy e�ciency and performance.
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