
25

Symbolic analysis of large analog integrated circuits
by approximation during expression generation

F.V. Ferniindez'72, P. Wambacq', G. Gielen', A. Rodriguez-VBzquez2 and W. Sansen'

' Departement Elektrotechniek, Katholieke Universiteit Leuven
Kardinaal Mercierlaan 94, B-3001 Heverlee, BELGIUM

Phone#3216220931.FAX#3216221855
2Dept. of Analog Circuit Design. Centro Nacional de Microelectrcjnica-Universidad de Sevilla

Edif. CICA, Avda. Reina Mercedes s/n, E-41012 Sevilla, SPAIN
Phone # 34 5 4239923. FAX # 34 5 4624506. Email: pacov@cnm.us.es

ABSTRACT
A novel algorithm is presented that generates approximate

symbolic expressions for small-signal characteristics of large
analog integrated circuits. The method is based upon the
approximation of an expression while it is being computed.
The CPU time and memory requirements are reduced drasti-
cally with regard to previous approaches, as only those terms
are calculated which will remain in the final expression. As a
consequence, the maximum circuit size amenable to sym-
bolic analysis has largely increased. The simplification proce-
dure explicitly takes into account variation ranges of the
symbolic parameters to avoid inaccuracies of conventional
approaches which use a single value. The new approach is
also able to take into account mismatches between the sym-
bolic parameters.

INTRODUCTION

Symbolic circuit analysis refers to the calculation of net-
work functions H(sJ) in the form:

(1)

where xT={xl, x2, . . . x } is the vector of circuit parameters
which remain as symbog, and the coefficients of the s powers
are polynomials in x .

Symbolic analysis tools have drawn strong attention dur-
ing the last few years. Their usefulness in such varied fields
like automated equation-based analog sizing, fault diagnosis,
etc., has been widely demonstrated [l].

Experience with symbolic simulators shows that resulting
expressions increase exponentially with the size of the circuit
under study. Precisely the immeasurable size of the expres-
sions greatly limits the maximum circuit size capable to be
analyzed. On the other hand, any computational application
of symbolic expressions requires simplifications of these
expressions, maintaining only those terms or subexpressions
that are really significant. The same experience with symbolic
simulators shows that, normally for real circuits, only a small
part of the symbolic terms are really significant and are those
which remain after the simplification process.

Thus, it is paradoxical that the analyzable size of circuits is
limited by the exact symbolic expressions, which after sim-
plification are never used again. However, in all the previous
approximation techniques said expressions are indispensable
to perform simplification.

fo (XI + Sfi (X) + S2f2 (XI + . . . + SNfhJ (X I

go (XI + sg1 (XI + s2g* (XI + . . . + sMgM (XI
H (s , x) =

The new idea reported in this paper consists in generating
directly the simplified expression. If this is possible, two basic
advantages arises. First, the analysis should be faster as no
time is wasted in generating symbolic terms that would be
pruned in the simplification procedure. Next, the memory
needs will be much smaller and much larger circuits can be
analyzed.

Conventional simplification approaches neglects the least
significant terms based upon their relative magnitude, which
is evaluated using a typical numerical estimate of the sym-
bolic parameters, called the nominal point. This technique
may yield large inaccuracies when the simplified expressions
are used at points other than nominal [2]. The introduction of
variation ranges instead of single numerical values has solved
this problem in connection to conventional simplification
after generation techniques. This has also been adapted to the
new idea of simplification during generation.

APPROXIMATION DURING GENERATION

The new approach tries to generate the terms that appear at
the simplified expression only, without the prior generation of
the exact expression. In order to make this new approach fea-
sible a technique able to generate symbolic terms in decreas-
ing order of magnitude is needed. When a sufficient number
of terms has been generated the algorithm must stop.

None of the classical symbolic analysis techniques is
appropriate to this purpose. One possibility is to try combina-
tions of symbols in decreasing order of magnitude and check
if they are valid terms with any classical technique. But com-
binatorial explosion problems quickly arise with this
approach.

A new analysis technique has been developed based on the
undirected tree enumeration method. Although the directed
tree method has been considered traditionally as advanta-
geous over the undirected tree one, it will be shown that the
latter one is much more adequate for our current problem.

Analysis technique
In the undirected tree approach a valid term corresponds to

a spanning tree common to a voltage and a current graph,
which are easily built from the circuit topology. Only passive
elements and voltage controlled current sources (VCCS) are
allowed in this technique. Any other type of controlled source
must be converted to this type [3]. The voltage and current
graphs are constructed with one branch between the terminal
nodes of each passive element. The stamp of a VCCS is the
controlled branch in the current graph and the controlling

branch in the voltage graph. Each valid term is given by the
product of the admittances of every branch in the common
spanning tree.

Our algorithm chooses one of these two graphs, i.e. the
voltage graph, its spanning trees are generated in decreasing
order of magnitude and for each generated tree it is checked
if it is also a spanning tree in the current graph. The greatest
inconvenience of this technique is the complicated calcula-
tion of the sign of each term in active circuits [4] . But in spite
of being a tedious task in hand analysis, it can be efficiently
programmed and experimental results show that the compu-
tation time is negligible compared with the other routines.

Our method has been developed starting from the algo-
rithm proposed by Gabow to generate weighted spanning
trees in order [5] . This algorithm uses a maximum weight
spanning tree as a reference tree and exchanges branches to
obtain the remaining trees. To obtain a maximum weight tree
many algorithms have been reported [6]. The generation of
trees in decreasing order of magnitude is based upon the con-
cept of a T-exchange [5] . Given a spanning tree T of a graph
G (the voltage graph in this case), a T-exchange is a pair of
edges [ed such that e€ T, fl T, and T-eUf is a spanning
tree. The weight of exchange [eJl is w(n-w(e), with w(i)
being the weight of edge i. So the weight of tree T-eUf is the
weight of tree T plus the weight of exchange [eA. It is obvi-
ous that the weight of every T-exchange must be negative.

Assume that the maximum spanning tree, T I , has been
obtained. For each tree branch of T I the T-exchange with
smallest weight in magnitude is stored. The smallest T-
exchange [e& between all tree branches gives the following
tree T2. The remaining trees are conceptually splitted into two
disjoints sets:

Pi = { T k l k > l ; e E T k } P: = { T k l k > l ; e E T k } (2)

T , is reference tree for the first partition while T2 is the refer-
ence tree for the second one.

Assume that the algorithm has already provided the first
j-1 trees. The trees which have not yet been generated are
splitted into j-1 disjoint partitions:

e-’ = { T k J k > j - l ; e l , e 2 , ..., e r € T k ; e r + l , ..., e , e Tk} (3)

with el,e2 ,..., e,, ..., e, being edges of the undirected graph.

Among these sets the one that provides the T-exchange
having the smallest weight is chosen. This gives a new span-
ning tree q=T,-eUf, whose validity is checked in the current
graph. The corresponding partition is deleted and two new
partitions are generated:

?= {Tk,k>J;el,e2 ,..., e r , e € T k ; e r + l ,..., e s E T k }
(4’)
\ I

= Tkl k > j ; e e2, . . . , e r E T k ; e r + . . . , e,y, e E T k }

The other partitions remain unchanged.

We also store the set of minimum T-exchanges of each tree
branch together with each partition. The sets of T-exchanges
may be easily updated each time that a spanning tree is gen-
erated. Only those which have been affected by the last
branch exchange performed have to be computed. This means
important savings in CPU time with some additional memory
consumption. The time complexity of this algorithm can be

demonstrated to increase linearly with the number of span-
ning trees generated [5] .

The described algorithm can also be adapted to the directed
tree method. However, our experience shows that the number
of term cancellations in the directed tree method increases
exponentially with the circuit size and, hence, it is much less
efficient that the undirected one.

Extension to High-Frequency Analysis
The described algorithm enables efficient calculation of

symbolic terms which contain only conductances. If capaci-
tors also appear, symbolic terms with powers of s greater than
0 have also to be generated. Given a circuit with n nodes, for
each k power of s, spanning trees which contain exactly k
capacitors and n-k-1 conductances must be enumerated.

Like the case of power 0 of s, the maximum spanning tree
including k capacitors is used as reference and the rest of trees
are obtained performing branch exchanges. In this case a
spanning tree can be obtained from another by three kinds of
T-exchanges: a T-exchange of two conductances; a T-
exchange of two capacitors; and what we call a double T-
exchange, consisting of a T-exchange of a conductance by a
capacitor and a capacitor by a conductance. The smallest one
among them is selected, providing the following tree in
decreasing order of magnitude. If this tree is obtained by a
simple T-exchange two new partitions result, as in the dc case.
By the contrary, if the new tree result from a double T-
exchange, [g , ~ c , , , c ~ u g ~] , then, four new partitions must be
created which cover all spanning trees that have not yet been
generated:

pm= { T k l k > J ; e l , e 2 , . . . , e , , C P E T k ; e , + l , . . . ’ e , y , g , E Tk}

p‘,= { T k (k > j ; e l , e 2 ’ . . . , e r e T k ; e r + l , . . . , e , T , g , , $ e Tk}

STOPPING CRITERION

Obviously a stopping criterion is needed in order to know
when a sufficient number of terms have been generated.

Conventional simplification criteria discards the non-sig-
nificant terms in each coefficient of (l) , beginning with the
smallest one, until a relative error, EM, between the exact
expression and the approximated one is reached [7,8]. In the
new approach no term is discarded. Instead, for each coeffi-
cient hk(x) in numerator or denominator of (1) the R most sig-
nificant terms are generated using the above described
analysis technique until the following is met:

in which the different terms are evaluated at the nominal point
xo. The denominator in (6) represents the numerical evalua-
tion of the complete symbolic polynomial at xo. The need to
evaluate a priori the magnitude of the symbolic expression is
obvious since the philosophy of the new approach is to not
generate such expression. This can be efficiently computed
using the numerical interpolation method which is the most

suitable technique to calculate the system function of a given
circuit with the complex frequency s as only variable.

However, the nominal point approach does not seem to be
very consistent with the own nature of symbolic analysis. The
use of variation ranges instead of nominal values has been
proposed [2]. In the variation range approach each symbolic
parameter is assumed to take any value inside a given inter-
val,

X i € LTiLXiHI (7)

where x iL and x ~ H are real numbers and x iL 5 xi^. Basic oper-
ations between ranges may be found in any basic book on
interval analysis [9].

A conservative approach to generate the most significant
terms in each coefficient of (1) taking into account variation
ranges is to apply the following formula:

where [s L , s H] represents the range of the sum of all the terms
included in the coefficient being simplified, and [G L , G H]
denotes the range corresponding to the sum of the R most sig-
nificant terms. L and U denote the lower and upper bounds
of the range, respectively [2].

Notice that the denominator of (8) contains the range of the
sum of all symbolic terms. Hence, this range must be calcu-
lated a priori. In previous approaches this was not a difficult
problem as the complete symbolic expression was available
before performing the simplification [2]. Now, it is not a triv-
ial problem since the symbolic expression is not available to
calculate its range.

The classical numerical interpolation method for real poly-
nomials can be extended to variation ranges by substitution of
real variables by interval ones and real arithmetic operations
by the corresponding interval arithmetic operations. The
resulting range is an interval extension of the symbolic poly-
nomial, that is usually a too pessimistic overestimate. Such
overestimate can be reduced by the application of the Skelboe
algorithm [lo]. Successive refinements are used in this algo-
rithm to obtain first the lower bound and then the upper
bound. Basically, it consists in the calculation of the interval
extension of the polynomial in a finite subsequence of regions
producing the smallest lower bounds. A successive subdivi-
sion of multidimensional intervals and the inclusion in an
ordered list provides interval extensions as accurate as
desired.

MISMATCHING HANDLING

Matching considerations have become a fundamental issue
in analog integrated circuit design. Some second-order char-
acteristics are mainly determined by small mismatches
between nominally matched devices. Adequate mismatching
handling has been a major concern in modern symbolic sim-
ulators like ASAP [8] and ISAAC [7].

If several devices are perfectly matched they are repre-
sented by the same symbolic parameter. Its main effect is the
introduction of cancellations between equal terms. This
means an important consumption of resources in the detec-
tion and execution of cancellations with conventional tools.

This is not a problem in the new approach as terms that cancel
have the same numerical value and, hence, they are generated
one immediately after the other and the cancellations can be
performed easily.

It is usually very interesting to express device mismatches
as explicit mismatching symbols. These are represented in
our approach as separate circuit elements in parallel with the
corresponding nominal elements. Hence, terms containing
mismatching parameters are generated, according to their rel-
ative magnitude, only when necessary.

The variation range approach is specially adequate to han-
dle mismatches. Conventionally, mismatching parameters
were assigned a sign and a value to evaluate the relative sig-
nificance of symbolic terms. Instead, we assign each mis-
matching parameter a symmetrical interval around zero,
which is much more in accordance with the philosophy of
mismatching.

EXPERIMENTAL RESULTS

The advantages of the new technique over previous
approaches will become obvious through different examples.

First we will consider the academic benchmark circuits of
Fig. 1 : a resistive ladder network (extremely sparse circuit)
and a fully connected network (extremely dense circuit).
Fig.2 shows the CPU time as a function of the number of
nodes for the symbolic computation of simplified expressions
of the voltage gain with a 25% error. All CPU times have been
measured on a SPARCstation 10. In both cases, the CPU time
can be observed to increase dramatically using a conventional
symbolic analyzer, in which the complete symbolic expres-
sion has to be generated first. The number of terms of this
expression has been shown to increase exponentially [3].
However, the new technique can be observed to be several
orders of magnitude more efficient to generate the simplified
expressions. Moreover, the new approach is able to analyze
much more complex circuits than the conventional technique.

.- ,
=

Figure 1 : Benchmark circuits: (a) Resistive ladder; (b)
Fully-connected network.

Let us consider now some real-life benchmark circuits.
Fig.3 shows a fully-differential folded-cascode OTA with lin-
earized input stage. ASAP spends 205s. of CPU time in pro-
viding a simplified expression of the differential voltage gain
with a 25% error. The same expression is obtained with the
new technique in only 0.1s.

The circuit of Fig.4 is used as a second benchmark circuit.
A simplified expression of the voltage gain is provided by
ASAP in 308 s. The new approach provides the same expres-
sion in 17.8s. It can be observed that the CPU time is compar-
atively much larger than for the circuit of Fig.3. The reason is
found in the use of the variation range approach. The denom-
inator of this circuit is very sensitive to small variations in the
transconductance of the amplifiers, its range estimate includ-

28

. . . (I' . . ' ' . . . '
1

Figure 2: CPU time comparison for the calculation of the
voltage gain of the circuits in Fig.1: (a) Ladder network;
(b) Fully-connected network. The dotted line corresponds

to ASAP and the solid line to the new approach.

A v,,,,
I I

Figure 3: Fully-differential folded-cascode OTA.

ing zero. Hence, the denominator cannot be simplified safely
and all its terms had to be generated.

As a final example consider the folded-cascode opamp
with large output-signal swing of Fig.5. Conventional sym-
bolic analyzers are unable to analyze a circuit of this size.
However, the new approach provides a simplified expression
of the voltage gain in only 54.7s.

Acknowledgements
The authors wish to thank Philips Eindhoven, The Nether-

lands, and the Human Capital and Mobility Program of the
CEC for their support.

Figure 4: Positive-feedback OTA.

Figure 5: Folded-cascode opamp.

REFERENCES

[11 A. Rodriguez-VBzquez, F.V. Fernsndez and J.L.
Huertas, eds., Symbolic Analysis Techniques and
Applications to Analog Design Automation, IEEE
Press, 1994

[2] F.V. FernBndez, J.D. Martin, A. Rodriguez-Vazquez
and J.L. Huertas, "Formula Approximation for Flat and
Hierarchical Symbolic Analysis", Analog Integrated
Circuits and Signal Processing, Vol. 3 , pp. 43-58,
Kluwer,1993.

[3] P.M. Lin, Symbolic Network Analysis, Elsevier, 1991.
[4] S.P. Chan, Introductory Topological Analysis of

Electrical Networks, Holt, Rinehart and Winston, 1969.
[5] H.N. Gabow, "Two Algorithms for Generating

Weighted Spanning Trees in Order", SIAM J. of
Computing, Vol. 6, No. 1, pp. 139-150, March 1977.

[6] D. Cheriton and R.E. Tarjan, "Finding Minimum
Spanning Trees", SIAM J. of Computing, Vol. 5, No. 4,
pp. 724-742, Dec.1976.

[7] G. Gielen, H. Walsharts and W.Sansen, "ISAAC: A
Symbolic Simulator for Analog Integrated Circuits",
IEEE J. Solid-state Circ., pp. 1587-1597, Dec. 1989.

[8] F.V. FernBndez, A. Rodriguez-VBzquez and J.L.
Huertas, "Interactive AC Modeling and
Characterization of Analog Circuits via Symbolic
Analysis", Analog Integrated Circuit and Signal
Processing, Vol. 1, pp. 183-208, Kluwer, Nov. 1991.

[9] R.E. Moore, Methods and Applications of Interval
Analysis, Studies in Applied Mathematics, 1979.

[101s. Skelboe, "Computation of Rational Interval
Functions", BIT, No. 14, pp. 87-95, 1974.

