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ABSTRACT

Based on symmetry of the maximally flat frequency re-
sponse of a FIR notch filter the new design procedure
is developed. The closed form solution provides direct
computation of the frequency response, recursive compu-
tation of the impulse response coefficients, simple win-
dowing technique, and an access to new implementation.
Several examples are included.

INTRODUCTION

In order to remove a single frequency component from the
signal spectrum the IIR notch filter is frequently used. It
consists of an abridged all-pass second-order section and
allows independent tuning of the notch frequency ω0 and
the 3-dB attenuation bandwidth [2]. Therefore the de-
sign of a digital IIR notch filter is rather simple. Such
filter also possesses infinite impulse and step responses
consequently which can produce spurious signal compo-
nents unwanted in various applications ( as in ECG signal
processing ).

A few procedures for the design of linear phase FIR
notch filters are recently available [1]. The methods which
lead to feasible filters are generally derived by iterative ap-
proximation techniques or by noniterartive but still nu-
merical procedures, e.g. the window technique. In our
paper we are primarily concerned with completely analyt-
ical approach to the FIR notch filter design. The solution
is partially based on exact formula for the frequency re-
sponse of a FIR notch filter symmetrical about ωT = π/2.
Emphasizing simplicity of form for monotonic frequency
response we derive the polynomials

Nl,m (w) =

[

m + l

2l
(1 − w)

]l [
m + l

2m
(1 + w)

]m

(1)

in sum of Chebyshev polynomials of the first kind Tn(w)
through which the transfer function H(z) is expressed.

Here and in the following we often use the transformed
variable w [3]
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∣z = ejωT = cos ωT , (2)

which transforms the z-plane onto a two-leaved w-plane.
We introduce the formula for degree of a notch filter which
is related to the notch frequency, the recursion formulae
for polynomials Nl,m (w) and the impulse response coef-
ficients of a moveable notch filter. The recursive formula
for Nl,m (w) offers recursive evaluation of the transfer
function H(z) and consequently an alternative implemen-
tation of maximally flat FIR notch filters by a structure
with the multipliers coefficients of limited dynamic range.
The rectangular windowing of the large extent impulse
response is presented which leads to the frequency re-
sponses comparable to those designed by standard win-
dowing technique.

FREQUENCY RESPONSE, ORDER OF A

NOTCH FILTER AND NOTCH FREQUENCY

Let H(z) denotes the transfer function of a FIR filter of
order N − 1

H(z) =

N−1
∑

n=0

h(n)z−n . (3)

Assuming an odd length N = 2M +1 and even symmetry
of the impulse response coefficients

a(0) = h(
N − 1

2
) , (4)

a(m) = 2h(
N − 1

2
− m) = 2h(

N − 1

2
+ m) , (5)

we can write the transfer function of an arbitrary FIR
notch filter as

H(z) = z−M

[

a(0) +
M
∑

m=0

a(m)Tm(w)

]

. (6)



Provided that (l + m)/2 = M the frequency response
is then expressed in the form

H(ejωT ) = e−jMωT Q(w) = e−jMωT (1−Nl,m(w)) , (7)

where

Q(w) = 1 −
[
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]l [
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]m

represents the real valued frequency response of the zero-
phase FIR notch filter of the real variable w = cos ωT and
Nl,m(w) are the trigonometric polynomials introduced in
our approach cf. eq.(1). The notch frequency ω0 is ex-
pressed from the minimum value of Q(w)

(1−w2)
d
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× [m − l − (m + l)w] = 0 ,

as

w0 = cos ω0T =
m − l

m + l
. (9)

The relation (9) represents the degree equation which can
be used to estimate the order of the maximally flat FIR
notch filter.

IMPULSE RESPONSE COEFFICIENTS

The half-band symmetry l = m imposed on the frequency
response (8) implies that

Nm,m(w) = (1 − w2)m (10)

= c2m(0) + 2
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T2k(w)

]

.

Due to the recursive formula for Chebyshev polynomi-
als

Tm+1(w) = 2w Tm(w) − Tm−1(w) , (11)

we can express any diagonal polynomial Nm+1,m+1(w)
and the nearest neighbour off-diagonal polynomial
Nm,m+1(w) through

Nm+1,m+1(w) = (1 − w2)Nm,m(w) , (12)

Nm,m+1(w) =

(

2m + 1

2m

)m (

2m + 1

2m + 2

)m+1

×(1 + w)Nm,m(w) .

as the multiplying of Chebyshev polynomial T2k(w) in
formula (10) by w and w2 respectively, gives

w × T2k(w) =
1

2
(T2k+1(w) + T2k−1(w)) , (13)

w2 × T2k(w) =
1

4
(T2k+2(w) + 2T2k(w) + T2k−1(w)) .

All the corresponding coefficients c2m+2(2k) are then
available. In order to evaluate any off-diagonal polyno-
mial

Nl,m(w) =

(

m + l

2l

)l (
m + l

2m

)m

Nl,m(w) (14)

it is advantageous to drop the normalization factor and
employ the polynomials

Nl,m(w) = (1 − w)
l
(1 + w)

m
. (15)

Using repeatedly recursion ( 11) we have deduced simple
recursive formula for an arbitrary off-diagonal polynomial
Nl,m(w)

Nl,m+1(w) = 2Nl,m(w) −Nl+1,m(w) . (16)

which together with eq.(13) form new algorithm for eval-
uation of the impulse response coefficients a(n) of a FIR
notch filter specified by the notch frequency (9).
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Figure 1: Recursive net for multiplierless computation of
an arbitrary notch polynomial Nl,m(w)



RECTANGULAR WINDOWING

The main disadvantage of these filters is that the required
filter order is approximately inversely proportional to the
square of the stopband bandwidth. The design procedure
usually leads to the filters of much higher order than those
with equiripple frequency response and it means that the
number of multiplication required per computed output
sample is quite large. The economization of Chebyshev
polynomial expansion of H(z) - eq. (6) is then equiva-
lent to the square windowing of a finite but large extent
impulse response. We can use even severe abridging of
the filter order N → Nr ∼

√
N to obtain comparable

results and computational complexity with the standard
windowing technique.

EXAMPLES AND CONCLUDING REMARKS

Note that the whole design process is recursive one and it
does not require any DFT algorithm nor we need any it-
erative technique. The degree equation (9) is the simplest
formula ever available in filter design which relates a crit-
ical frequency with filter order N = m + l + 1. Assuming
that the desired normalized notch frequency is given, e.g.
ω0T = 0.35π, the inequality

cosω0T = 0.45399052 < 0.45454545 =
q × 5

q × 11
=

m − l

m + l

provides a set of values m = q × 8 and l = q × 3. The
higher is order of a notch filter N = q × (8 + 3) + 1, the
greater steepness of the transition band can be expected.

It is also worth to note that abridging the large extent
impulse response, e.g. N = 161 to Nr = 37 - as shown in
Fig.2 to Fig.5 - does not affect the position of the notch
frequency and the width of the notch. Rectangular win-
dowing is responsible for ripple in the passband ρ and
finite attenuation of the notch frequency anotch only - see
Fig. 2 - 7.
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Fig. 2 Maximally flat FIR notch filter of order N = 161 Fig. 3 FIR notch filter of reduced order Nr = 37 and
and ω0T = π/2 ω0T = π/2, ρ = 1.6 % , and anotch = 29.6 dB
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Fig. 4 Maximally flat FIR notch filter of order N = 161 Fig. 5 FIR notch filter of reduced order Nr = 37 and
and ω0T = 0.42π ω0T = 0.42π, ρ = 2.0 % , and anotch = 27.7 dB
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Fig. 6 Maximally flat FIR notch filter of order N = 111 Fig. 7 FIR notch filter of reduced order Nr = 31 and
and ω0T = 0.35π ω0T = 0.35π, ρ = 2.3 % , and anotch = 29.9 dB


