209

Parallel Architectures of 3-Step Search Block-Matching
Algorithm for Video Coding

Her-Ming Jong, Liang-Gee Chen} and Tzi-Dar Chiueh
Department of Electrical Engineering,
National Taiwan University, Taipei, Taiwan, R.0.C.
email: d80047@cc.ee.ntu.edu.tw

ABSTRACT

This paper describes fully pipelined parallel architectures
for the 3-step search block-matching motion estimation
algorithm. Difficulties of this algorithm in hardware im-
plementation were overcomed by use of intelligent da-
ta arrangement and memory configuration. Techniques
for reducing interconnections and external memory ac-
cesses were also developed. Because of their low costs,
high speeds, and low memory bandwidth requirements,
the proposed architectures provide efficient solutions for
real-time motion estimations required by various video
applications.

L. INTRODUCTION

Among various video compression techniques, the mo-
tion-compensated hybrid coding is the most popular one
and is adopted by several international standards. The
block-matching motion estimation/compensation provi-
des these coding systems with significant bit-rate reduc-
tions. However, it also requires a large amount of com-
putation and a heavy memory bandwidth.

Many fast block-matching algorithms (BMA’s) have
been developed to reduce the extremely high computa-
tional complexity of the optimal full search(FS) proce-
dure. Among all these BMA’s, the 3-step hierarchical
search (3SHS) [1] is considered as one of the best al-
gorithms and is recommended by MPEG and RMS8 of
H.261. In spite of the good performance and significant
complexity reduction provided by 3SHS, almost all re-
ported BMA architectures and VLSI implementations s-
elect FS because of its regular data flow and low control
overhead [2]-[3]. These architectures efficiently reuse da-
ta to decrease external memory accesses, and they speed
up the computation by highly parallel processing and
pipelining. However, because of the inherent high com-
plexity of F'S, high-speed motion estimators can only be
provided by large arrays of processing elements (PE’s).

The low complexity of 3SHS algorithm makes it po-
tential to implement high-speed motion estimators at low
hardware costs. To fully utilize this advantage, we de-
veloped a dedicated architecture which overcomes the ir-
regular data flow of 3SHS and thus achieves an efficiency

lnow is Research Consultant in AT&T Bell Lab.
2This work is supported by National Science Council, Republic
of China, under Grant NSC 83-0404-E-002-008.

close to 100 percent. It also successively reuses data and
reduces the control overhead. Depending on the trade-off
between cost and speed, this scheme can be reduced or
expanded to meet requiredments of various video coding
systems, from low bit-rate video to HDTV systems.

II. THE 3-STEP SEARCH ALGORITHM

The procedure of a block-matching algorithm is to
find a best matched displaced block from the previous
frame, within a search range, for each block in the present
frame. A straightforward method, the full search, ex-
haustively matches all possible candidates to find the
displacement (called motion vector) with a minimal dis-
tortion. To reduce the heavy computational cost result-
ed from the massive number of candidate locations, the
3SHS algorithm searches for the best motion vector in
a coarse-to-fine manner. For the commonly used search
range of —7 to +7 pixels, the hierarchical search proce-
dure decreases the number of searched locations to 1/9
of the exhaustive approach.

Experimental results show that the 3SHS provides
a robust near-optimal performance [1], and the differ-
ence between performances of 3SHS and FS can be fur-
ther reduced, without increasing the computational cost,
by a modification proposed in [4]. The low complexity
and the high accuracy make 3SHS a potential solution
for high-speed video applications; However, some archi-
tectural considerations prevent this algorithm from be-
ing widely used in real-time systems: First, the variable
distances between candidate locations and the unpre-
dictable data requirement complicate the control scheme,
lower the efficiency of computation kernel, and make it
difficult to reuse data for reducing the number of external
memory accesses; Second, the dependency between steps
entails sequential execution, so the latency of each step
need be short for high-speed operation. This imposes
an additional limitation in architecture design. Archi-
tectures presented in the following sections solve these
problems and provide efficient implementations of the
3SHS algorithm.

III. THE PROPOSED 3SHS
ARCHITECTURES

A. Algorithm Mapping and Basic Structure



The following loops describe the main computations
in 3SHS:

Loop 1: For each of the 3 steps

Loop 2: For each of the 9 candidate locations

Loop 3: For each of the 256 pizel-pairs in a pair of blocks
Accumaulate the absolute pizel difference.

Considering the cost of computation and data access, we
proposed the following algorithm mapping: 9 PE’s eval-
uate the 9 locations of Loop 2 in parallel and sequentially
execute operations in Loop 1 and Loop 3. An addition-
al advantage of this approach is the flexibility in search
range and block size. These cases can be handled by only
changing the contents of counters in Loop 1 and Loop 3,
which don’t affect the hardware structure. Furthermore,
because the required pixels are sent to PE’s in paral-
lel without data skewing, the latency delay is also very
short.

In principle, this architecture provides a flexible high-
speed motion estimator at a low cost. On-chip buffers are
suggested to reuse data and thus to reduce the required
I/O memory bandwidth. For parallelizing the data ac-
cesses of PE’s and reducing the complexity of intercon-
nection between buffer and PE’s, techniques called resid-
ual memory interleaving and PE function redistribution
are described in the following subsections.

B. Residual Memory Interleaving

On-chip buffers reduce the load for chip I/O and
memory system. The next problem is: how to provide
all required data for the 9 PE’s simultaneously? Our ap-
proach is dividing the buffer into 32 = 9 memory mod-
ules, and interleaving search area pixels to these 9 mod-
ules as shown in Fig. 1. The label (0 ~ 8) for each pixel
indicates the module that stores this pixel. Because of
the hierarchical characteristic of 3SHS, the distance be-
tween adjacent candidate locations is always 2% (k=2,
1, or 0). Since the residue of dividing 2* by 3 is never
zero, the 9 required pixels always reside in 9 differen-
t modules. This is illustrated in Fig. 1 by marking the
simultaneously accessed pixels at some instant in each
step. This memory interleaving provides a solution for
parallel data accesses, but it asks every PE to be able to
access each of the 9 memory modules. The PE function
redistribution, described in the following, can significant-
ly reduce the interconnection overheads.

C. Redistribution of PE functions

The basic structure introduced in Sec.3.1 maps op-
erations for evaluating a certain candidate location to
a fixed PE. The proposed function redistribution allows
operations belonging to a candidate location to be per-
formed by several PE’s, then it combines partial-results
from these PE’s to form the MAD of this location.

Consider the example in Fig. 2(a): If PE0 always
evaluates candidate locations 0, it has to access memory
module 0 ~ 2 during clock cycle 0 ~ 15, and to access
module 3 ~ 5 and 6 ~ 8 during clock cycle 16 ~ 31
and 32 ~ 47 respectively. That is, all of the 9 memory

210

modules store data for this PE, which demands a fully
connected nonblocking switching network from 9 sources
to 9 destinations.

Rather than fix its job, we allow a PE to calculate
partial-results of different candidate locations at differ-
ent moments. In the case mentioned above, we let PEO
evaluate location 0 in the first 16 clock cycles, and then
let it evaluate location 3 and then location 6 for the next
two 16-clock-cycles, as shown in Fig. 2(b). From the oth-
er viewpoint, the evaluation of location 0 is completed by
a cooperation between PEO, PE3, and PES6, where jobs
are cyclically redistributed every 16 clock cycles. By use
of this method, each PE only has to connect to 3 mem-
ory modules. The PE-location mapping table in Fig. 3
illustrates the whole procedure by showing every PE’s
corresponding candidate locations at different instants.
Now consider the integration of partial-results from dif-
ferent PE’s: For every 16 clock cycles, the 9 PE’s produce
9 partial-results and transfer them to PEs’ output latch-
es. Therefore PE’s can immediately begin to compute the
next set of partial-results. These 9 latched partial results
can then be accumulated by a queue and a time-sharing
common bus, one at a time by a proper selecting signal
sel. The queue provides space for storing 9 intermediate
values, one for each MAD. After 256 clock cycles, each
MAD accumulates 16 partial-results that are collected
from appropriate PE’s.

The above method redistributes PE functions only
in the vertical direction. In principle, the same concept
can also be applied horizontally to provide further in-
terconnection reduction. However, directly applying this
method in the horizontal direction causes massive inter-
changes of partial-results. This drawback can be over-
comed by rearranging the data processing order within
each row to concatenate operations belonged to the same
candidate location. As a result, the number of partial-
result interchanges is reduced from 16 to 3 per row, and
thus the accumulation can be handled by a two-level con-
figuration. This scheme is a direct expansion of the one-
level partial-résult queue mentioned above, and it is de-
scribed in Sec.3.4 together with our final proposed archi-
tecture. Fig. 4 shows.the PE-location mapping when the
horizontal process rearrangement and function redistri-
bution are also applied. By use of this method, each PE
has to connect to only a certain memory module. This e-
liminates the complicated interconnection and switching
circuitry between memory modules and PE’s.

D. Implementation Details

Fig. 5 shows the proposed 3SHS architecture, which
combines the basic 9-PE structure and techniques pre-
sented above. According to the principle of residual
memory interleaving, the search area buffer is divided
into 9 memory modules. The address for writing (wa) is
steadily broadcasted to all memory modules independent
of the previous result. In contrast, 9 different address-
es for reading (ra), which depend on the result of the
previous step, are required by PE’s simultaneously. For-
tunately, each of these addresses differs from others by
predictable offsets and can be locally calculated from a



base address that is the only one the address generator
has to provide.

A two-level scheme of partial-result queues was devel-
oped to accumulate the partial-results to proper MAD’s.
In this scheme, the first level handles the horizontal PE
function redistribution. It consists of three partial-result
queues of length 3. Because the horizontal function redis-
tributions occur for every 5 or 6 clock cycles, the 3 queues
can process all the 9 partial-results latched in PE’s before
the next 9 partial-results are produced. Similarly, the
second level executes the vertical function redistribution
by selecting appropriate partial-results from the three
level-1 queues. Three additial queues of length 3 provide
spaces for storing horizontally processed: partial-results.
They make level-1 queues able to process the next set of
data when the horizontally integrated data are waiting
for vertical processing. After 256 clock cycles, the last set
of partial-results is produced by PE’s. Another 3 clock
cycles are spent to complete the horizontal function re-
distribution. In the next 9 clock cycles, the partial-result
queue provides the 9 MAD’s and a comparator finds the
minimal one, then the address generator uses this infor-
mation to select the base address of interested locations
in the next step. Although PE’s are idle during this peri-
od, the overhead is insignificant compared with the total
execution time, and the utilization of PE’s is 96.7 %.

In summary, the architecture presented above com-
bines the computing power of parallel PE’s and the flex-
ibility of random-access buffers. It also effectively uti-
lizes the key features of hierarchical BMA’s to manage
data, and thus it can be applied to implement other
algorithms of this type. This architecture can be di-
rectly reduced to a 3-PE structure for low-cost appli-
cations. It can also be expanded to a 27-PE scheme as
shown in Fig.6. This pipelined 3-stage structure provides
high-speed motion estimators required for future high-
definition video media. Compare with FS architectures
with the same throughputs, the proposed approaches re-
quires only about 1/9 of PE’s.

IV. CONCLUSION

In this paper, we presented a family of efficient archi-
tectures for the 3-step hierarchical search block-matching
algorithm: a 9-PE novel design and its 3-PE low-cost and
27-PE pipelined high-speed variants. The random-access
on-chip buffer and input data are arranged by a principle
called residual memory interleaving. Combined with a
technique of PE function redistribution, the interleaved
buffer provides every PE with its required data simul-
taneously without introducing complicated interconnec-
tions and switching circuitry. In summary, the proposed
architectures have the following desirable features: (1)
very few PE’s and low interconnection overhead, (2) high
throughput rate, (3) low latency delay, (4) low I/O and
memory bandwidth requirements, and (5) close to 100
percent efficiency. As shown in Table 1, the proposed ap-
proach provides efficient motion estimators suitable for
various video applications.

211

8 8 7 8 & 7 8
8 85 7 8 8 7 8 6 7 8 & 2 [l v 2] o 1] 2
2l]120|'20120 $ i3 4 5 3 4i 5
5 i3 4 5 3 4 5 3 4 53 8375El
8 i 7 8 6 7 8 6 7 8: 8 240 1 2 0 1§ 2
2i0 1 2 o0 1 2 © 1 20 s [3] 4513 [4]s
s(Ele s alds s «[5]s 8 & 7 8 6 7 8
8is 7 8 6 7 8 6 7 8 8 ®)
2§ 1 2 0 1 2 o 1 20
8 8 7 8 8
53 4 5 3 4 5 3 4 5/3
2 o] 2] o
5075!7150788
s BEGE] -
2 01 2 0 1 2 0o 1 2 o
s [s]]7][e] s
a)
() 2 0 1 2 o

(¢)

Figure 1: The residual memory interleaving and the ac-

cessed data (marked by small frames) at the first clock -

cycle of: (a) step 1; (b) step 2; (c) step 3.

‘ 6

[ S
[a]res
D

[o:] Peo
[2]pes a.
O
0

tis

(b)

6
o

3 s
!ijpes
E] PE3
is
[ pe0

12

(a)

Figure 2: An illustration of PE function redistribution:
(a) original fixed PE-location mapping; (b) dynamic PE-
location mapping via function redistribution (ti: clock
cycle i of step 2).

References

[1] T. Koga, K. linuma, A. Hirano, Y. Iijima, and
T. Ishiguro,“Motion compensated interframe coding
for video conferencing,” in Proc. Nat. Telecommun.
Conf., New Orleans, LA, Nov.29-Dec.3, 1981, pp.
G5.3.1-5.3.5.

K. M. Yang, M. T. Sun and L. Wu, “A family of
VLSI designs for the motion compensation block-
matching algorithm,” IEEE Trans. Circuits Syst.,
Vol. 36, No. 10, pp. 1317-1325, Oct. 1989.

(2

[3] T. Komarek and P. Pirsch, “ Array architectures for
block-matching algorithms,” IEEE Trans. Circuits
Syst., vol. 36, no. 10, pp. 1301-1308, Oct. 1989.

H. M. Jong, L. G. Chen, and T. D. Chiue-
h,“Accuracy improvement and cost reduction of 3-
step search block-matching algorithm for video cod-
ing”, to be appeared on IEEE Trans. on Circuits
and Systems for Video Technology. .

4



212

search
area
N I e O B I
I S O S H P S N O D}
l MO Mt M2 | M3 ’ M4 M5 M6 I M7 l M8
¥ ¥ T T ¥ ¥
current  fa )
block
pixels ] NN N
PEO | PEl PE2 | PE3 | PE4 | PES | PE6 | PE7 | PES
FI'I’I'T’I’[‘I?Iil
sol
I [ |
horizontal — —
PE function = =
redistribution
] —
— —
— —
vertical
PE function Convol unit & - Xtornal control
redistribution Address generator motion vector

[
ra, wa, sel

Figure 5: The proposed 9-PE 3SHS architecture.

current  search current  search current  search
No: larsa 1 blodt:: area 2 blod‘i;! larea 13
stage 1 stage 2 stage 3
module module module
(9PEs) (9 PEs) (9PEs)
step 1 step 2 final
vector vector result
(@)
stage 1 time
module
stage 2
module
stage 3
module
256 clock
cycles {m,n) : task m, step n

(o)

Figure 6: The pipelined 3-stage 27-PE architecture: (a)
block diagram; (b) reservation table.

dock cycle candidate locations evaluated by PE’s
(nx18+m)
n m |PEO PEt PE2 {PE3 PE4 PES iPES PE? PEB
1 0 0~15 ¢ 1 2 3 4 5 6 7 8
1 0-~15 8 7 8 0 1 2 3 4 5
2 0~1% 3 4 5 6 7 8 0 1 2
sep1 3 0-15| 0 1 2i3 4 sis 7 8
A
14 0~15 3 4 5 8 7 8 ] 1 2
} 15 0~15 ] 1 2 3 4 5 ] 7 8
186 0~15 o 2 1 ] 8 7 3 5 4
17 0~15 3 5 4 ] 2 1 6 8 7
18 0~15 [} 8 7 3 s 4 1] 2 1
19 0~15 ] 2 1 L] 8 7 3 5 4
step 2
A
30 0~15 [ 8 7 3 5 4 0 2 1
!- AN 0~15 ] 2 1 L] 8 7 3 5 4
32 0~15 ) t 2 3 4 5 6 7 8
3 o0-~15 8 7 8 0 1 H 3 4 5
34 0-~15 3 4 5 [} 7 8 [} 1 2
3 0~15 ] 1 2 3 4 5 6 7 8
step 3
A
46 0~ 15 3 4 5 6 7 8 0 1 2
3 47 0~15 0 1 2 3 4 5 8 7 8
Figure 3: The PE-location mapping table when only ver-
tical function redistribution is applied.
clock cycle candidate locations evaluated by PE's
(nx16+m)
n m |PE0 PEl PE2iPE3 PE4 PES:PES PE7 PES
-
0 0-~5 ) 1 2 3 4 5 ] 7 8
L] 6~10 2 [ 1 5 3 4 8 [} 7
0 1t ~15 1 2 ¢ 4 5 3 7 8 6
1 0~5 6 7 8 o 1 2 3 4 5
1 6~10 8 6 7 2 0 t 5 3 4
1 11 ~15 7 8 6 1 2 0 4 5 3
2 ¢~5 3 4 5 6 7 8 0 1 2
gept 2 8-10] 5 a3 4is & 7i2 o 1
2 11 ~15 4 5 3 7 8 6 1 2 0
3 0~5 ] 1 2 3 4 5 3 7 8
3 6~10 2 0 1 5 3 4 8 6 7
3 11 ~ 16 1 2 0 4 5 3 7 8 6
A
15 0~5 0 1 H 3 4 5 6 7 8
15 6~10 2 0 t 5 3 4 8 6 7
_l_ 15 11 ~15 1 2 0 4 5 3 7 8 6
16 0~5 0 2 1 6 8 7 3 5 4
16 6~10 1 [} 2 7 6 8 4 3 5
16 11 ~15 2 1 to 8 7 6 5 4 3
step 2
A
_|_ 3 1 ~15 2 1 0 8 7 6 5 4 3
3 0-~5 0 1 2 3 4 5 6 7 8
3R 6~10 2 [} 1 5 3 4 8 6 7
3 11 ~15 1 2 0 4 5 3 7 8 6
step 3
A
_1_ 47 1 ~15 1 2 0 4 5 3 7 8 6

No. | No. of | Buffer Clock
of input size cycles
PE’s | ports | (KB)* | per block®
3 2 0.64 2330
9 2 1.44 794
27 3 4.83 269

2The sizes can be further reduced by half, by an algorithm

proposed in [4].

Figure 4: The PE-location mapping table when both ver-
tical and horizontal function redistribution are applied.

5The overhead between steps for deciding the next step
address is included.

Table 1: Performance and costs of proposed architectures
and suitable applications.



