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ABSTRACT 

This paper describes fully pipelined parallel architectures 
for the 3-step search block-matching motion estimation 
algorithm. Difficulties of this algorithm in hardware im- 
plementation were overcomed by use of intelligent d a  
ta arrangement and memory configuration. Techniques 
for reducing interconnections and external memory ac- 
cesses were also develope’d. Because of their low costs, 
high speeds, and low memory bandwidth requirements, 
the proposed architectures provide efficient solutions for 
real-time motion estimations required by various video 
applications. 

I. INTRODUCTION 
Among various video compression techniques, the mo- 

tion-compensated hybrid coding is the most popular one 
and is adopted by several international standards. The 
block-matching motion es timation/compensation provi- 
des these coding systems with significant bit-rate reduc- 
tions. However, it also requires a large amount of com- 
putation and a heavy memory bandwidth. 

Many fast block-matching algorithms (BMA’s) have 
been developed to reduce the extremely high computa- 
tional complexity of the optimal full search(FS) proce- 
dure. Among all these BMA’s, the 3-step hierarchical 
search (3SHS) [l] is considered as one of the best al- 
gorithms and is recommended by MPEG and RM8 of 
H.261. In spite of the good performance and significant 
complexity reduction provided by JSHS, almost all re- 
ported BMA architectures and VLSI implementations s- 
elect FS because of its regular data flow and low control 
overhead [2]-[3]. These architectures efficiently reuse d a  
t a  to decrease external memory accesses, and they speed 
up the computation by highly parallel processing and 
pipelining. However, because of the inherent high com- 
plexity of FS, high-speed motion estimators can only be 
provided by large arrays of processing elements (PE’s). 

The low complexity of JSHS algorithm makes it po- 
tential to implement high-speed motion estimators a t  low 
hardware costs. To fully utilize this advantage, we de- 
veloped a dedicated architecture which overcomes the ir- 
regular data flow of JSHS and thus achieves an efficiency 
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close to 100 percent. It also successively reuses data and 
reduces the control overhead. Depending on the trade-off 
between cost and speed, this scheme can be reduced or 
expanded to meet requiredments of various video coding 
systems, from low bit-rate video to HDTV systems. 

11. THE 3-STEP SEARCH ALGORITHM 

The procedure of a block-matching algorithm is to 
find a best matched displaced block from the previous 
frame, within a search range, for each block in the present 
frame. A straightforward method, the full search, ex- 
haustively matches all possible candidates to find the 
displacement (called motion vector) with a minimal dis- 
tortion. To reduce the heavy computational cost result- 
ed from the massive number of candidate locations, the 
JSHS algorithm searches for the best motion vector in 
a coarse-to-fine manner. For the commonly used search 
range of -7 to +7 pixels, the hierarchical search proce- 
dure decreases the number of searched locations to 119 
of the exhaustive approach. 

Experimental results show that the JSHS provides 
a robust near-optimal performance [l], and the differ- 
ence between performances of JSHS and FS can be fur- 
ther reduced, without increasing the computational cost, 
by a modification proposed in [4]. The low complexity 
and the high accuracy make 3SHS a potential solution 
for high-speed video applications; However, some archi- 
tectural considerations prevent this algorithm from be- 
ing widely used in real-time systems: First, the variable 
distances between candidate locations and the unpre- 
dictable data requirement complicate the control scheme, 
lower the efficiency of computation kernel, and make it 
difficult to reuse data for reducing the number of external 
memory accesses; Second, the dependency between steps 
entails sequential execution, so the latency of each step 
need be short for high-speed operation. This imposes 
an additional limitation in architecture design. Archi- 
tectures presented in the following sections solve these 
problems and provide efficient implementations of the 
3SHS algorithm. 

111. THE PROPOSED 3SHS 
ARCHITECTURES 

A .  Algorithm Mapping and Basic Structure 



210 

The following loops describe the main computations 
in 3SHS: 

Loop 1: For each of the 3 steps 
Loop 2: 
Loop 3: 

For each of the 9 candidate locations 
For each of the 256 pixel-pairs in a pair of blocks 

Accumulate the absolute +el difference. 

Considering the cost of computation and data  access, we 
proposed the following algorithm mapping: 9 PE’s eval- 
uate the 9 locations of Loop 2 in parallel and sequentially 
execute operations in Loop 1 and Loop 3. An addition- 
al advantage of this approach is the flexibility in search 
range and block size. These cases can be handled by only 
changing the contents of counters in Loop 1 and Loop 3, 
which don’t affect the hardware structure. Furthermore, 
because the required pixels are sent to PE’s in paral- 
lel without data  skewing, the latency delay is also very 
short. 

In principle, this architecture provides a flexible high- 
speed motion estimator at a low cost. On-chip buffers are 
suggested t o  reuse data  and thus to reduce the required 
1 / 0  memory bandwidth. For parallelizing the data ac- 
cesses of PE’s and reducing the complexity of intercon- 
nection between buffer and PE’s, techniques called resid- 
ual memory interleaving and P E  function redistribution 
are described in the following subsections. 

B.  Residual Memory Interleaving 

On-chip buffers reduce the load for chip 1 / 0  and 
memory system. The next problem is: how to provide 
all required data  for the 9 PE’s simultaneously? Our ap- 
proach is dividing the buffer into 33 = 9 memory mod- 
ules, and interleaving search area pixels to these 9 mod- 
ules as shown in Fig. 1. The label (0 - 8) for each pixel 
indicates the module that stores this pixel. Because of 
the hierarchical characteristic of 3SHS, the distance be- 
tween adjacent candidate locations is always 2k ( k 2 ,  
1, or 0). Since the residue of dividing 2k by 3 is never 
zero, the 9 required pixels always reside in 9 differen- 
t modules. This is illustrated in Fig. 1 by marking the 
simultaneously accessed pixels a t  some instant in each 
step. This memory interleaving provides a solution for 
parallel data  accesses, but it asks every PE to be able to 
access each of the 9 memory modules. The PE function 
redistribution, described in the following, can significant- 
ly reduce the interconnection overheads. 

C. Redistribution of PE functions 

The basic structure introduced in Sec.3.1 maps op- 
erations for evaluating a certain candidate location to 
a fixed PE. The proposed function redistribution allows 
operations belonging to a candidate location to be per- 
formed by several PE’s, t hen it combines partial-results 
from these PE’s to  form the MAD of this location. 

Consider the example in Fig. 2(a): If PE0 always 
evaluates candidate locations 0, it has to access memory 
module 0 - 2 during clock cycle 0 - 15, and to access 
module 3 - 5 and 6 - 8 during clock cycle 16 - 31 
and 32 - 47 respectively. That is, all of the 9 memory 

modules @ore data  for this PE,  which demands a fully 
connected nonblocking switching network from 9 sources 
to 9 destinations. 

Rather than fix its job, we allow a P E  to calculate 
partial-results of different candidate locations at differ- 
ent moments. In the case mentioned above, we let PE0 
evaluate location 0 in the first 16 clock cycles, and then 
let it evaluate location 3 and then location 6 for the next 
two 16-clock-cycles, as shown in Fig. 2(b). From the oth- 
er viewpoint, the evaluation of location 0 is completed by 
a cooperation between PEO, PE3, and PE6, where jobs 
are cyclically redistributed every 16 clock cycles. By use 
of this method, each PE only has to  connect to  3 mem- 
ory modules. The PE-location mapping table in Fig. 3 
illustrates the whole procedure by showing every PE’s 
corresponding candidate locations at different instants. 
Now consider the integration of partial-results from dif- 
ferent PE’s: For every 16 clock cycles, the 9 PE’s produce 
9 partial-results and transfer them to PES’ output latch- 
es. Therefore PE’s can immediately begin to  compute the 
next set of partial-results. These 9 latched partial results 
can then be accumulated by a queue and a time-sharing 
common bus, one at a time by a proper selecting signal 
sel. The queue provides space for storing 9 intermediate 
values, one for each MAD. After 256 clock cycles, each 
MAD accumulates 16 partial-results that are collected 
from appropriate PE’s. 

The above method redistributes P E  functions only 
in the vertical direction. In principle, the same concept 
can also be applied horizontally t o  provide further in- 
terconnection reduction. However, directly applying this 
method in the horizontal direction causes massive inter- 
changes of partial-results. This drawback can be over- 
comed by rearranging the data  processing order within 
each row to concatenate operations belonged to  the same 
candidate location. As a result, the number of partial- 
result interchanges is reduced from 16 to  3 per row, and 
thus the accumulation can be handled by a two-level con- 
figuration. This scheme is a direct expansion of the one- 
level partial-result queue mentioned above, and it is de- 
scribed in Sec.3.4 together with our final proposed archi- 
tecture. Fig. 4 shows the PE-location mapping when the 
horizontal process rearrangement and function redistri- 
bution are also applied. By use of this method, each PE 
has to connect to  only a certain memory module. This e- 
liminates the complicated interconnection and switching 
circuitry between memory modules and PE’s. 

D. Implementation Details 

Fig. 5 shows the proposed 3SHS architecture, which 
combines the basic 9-PE structure and techniques pre- 
sented above. According t o  the principle of residual 
memory interleaving, the search area buffer is divided 
into 9 memory modules. The address for writing (wa)  is 
steadily broadcasted to  all memory modules independent 
of the previous result. In contrast, 9 different address- 
es for reading ( ra) ,  which depend on the result of the 
previous step, are required by PE’s simultaneously. For- 
tunately, each of these addresses differs from others by 
predictable offsets and can be locally calculated from a 
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base address that is the only one the address generator 
has to  provide. 

A two-level scheme of partial-result queues was devel- 
oped to  accumulate the partial-results to proper MAD’s. 
In this scheme, the first level handles the horizontal P E  
function redistribution. It consists of three partial-result 
queues of length 3. Because the horizontal function redisl- 
tributions occur for every 5 or 6 clock cycles, the 3 queues 
can process all the 9 partial-results latched in PE’s before 
the next 9 partial-results are produced. Similarly, the 
second level executes the vertical function redistribution 
by selecting appropriate partial-results from the three 
level-1 queues. Three additial queues of length 3 provide 
spaces for storing horizontally processed. partial-results. 
They make level-1 queues able to  process the next set of 
data  when the horizontally integrated data  are waiting 
for vertical processing. After 256 clock cycles, the last set 
of partial-results is produced by PE’s. Another 3 clock 
cycles are spent to  complete the horizontal function re- 
distribution. In the next 9 clock cycles, the partial-result 
queue provides the 9 MAD’s and a comparator finds the 
minimal one, then the address generator uses this infor- 
mation to select the base address of interested locations 
in the next step. Although PE’s are idle during this peri- 
od, the overhead is insignificant compared with the total 
execution time, and the utilization of PE’s is 96.7 %. 

In summary, the architecture presented above com- 
bines the computing power of parallel PE’s and the flex- 
ibility of random-access buffers. It also effectively uti- 
lizes the key features of hierarchical BMA’s to  manage 
data, and thus it can be applied to implement other 
algorithms of this type. This architecture can be di- 
rectly reduced to a 3-PE structure for low-cost appli- 
cations. It can also be expanded to a 27-PE scheme as 
shown in Fig.6. This pipelined t s t a g e  structure provides 
high-speed motion estimators required for future high- 
definition video media. Compare with FS architectures 
with the same throughputs, the proposed approaches re- 
quires only about 1/9 of PE’s. 

IV. CONCLUSION 

In this paper, we presented a family of efficient archi- 
tectures for the 3-step hierarchical search block-matching 
algorithm: a 9-PE novel design and its 3-PE low-cost and 
27-PE pipelined high-speed variants. The random-access 
on-chip buffer and input data are arranged by a principle 
called residual memory interleaving. Combined with a 
technique of P E  function redistribution, the interleaved 
buffer provides every P E  with its required data simul- 
taneously without introducing complicated interconnec- 
tions and switching circuitry. In summary, the proposed 
architectures have the following desirable features: (1) 
very few PE’s and low interconnection overhead, (2) high 
throughput rate, (3) low latency delay, (4) low 1/0 and 
memory bandwidth requirements, and (5) close to 100 
percent efficiency. As shown in Table 1, the proposed ap- 
proach provides efficient motion estimators suitable for 
various video applications. 
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Figure 1: The residual memory interleaving and the ac- 
cessed data  (marked by small frames) at the first clock 
cycle of: (a) step 1; (b) step 2; (c) step 3. 
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Figure 2: An illustration of P E  function redistribution: 
(a) original fixed PElocation mapping; (b) dynamic PE- 
location mapping via function redistribution (ti: clock 
cycle i of step 2). 
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Figure 5: The proposed 9-PE 3SHS architecture. 
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Figure 3: The PE-location mapping table when only ver- 
tical function redistribution is applied. 
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Figure 6: The pipelined 3-stage 27-PE architecture: (a) 
block diagram; (b) reservation table. 
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Table 1: Performance and costs of proposed architectures 
and suitable applications. 
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Figure 4: The PE-location mapping table when both ver- 
tical and horizontal function redistribution are applied. 


