
209

Parallel Architectures of 3-Step Search Block-Matching
Algorithm for Video Coding

Her-Ming Jong, Liang-Gee Chen: and Tzi-Dar Chiueh
Department of Electrical Engineering,

National Taiwan University, Taipei, Taiwan, R.O.C.
email: d80047@cc.ee.nt u.edu. t w

ABSTRACT

This paper describes fully pipelined parallel architectures
for the 3-step search block-matching motion estimation
algorithm. Difficulties of this algorithm in hardware im-
plementation were overcomed by use of intelligent d a
ta arrangement and memory configuration. Techniques
for reducing interconnections and external memory ac-
cesses were also develope’d. Because of their low costs,
high speeds, and low memory bandwidth requirements,
the proposed architectures provide efficient solutions for
real-time motion estimations required by various video
applications.

I. INTRODUCTION
Among various video compression techniques, the mo-

tion-compensated hybrid coding is the most popular one
and is adopted by several international standards. The
block-matching motion es timation/compensation provi-
des these coding systems with significant bit-rate reduc-
tions. However, it also requires a large amount of com-
putation and a heavy memory bandwidth.

Many fast block-matching algorithms (BMA’s) have
been developed to reduce the extremely high computa-
tional complexity of the optimal full search(FS) proce-
dure. Among all these BMA’s, the 3-step hierarchical
search (3SHS) [l] is considered as one of the best al-
gorithms and is recommended by MPEG and RM8 of
H.261. In spite of the good performance and significant
complexity reduction provided by JSHS, almost all re-
ported BMA architectures and VLSI implementations s-
elect FS because of its regular data flow and low control
overhead [2]-[3]. These architectures efficiently reuse d a
t a to decrease external memory accesses, and they speed
up the computation by highly parallel processing and
pipelining. However, because of the inherent high com-
plexity of FS, high-speed motion estimators can only be
provided by large arrays of processing elements (PE’s).

The low complexity of JSHS algorithm makes it po-
tential to implement high-speed motion estimators a t low
hardware costs. To fully utilize this advantage, we de-
veloped a dedicated architecture which overcomes the ir-
regular data flow of JSHS and thus achieves an efficiency

lnow is Research Consultant in AT&T Bell Lab.
2This work is supported by National Science Council, Republic

of China, under Grant NSC 83-0404E002-008.

close to 100 percent. It also successively reuses data and
reduces the control overhead. Depending on the trade-off
between cost and speed, this scheme can be reduced or
expanded to meet requiredments of various video coding
systems, from low bit-rate video to HDTV systems.

11. THE 3-STEP SEARCH ALGORITHM

The procedure of a block-matching algorithm is to
find a best matched displaced block from the previous
frame, within a search range, for each block in the present
frame. A straightforward method, the full search, ex-
haustively matches all possible candidates to find the
displacement (called motion vector) with a minimal dis-
tortion. To reduce the heavy computational cost result-
ed from the massive number of candidate locations, the
JSHS algorithm searches for the best motion vector in
a coarse-to-fine manner. For the commonly used search
range of -7 to +7 pixels, the hierarchical search proce-
dure decreases the number of searched locations to 119
of the exhaustive approach.

Experimental results show that the JSHS provides
a robust near-optimal performance [l], and the differ-
ence between performances of JSHS and FS can be fur-
ther reduced, without increasing the computational cost,
by a modification proposed in [4]. The low complexity
and the high accuracy make 3SHS a potential solution
for high-speed video applications; However, some archi-
tectural considerations prevent this algorithm from be-
ing widely used in real-time systems: First, the variable
distances between candidate locations and the unpre-
dictable data requirement complicate the control scheme,
lower the efficiency of computation kernel, and make it
difficult to reuse data for reducing the number of external
memory accesses; Second, the dependency between steps
entails sequential execution, so the latency of each step
need be short for high-speed operation. This imposes
an additional limitation in architecture design. Archi-
tectures presented in the following sections solve these
problems and provide efficient implementations of the
3SHS algorithm.

111. THE PROPOSED 3SHS
ARCHITECTURES

A . Algorithm Mapping and Basic Structure

210

The following loops describe the main computations
in 3SHS:

Loop 1: For each of the 3 steps
Loop 2:
Loop 3:

For each of the 9 candidate locations
For each of the 256 pixel-pairs in a pair of blocks

Accumulate the absolute +el difference.

Considering the cost of computation and data access, we
proposed the following algorithm mapping: 9 PE’s eval-
uate the 9 locations of Loop 2 in parallel and sequentially
execute operations in Loop 1 and Loop 3. An addition-
al advantage of this approach is the flexibility in search
range and block size. These cases can be handled by only
changing the contents of counters in Loop 1 and Loop 3,
which don’t affect the hardware structure. Furthermore,
because the required pixels are sent to PE’s in paral-
lel without data skewing, the latency delay is also very
short.

In principle, this architecture provides a flexible high-
speed motion estimator at a low cost. On-chip buffers are
suggested t o reuse data and thus to reduce the required
1 / 0 memory bandwidth. For parallelizing the data ac-
cesses of PE’s and reducing the complexity of intercon-
nection between buffer and PE’s, techniques called resid-
ual memory interleaving and P E function redistribution
are described in the following subsections.

B. Residual Memory Interleaving

On-chip buffers reduce the load for chip 1 / 0 and
memory system. The next problem is: how to provide
all required data for the 9 PE’s simultaneously? Our ap-
proach is dividing the buffer into 33 = 9 memory mod-
ules, and interleaving search area pixels to these 9 mod-
ules as shown in Fig. 1. The label (0 - 8) for each pixel
indicates the module that stores this pixel. Because of
the hierarchical characteristic of 3SHS, the distance be-
tween adjacent candidate locations is always 2k (k 2 ,
1, or 0). Since the residue of dividing 2k by 3 is never
zero, the 9 required pixels always reside in 9 differen-
t modules. This is illustrated in Fig. 1 by marking the
simultaneously accessed pixels a t some instant in each
step. This memory interleaving provides a solution for
parallel data accesses, but it asks every PE to be able to
access each of the 9 memory modules. The PE function
redistribution, described in the following, can significant-
ly reduce the interconnection overheads.

C. Redistribution of PE functions

The basic structure introduced in Sec.3.1 maps op-
erations for evaluating a certain candidate location to
a fixed PE. The proposed function redistribution allows
operations belonging to a candidate location to be per-
formed by several PE’s, t hen it combines partial-results
from these PE’s to form the MAD of this location.

Consider the example in Fig. 2(a): If PE0 always
evaluates candidate locations 0, it has to access memory
module 0 - 2 during clock cycle 0 - 15, and to access
module 3 - 5 and 6 - 8 during clock cycle 16 - 31
and 32 - 47 respectively. That is, all of the 9 memory

modules @ore data for this PE, which demands a fully
connected nonblocking switching network from 9 sources
to 9 destinations.

Rather than fix its job, we allow a P E to calculate
partial-results of different candidate locations at differ-
ent moments. In the case mentioned above, we let PE0
evaluate location 0 in the first 16 clock cycles, and then
let it evaluate location 3 and then location 6 for the next
two 16-clock-cycles, as shown in Fig. 2(b). From the oth-
er viewpoint, the evaluation of location 0 is completed by
a cooperation between PEO, PE3, and PE6, where jobs
are cyclically redistributed every 16 clock cycles. By use
of this method, each PE only has to connect to 3 mem-
ory modules. The PE-location mapping table in Fig. 3
illustrates the whole procedure by showing every PE’s
corresponding candidate locations at different instants.
Now consider the integration of partial-results from dif-
ferent PE’s: For every 16 clock cycles, the 9 PE’s produce
9 partial-results and transfer them to PES’ output latch-
es. Therefore PE’s can immediately begin to compute the
next set of partial-results. These 9 latched partial results
can then be accumulated by a queue and a time-sharing
common bus, one at a time by a proper selecting signal
sel. The queue provides space for storing 9 intermediate
values, one for each MAD. After 256 clock cycles, each
MAD accumulates 16 partial-results that are collected
from appropriate PE’s.

The above method redistributes P E functions only
in the vertical direction. In principle, the same concept
can also be applied horizontally t o provide further in-
terconnection reduction. However, directly applying this
method in the horizontal direction causes massive inter-
changes of partial-results. This drawback can be over-
comed by rearranging the data processing order within
each row to concatenate operations belonged to the same
candidate location. As a result, the number of partial-
result interchanges is reduced from 16 to 3 per row, and
thus the accumulation can be handled by a two-level con-
figuration. This scheme is a direct expansion of the one-
level partial-result queue mentioned above, and it is de-
scribed in Sec.3.4 together with our final proposed archi-
tecture. Fig. 4 shows the PE-location mapping when the
horizontal process rearrangement and function redistri-
bution are also applied. By use of this method, each PE
has to connect to only a certain memory module. This e-
liminates the complicated interconnection and switching
circuitry between memory modules and PE’s.

D. Implementation Details

Fig. 5 shows the proposed 3SHS architecture, which
combines the basic 9-PE structure and techniques pre-
sented above. According t o the principle of residual
memory interleaving, the search area buffer is divided
into 9 memory modules. The address for writing (wa) is
steadily broadcasted to all memory modules independent
of the previous result. In contrast, 9 different address-
es for reading (ra) , which depend on the result of the
previous step, are required by PE’s simultaneously. For-
tunately, each of these addresses differs from others by
predictable offsets and can be locally calculated from a

21 1

base address that is the only one the address generator
has to provide.

A two-level scheme of partial-result queues was devel-
oped to accumulate the partial-results to proper MAD’s.
In this scheme, the first level handles the horizontal P E
function redistribution. It consists of three partial-result
queues of length 3. Because the horizontal function redisl-
tributions occur for every 5 or 6 clock cycles, the 3 queues
can process all the 9 partial-results latched in PE’s before
the next 9 partial-results are produced. Similarly, the
second level executes the vertical function redistribution
by selecting appropriate partial-results from the three
level-1 queues. Three additial queues of length 3 provide
spaces for storing horizontally processed. partial-results.
They make level-1 queues able to process the next set of
data when the horizontally integrated data are waiting
for vertical processing. After 256 clock cycles, the last set
of partial-results is produced by PE’s. Another 3 clock
cycles are spent to complete the horizontal function re-
distribution. In the next 9 clock cycles, the partial-result
queue provides the 9 MAD’s and a comparator finds the
minimal one, then the address generator uses this infor-
mation to select the base address of interested locations
in the next step. Although PE’s are idle during this peri-
od, the overhead is insignificant compared with the total
execution time, and the utilization of PE’s is 96.7 %.

In summary, the architecture presented above com-
bines the computing power of parallel PE’s and the flex-
ibility of random-access buffers. It also effectively uti-
lizes the key features of hierarchical BMA’s to manage
data, and thus it can be applied to implement other
algorithms of this type. This architecture can be di-
rectly reduced to a 3-PE structure for low-cost appli-
cations. It can also be expanded to a 27-PE scheme as
shown in Fig.6. This pipelined t s t a g e structure provides
high-speed motion estimators required for future high-
definition video media. Compare with FS architectures
with the same throughputs, the proposed approaches re-
quires only about 1/9 of PE’s.

IV. CONCLUSION

In this paper, we presented a family of efficient archi-
tectures for the 3-step hierarchical search block-matching
algorithm: a 9-PE novel design and its 3-PE low-cost and
27-PE pipelined high-speed variants. The random-access
on-chip buffer and input data are arranged by a principle
called residual memory interleaving. Combined with a
technique of P E function redistribution, the interleaved
buffer provides every P E with its required data simul-
taneously without introducing complicated interconnec-
tions and switching circuitry. In summary, the proposed
architectures have the following desirable features: (1)
very few PE’s and low interconnection overhead, (2) high
throughput rate, (3) low latency delay, (4) low 1/0 and
memory bandwidth requirements, and (5) close to 100
percent efficiency. As shown in Table 1, the proposed ap-
proach provides efficient motion estimators suitable for
various video applications.

2 0 1 2 0

(C)

Figure 1: The residual memory interleaving and the ac-
cessed data (marked by small frames) at the first clock
cycle of: (a) step 1; (b) step 2; (c) step 3.

-

6 6 6 6 6 6 _... -...
PE0

PE3

:0

D P E 6
6

0

0 a PE0

b PE3
’3

0 PE0

PE6

:0
m P E 3

6

0

0

6

PE0
3

0
3

m P E 6

PE3

16

D P E O

to 116 ta t o t 16 ta

(a) (b)

Figure 2: An illustration of P E function redistribution:
(a) original fixed PElocation mapping; (b) dynamic PE-
location mapping via function redistribution (ti: clock
cycle i of step 2).

References
[l] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and

T. Ishiguro, “Motion compensated interframe coding
for video conferencing,” in Proc. Nat. Telecommun.
Conf., New Orleans, LA, Nov.29-Dec.3, 1981, pp.
G5.3.1-5.3.5.

[2] K. M. Yang, M. T. Sun and L. Wu, “A family of
VLSI designs for the motion compensation block-
matching algorithm,” IEEE Trans. Circuits Syst.,
Vol. 36, No. 10, pp. 1317-1325, Oct. 1989.

[3] T. Komarek and P. Pirsch, “ Array architectures for
block-matching algorithms,” IEEE Trans. Circuits
Syst., vol. 36, no. 10, pp. 1301-1308, Oct. 1989.

[4] H. M. Jong, L. G. Chen, and T. D. Chiue-
h, “Accuracy improvement and cost reduction of 3-
step search block-matching algorithm for video cod-
ing”, to be appeared on IEEE Trans. on Circuits
and Systems f o r Video Technology..

21 2

No. No. of
of inDut

search
area -
pixeh

I S

Buffer Clock
size cvcles

candidate locations evaluated by PE's dockcycle I I I I I I I I I I
(n x 18 + m)

. I PE0 PE1 PE2 !PE3 PE4 PE5 ! P M PE7 PE8
.............................. * *.

t t t * t t t t
I I I I I I I I I I

0 1 2

8 7 8

3 4 5

0 1 2

I

3 4 5

0 1 2

3 4 5

0 1 2

8 7 8

3 4 5

8 7 8

3 4 5

0 1 2

8 7 8

0 0 - 1 5

1 0 - 1 5

2 0 - 1 5

step1 3 0 - 1 5

14 0 - 1 5

15 0 - 1 5

18 0 - 1 5

17 0 - 1 5

18 0 - 1 5

30 0 - 15

31 0 - 1 5

32 0 - 15

33 0 - 15

34 0 - 1 5

i
I step2 lS 0 - 1 5

48 0 - 15

47 0 - 15

step335 0 - 1 5

8 7 8

3 4 5

0 1 2

8 7 8 d

haizonlal
PE function
mdistribdon

0 2 1

3 5 4

8 8 7

0 2 1

6 8 7

0 2 1

8 8 7 1 3 5 4

0 2 l j 8 8 7

3 5 4 j o 2 1

3 5 4 j o 2 1

8 8 7 j 3 5 4

8 8 7 j 3 5 4

vetcical
PE fundon
redisbibdon

I I
1 t
fa, wa, d

0 1 2 1 3 4 5 ! 8 7 8

8 7 8 j O l 2 j 3 4 5

3 4 5 j 8 7 8 1 0 1 2

3 4 5 j 8 7 8 j O 1 2

0 1 2 1 3 4 5 1 6 7 8

0 1 2 / 3 4 S i 8 7 8

Figure 5: The proposed 9-PE 3SHS architecture.

current search current search
block2 area2 bbdt3 area3

(9PEs) (9PEs)

current search
block1 areal

module
(SPES)

Figure 3: The PE-location mapping table when only ver-
tical function redistribution is applied.

U
Step 1 step 2 final
vel301 vector resun

(a)
(dcck 16 cyde +) I candldale locations evaluated by PE's

n m

0 0 - 5

0 6 - 1 0

0 11-15

1 0 - 5

1 6 - 1 0

1 11 -15

2 0 - 5

- -

.....................

.....................

PE0 PE1 PE2 I PE3 PE4 PE5

0 1 2 / 3 4 5

2 0 1 1 5 3 4

1 2 o j 4 5 3 ..
6 7 8 1 0 I 2

8 6 7 j 2 0 1

7 8 6 j 1 2 0

3 4 5 j 6 7 8

5 3 4 1 8 6 7

4 5 3 1 7 8 6

..

..
0 1 2 1 9 4 5

2 0 l j 5 3 4

1 2 o i 4 5 3 ..
J

..
0 1 2 j 3 4 5

2 0 1 : s 3 4

1 2 o i 4 5 3

1 o 2 ; 7 6 a
0 2 1 j 6 8 7

2 1 ' 0 1 8 7 6 ..
5

2 1 0 1 8 7 6

0 1 2 1 3 4 5

2 0 1 : s 3 4

1 2 o j 4 5 3 ..
J

1 2 o j 4 5 3

PE6 PE7 PE8

6 7 8

8 6 7

7 8 6

3 4 5

5 3 4

4 5 3

0 1 2

2 0 1

...............................

...............................

............................... 1 2 0

6 7 8

8 6 7

7 6 6

stage 1
module
slage 2
module
stage 3
module ,

256 dock
cycles (m.n) :task m, step n

stepl 2 6 - 1 0

2 11 -15

3 0 - 5
,

(b)

Figure 6: The pipelined 3-stage 27-PE architecture: (a)
block diagram; (b) reservation table.

3 6 - 1 0

3 11-15

15 0 - 5

15 6 - 1 0

15 11 -15

16 0 - 5

16 6 - 1 0

16 11 -15 dep 2

31 11 -15

32 6 - 1 0

32 11 -15

1 47 11-15'

step 3

6 7 8

8 6 7

7 8 6

3 5 4

4 3 5

5 4 3 I PE's I ports I (KB)" I per block I
I 3 1 2 1 0.64 I 2330 I 5 4 3

6 7 8

8 6 7

7 8 6

9 i 2 1 1.44 I 794
27 I 3 1 4.83 I 269

=The sizes can be further reduced by half, by an algorithm

bThe overhead between steps for deciding the next step
proposed in [4].

address is included.

Table 1: Performance and costs of proposed architectures
and suitable applications.

7 8 6

Figure 4: The PE-location mapping table when both ver-
tical and horizontal function redistribution are applied.

