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ABSTRACT 

The problem of computing the steady state response of 
nonlinear autonomous circuits is solved making use of a 
discrete-time equivalent system approach. With the 
application of an s-plane to z-plane mapping, the circuit 
equations are discretized and written in vector form. Using 
thus technique, it is not necessary to repeatedly compute 
transforms between the time and the frequency domain. An 
efficient scheme to build the jacobian matrix with exact 
partial derivatives with respect to the oscillation period and 
with respect to the samples of the unknown variables is 
described. Application examples on tvm widely studied 
circuits are provided to validate the proposed technique. 

INTRODUCTION 

Several techniques have been developed to solve the 
problem of determining the steady-state response of 
nonlinear autonomous circuits. An important class of time- 
domain methods for the steady-state analysis of forced 
nonlinear circuits are the so-called shooting methods which 
try to find the initial conditions that make zero the transient 
response. Although thls techmque has been optimized 
successively, its application is expensive in terms of 
computing time. Additional drfficulties arise in the case of 
autonomous circuits where there is no a-priori knowledge of 
the oscillation period. 

Frequency-domain methods divide the circuit into a linear 
and a nonlinear part, taking advantage of the high 
efficiency than may be achieved solving the linear part. 
However, as the nonlinearities are best evaluated in the time 
domain, it is necessary to take successive transformations 
between both domains, consuming a substantial amount of 
time while limiting accuracy. Extension to autonomous 
circuits requires the computation of sensitivities with 

respect to the oscillation period in order to be able to imbed 
this added unknown into an iterative solving scheme. It 
should be pointed out that when the circuit variables have a 
broad spectrum -i.e., relaxation oscillators- the number 
of harmonics required to satisfactorily approximate the 
waveforms may be very high, requiring excessive computer 
time. 

In this paper we describe an efficient technique for solving 
the steady-state response of nonlinear autonomous circuits 
based on the formulation of the circuit equations in the time 
domain, making it unnecessary to take any further 
transformation. After dlscretizing the equations with the use 
of an s-plane to z-plane mapping and the application of the 
inverse-z transform, the problem is written in vector form, 
making it possible to take advantage of parallel processing 
techniques. An extremely efficient method for the 
computation of the jacobian matrix, with exact partial 
derivatives with respect to the samples of the circuit 
variables and the oscillation period, has been implemented. 

EQUATION FORMULATION 

Consider a nonlinear autonomous circuit where all bias 
sources and all nonlinear elements have been extracted. 
Every nonlinear element may be modeled by the parallel 
combination of a linear element and a nonlinear controlled 
source [l]. Figure 1 depicts an idealized example where 
only one bias source Ub and one nonlinear element 
described by the nonlinear function i=F(x) are included for 
the sake of simplicity. The extension to an arbitrary number 
of bias sources and nonlinear elements is straightforward. 

By application of superposition, the control variable of the 
nonlinearity x and the desired output variable y may be 
expressed as 



U 

Figure 1 

where A ,  B, C and D represent linear operators. In the case 
of dynamic circuits, the terms A { ub}, B{F(x)} correspond to 
convolutions in the time domain. The evaluation of 
v=A{ub} is simple, since it is a linear problem. The 
resulting problem is then to solve x=v+B{F(x)} for the 
variable x, assumed to be periodic with unknown period T. 
This equation may be expressed in the time domain as 

where h(t) is the impulse response of the linear circuit L to 
the excitation of the nonlinear source. 

An efficient way to solve this integral equation consists in 
discretizing the analog convolution. To obtain the 
equivalent discrete intrinsic impulse response b(n), Frey and 
Norman [l] propose to first apply an s-plane to z-plane 
mapping to the Laplace transform of b(0. The resulting 
function of z is then inverse-z transformed to the sequence 
domain. In this process, it is important that the number of 
samples per period N satides the Nyquist criterion to 
prevent aliasing. The application of this strategy allows to 
express (1) as 

Since the variables are periodic with period T, it is possible 
to rewrite (2) in vector form as 

where x=[xl. x2, ... , x$, v=[vl. v2. ... , vN]‘, f(x)=[f(xl), 
f(x2), ._ .  , f(xN)lt and B is a circulant matrix that operates on 
a vector of samples x in the equivalent form as the analog 
operator B(s) operates on the signal x(Q. The matrix B may 
be computed as follows. 

In general, B(s)-ls)/d(s). Then, after applying the map 
ST(+), a rational transfer function B(z)=q(z’)+(i+) is 
obtained. The effect of B(z) on a vector of input samples 
may be described by the difference equation 

which, in the case of p e r i d c  sequences, may be expressed 
in vector form 

p o y  + p1Sy+ .  . . +PAS k y  = q,x + q,sx+... +q,S’x 

where S is the matrix circular shift operator, S=circ[O 1 0 ... 
01. Finally, W Q x ,  and the output sequence may be 
obtained as y=Bx, with B=PIQ. 

To obtain the steady-state response, it is necessary to find 
the solution of the nonlinear set of equations (3), where the 
unknowns are the N samples of the control variable x and 
the period of oscillation T. The fact that the oscillation 
period T is an unknown is an added difficulty with respect 
to the analysis of forced circuits where, in general, the 
period of the variables is fixed by the external signal 
sources. Having N+I unknowns and only N restrictions 
indicates the presence of an infinite number of solutions. In 
particular, note that if a vector 5 is a solution of (3), Sq 
also a solution for any integer q. The existence o 1 is a 
continuum of solutions makes it possible to fix the value of 
one of the samples of x [2]. In the following, and without 
loss of generality, the value of the first sample x, will be 
assumed fixed. 

In the case of forced circuits, it is possible to implement 
methods for solving (3) based on relaxation strateges, 
taking advantage of the resulting parallelism. However, t h s  
approach is not so appealing in the autonomous case 
because of the difficulty of adequately embedding the period 
T in the relaxation scheme. The efficient method for 
computing the partial derivatives with respect to the 
samples and with respect to the period to be described next 
makes it particularly interesting to make use of lugher order 
solution methods that make use of the jacobian matrix. 

COMPUTATION OF PARTIAL DERIVATIVES 

To simpllfy the computation of the partial derivatives with 
respect to the oscillation period T,  it is convenient to 
reformulate the initial equation (3). An equivalent 
formulation is 

(4) P(7‘)x- P(T)v - Q(7‘)f (x) = 0 

which may be expressed as 



The dependence of (4) with the period appears implicitly 
when the s-plane to z-plane mapping is performed. In every 
mapping s=To(z)/A[2], the dependence with the oscillation 
period T appears in the term A=T/N. In our work, the 
second order Gear map s=(3-4z-'+r2)/(2A) has been used. 
To compute the partial derivative of the k-th equation with 
respect to the period, some previous steps are necessary. 

Let P,,(s) be a generic polynomial in the variable s 

Pn(s) = pnsn + pn-ls"-l+.*'+pls+ Po 

After applyng the mapping s=T,(z)lA, the following 
expression is obtained. 

P n  
A" A 

= fi0 +fi,Z-l+...+fimZ-m 

where, for the Gear-2 map, m=2n. The associated matrix is 
then obtained as 

Now, 

= $A + j j i Z - l + . . . + $ Z - m  

and the associated matrix may be computed as 

m 

P = C & S k  
k=O 

Using this notation, the partial derivative of ( 5 )  with respect 
to the period of oscillation is obtained as 

k=l  k = l  k=l  

Finally, the jacobian matrix J is obtained as 

For implementation purposes, it is possible to save a 
signrficant amount of computer memory talung advantage 
of the fact that the circulants P and Q only have N different 
entries. It should be also pointed out that the special 
structure of J allows for efficient LU decomposition codmg. 
Also, since in the autonomous case there is no external 
signal input, the vector v is constant as it is the response 
due to the bias sources. The result of applying T$(z-') on a 
vector of constant samples is a zero vector, except for k=O. 

The inexpensive availability of the exact jacobian matrix 
allows to implement efficient algorithms for solving the 
nonlinear system of equations (3). It is wll-known that 
Newton's method converges quadratically when the starting 
point is sufficiently close to the solution but may even not 
converge on certain situations. To overcome this a c u l t y ,  
globally convergent modifications of Newton's method [3] 
have been implemented. 

APPLICATION EXAMPLES 

To validate the described technique, its application to two 
kinds of widely stuQed classic oscillator circuits is 
presented. 

1. Van der Pol oscillator 

The van der Pol equation 

x + p(x2  - 1)X + x = 0 

may be modeled as depicted in figure 2 

+ + ~ ~ = - p ( + )  Dependmg on the value of 
parameter p ,  the circuit 
behavior for fixed values 
of L and C (L=l, C=l) 

Fig. 2 ranges from a nearly 
sinusoidal oscillator for 

small values of p b4.1) to a relaxation oscillator @- 
4..10), with an important number of significant harmonics. 
Applying harmonic balance techmques requires to consider 
an important number of harmonics -with the 
corresponding computational cost- in order to achieve 
sufficient accuracy. 

" (~ 

The waveforms resulting for Merent values of p along with 
the correspondmg oscillation period have been obtained 
with the described technique. The resulting waveforms and 
periods have been compared with the results obtained with 
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Figure 3 

the use of time-domain integration methods. The obtained 
period has also been compared with the values given in 
reference [4]. Good agreement has been observed in both 
cases. The results obtained in [5] using a harmonic balance 
approach show significantly more distortion with a 
comparable computational cost. For illustration purposes, 
the obtained waveform for p=5 is depicted in figure 3. 

2. Colpitts oscillator 

I lOV The Colpitts oscillator in 
r' 

I , figure 4 has been analyzed 
/ using the described technique, 

~~j~ ~- 

/,> 
with normalized element 2 r, values Rc=lO, L=O.1, C1=2, 
C2=0.8 and Re=20. For the 
bipolar transistor the Ebers- T Moll model with parameters 

R ~ ' . ;  ~2 a,=0.99, aR=0.015 and 
VT=0.025 has been used. This 

LL circuit presents a relatively 
high Q factor. For this reason 

Fig. 4 classical time domain 
integration methods are less 

efficient. However, the waveforms obtained with these 
methods agree with the results obtained from the described 
technique. In this example N=30 samples per period have 
been used. The implemented solution algorithm started with 
1 V amplitude sinusoidal waveforms with T=ls for both 
unknowns V, and V, with a dc component of 1OV for V, 
obtained from circuit inspection. The final oscillation period 
was T=1.52 s and the resulting waveforms are shown in 
figure 5. 

~~~ ~~ 
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CONCLUSIONS 
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method is based on the formulation and subsequent 
discretization of the circuit equations in the time domain, so 
that it is not necessary to perform any additional transform 
between the time and frequency domains. The Qscretized 
equations are then written in vector form, allowing to take 
advantage of parallel processing. In the resulting 
formulation, the unknowns to be solved for simultaneously 
are the samples of the control variables of the nonlinear 
elements and the oscillation period. An efficient method for 
constructing the jacobian matrix with exact computation of 
the sensitivities with respect to the samples and the period 
is described. 
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In this paper, an efficient technique for the analysis of 
nonlinear autonomous circuits has been described. The 


