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Abstract 

Thir paper presenti a novel technique to map the 
minimum vertex cover and related problems onto the 
Hopfdd neural networks. The proposed approach can 
be wed to find near-optimum solutions for these prob- 
lem in parallel, and particularly the network algorithm 
alwayr yields minimal vertex covers. Further, the re- 
latiomhipa between Boolean equations and arithmetic 
functions arc presented. Based on these relationship 
I, other NP-complete problems in graph theory can al- 
so be solved by neural networks. Extensive simulation 
wan performed and the experimental results demonstrate 
that the network algorithm outperforms the well-known 
greedy algorithm for the vertex cover problem, 

1 Introduction 

The vertex cover problem is to find the smallest set of 
vertices that covers all the edges in a given graph. This is 
a very practical problem [l]. Since this problem is NP- 
complete, several sequential approximation algorithms 
were propowd [2]. However, these algorithm make de- 
cirrionr baed  solely on local information, and they may 
fail in many situations [l, 31. In this paper, we propose 
an algorithm based on the neural network to solve this 
problem by Hopfield d e l  [4]. 

"he rest of thin paper is organised an follows. In Sec- 
tion 2, we describe the technique to solve the vertex cover 
problem by the Hopfield network. Sections 3 and 4 de- 
rive approaches mlving the maximum independent set 
and maximum clique problem, respectively. Section 5 
ahom experimental results for the vertex cover problem. 
Findly, conclunions are given in Section 6. 

2 Vertex Cover Problem 

Let G = (N, A) be an undirected graph, where N is 
the met of vertices, A is the set of edges, and IN1 denote 
the number of verticer. The vertex cover problem is a 
problem of finding the smallest subset C E N such that 
for each edge [i, j] E A at least one of a and j belongs 
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to C [5]. Since the goal of this problem is to cover al- 
l edges of G with as few vertices as possible, selecting 
each time the single vertex that by itself covers an many 
of the remaining edges as possible is an attractive strat- 
egy. Henceforth, the well-known greedy algorithm for 
thie problem is described as follows: successively select 
the vertex of largest degree (i.e., adjacent to the largest 
number of edges) and remove this vertex together with 
all of its adjacent edges from the graph until all edges 
have been removed. Although, the removed set of ver- 
tices is expected to be a minimum cover, it ia easy to 
find some situations where this approximation fails to 
yield a minimum cover. Consider how this scheme be 
applied to graph of Figure 1 [3]. We first choose vertex 
I, and then 11, I I I ,  I V ,  and V. The resulting vertex 
cover consists of 5 vertices. But the optimumvertex cov- 
er, (11, 111, IV, V}, has just 4 vertices. This is because 
vertex I becomca redundant after selecting vertices I I ,  
I I I ,  IV and V, but this sequential algorithm can't re- 
move any redundant vertex in a cover. 

Figure 1: An example for the vertex cover problem. 

For every undirected graph G = (N, A), one can find 
a Hopfield model such that there is a one to one corre- 
spondence between the minima of the network and the 
minimal vertex covers of that graph. Let C be a vertex 
cover and the state V; of neuron i be determined by 

if vertex i is in the cover C 
otherwise 

Hence, if (cqj) is the adjacency matrix of graph G, the 
vertex cover problem can be mathematically stated as 
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Logic 

NOT X 
X A N D Y  
X O R Y  

finding the minimum of the following cost function 

Boolean Arithmetic 

X 1-x 
X A Y  XY 
X V Y  X + Y - X Y  

- 

where V is the logical OR, x means the complement of 
X, and 0 < 7 < 1. 

The first expression in bracket goes to  0 when all edgca 
are covered by C, and the second bracketed expression 
is used to minimise the number of vertices 'in C. 
As shown in Table 1, the Boolean equation of log- 

ical variabk can be represented by its corresponding 
arithmetic function and therefore, the former objective 
function can be expanded and rearranged aa 

E~ = -CCRj~vy+Cr~ (since*i=o) 
1 

i j#i j 

This is in the form of the above Lyapunov function. 
Hence we can obtain an algorithm bssed on the Hop 
field network with the external input Ij = ci taij - 7 to 
neuron j, and the connection weight wij = -.ij between 
the i-th and the j-th neurons. 

If the initial states of all neurons are set to be 
randomly-generated values around 0.5 (say, 0.5 f 0.05), 
and the continuous model of the Hopfield network is ap- 
plied, this neural network approach will stabilize into a 
minimal vertex cover in parallel. On the other hand, 
let the state of every neuron be zero initially, by using 
the faet gradient-descent technique for the discrete Hop 
field model (i.e., by sequentially updating the state of 
a neuron which can reduce the greatest amount of sys- 
tem energy), this network method is converged to find a 
cover with minimal number of vertices at all times. 

Indeed, the fast gradient-descent network method 
works like the traditional greedy algorithm, 80 it is 

a (lnn)-approximation algorithm [l]. Notice that the 
greedy algorithm can be considered aa the fast gradient- 
descent algorithm with -y = 0; therefore, if the opti- 
mum solution consists of n vertices, the minimal ver- 
tex cover obtained by this algorithm may grow as fast 
ae (n + n In n). In practice, this sequential network can 
obtain the minimum cover of the graph in Figure 1, but 
this approach is very hard to find the optimum solution 
for the graph in Figure 2. To avoid this situation, the 

Figure 2: A 10-vertex l2-edge graph. 

discrete network algorithm in adjusted to emulate the 
continuous one, and the objective function in modified 
into 

r i r  1 

where 

In this way, when two vertices have the same degree in 
the remaining graph, the one with higher original degree 
will be selected (since it can cover more edges and may 
result in more redundancies being removed). Also, the 
external input to the j-th neuron should become 

and the worst cases in Figure 2 can be elegantly solved. 
Likewise, the first expression in bracket goes to 0 when 
all edges in G are covered, so the energy function of a 
minimal vertex cover C can be deduced into 

r 

and the larger the minimal vertex cover is, the higher its 
energy will be (see the following Lemma). 
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Lemma. Let the energy function of a minimal cover C 
of a graph G = (N, A) be ddined am 

After removing the edges not incident with C; or 
C; and thore between C; and C;, we can obtain a 
graph H without changing Ec,  - Ec, (see Figure 3). 
In this way, any edge in H i incident with a vertex 
in C1 n Ca and another vertex in Ci or C;. Hence, 

0 <_ deg(i) 5 1C;Itcl (j = 1,2) 
i€C,- 

and 

dedi )  - C deg(j) 

I I ~ J ( l ~ 1 -  IC,l- I G I )  
i€C; j€C; 

Therefore, 

0 

3 Maximum Independent Set Problem 

In this section, we are to derive a similar technique 
for solving the maximum independent set problem. 

Given a graph G = ( N , A ) ,  the aim of the maximum 
independent set problem is to find the largest set S of 
vertices such that no two vertices in S are connected by 
an edge. It is well-known that if S is an independent set 
of G, N - S is a vertex cover of G [5]. Further, N - S 
is the optimal solution to the vertex cover problem iff S 
is the maximal independent set of G. So, the objective 
function of the maximum independent set problem can 
be formulated as 

r i r  1 

9 3 9  3 

6 

0 

Figure 3: (a) A graph G with C1 = {5,6,7,. . ., 11) and 
C2 = {2,3,4,. . ., 7). (b) The corresponding graph H 
without changing Ecl - Ec,. 

and we can have the neural network algorithm to oolve 
the h u m  independent set problem. 

4 Maximum Clique Problem 

By definition, for a graph G = (NI A) a maximal com 
plete subgraph is called a clique, and the complement of 
the graph G is the graph by deleting the edges of G 
from the complete graph on the same vertices. Accord- 
ingly, if (aij) and (kj) are the adjacency matricea of G 
and E, respectively, we can have bij = 1 - qj for i # j ,  
and bii = .ii = 0 for all i. Since the independent sets 
and cliques have the following relationships 

1. X L a clique of G. 

2. K is an independent set of 5. 
it is easy to get the objective function of the maximum 
clique problem 8s 

and we can obtain a similar algorithm for the maximum 
clique problem. 

5 Experimental Results 

The algorithm are implemented in C on Sun SPARC- 
station 2 for graphs with edge density 5%, lo%, 25%, 
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Sises(05%) 
10 
20 
30 
40 
50 

Sises(lO%) 
10 
20 
30 
40 
50 

and 50%. Here the edge density is the probability that 
an edge exists between a pair of vertices [3]. For each 
sise, ten random graphs are examined and all algorithm- 
s were run for 25 times to find the optimum solution 
of every instance. In this simulation, all initial states 
for diacrete techniques, such u the greedy algorithm in 
[2] or the f a d  gradient-descent networka (7 = 1/2 or 
7 = (1 + &j)/lNla), are reroe. In the continu- 
ous model, 7 U eet to 1/3. Table 2 shows the proba- 
bilities of finding the minimum vertex covers by these 
algorithm. Here the sequential (greedy) algorithm is 
labelled as SA, the fast gradient-descent networks with 

and FGDN2, reapectively, and the continuous Hopfield 
approach with 7 = 1/3 in named CHA. Compared with 
the sequential algorithm, both gradient-descent network- 
s have higher probabilities to find the optimum solutions 
in most cues. 

7 = 0.5 and 7 = (Eie, &j)/lNIa  re denoted by FGDNl 

SA FGDNl FGDN2 CHA 
0.9 0.912 1.0 0.996 

0.848 0.828 0.9 0.892 
0.568 0.648 0.584 0.608 
0.48 0.58 0.688 0.74 
0.36 0.396 0.452 0.404 
SA FGDNl FGDN2 CHA 

0.98 0.98 1.0 0.98 
0.56 0.66 0.588 0.488 

0.552 0.604 0.664 0.556 
0.508 0.572 0.72 0.744 
0.288 0.372 0.548 0.428 

Sises(25%) 
10 

SA FGDNl FGDN2 CHA 
0.904 0.996 1.0 0.976 

20 
30 
40 
50 

Sises(50%) 
10 
20 
30 
40 
50 

6 

0.752 0.832 0.884 0.76 
0.552 0.66 0.772 0.748 
0.448 0.536 0.508 0.496 
0.404 0.476 0.512 0.48 

SA FGDNl FGDN2 CHA 
0.936 0.948 0.916 0.908 
0.904 0.924 0.9 0.968 
0.856 0.884 1.0 0.828 
0.796 0.848 0.9 0.952 
0.832 0.856 0.868 0.764 

Conclusions 

In this paper, we have presented a novel method to 
derive the minimum vertex cover and its companions 
(maximum independent set and maximum clique prob- 
lems) by neural networks. The proposed approach can 

be used to find good solutions for vertex cover problem 
in parallel, and the neural networks alwaya converge t c  
irredundant vertex covers of the given graphs. 

The relationship between Boolean equations a n c  
arithmetic functions wan also proposed. In addition tc 
the problem discussed in this article, other NP-completc 
problem in graph theory can also be mapped onto thc 
Hopfield neural networks with the same method. For in 
stance, the bipartite subgraph problem and the graph 
partitioning of an %vertex graph [6, 71. 

A large number of simulations wan performed to e. 
valuate and justify our algorithm. Experimental resultt 
show that the performance of our method is better thsl 
that of the well-known sequential greedy algorithm, anc 
due to the inherent properties of Hopfield neural net 
works, this algorithm is suitable for massively par& 
execution. Moreover, with the advances in VLSI tech 
nology, large-scale neural networks may become avd .  
able and this method will provide a significant advantsgc 
over others. 
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