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ABSTRACT 

A new application of sigma-delta modulation has emerged 
in soft switching three phase power electronic converters. 
For this application, a conventional sigma-delta modulator 
with scalar signals and binary quantizer is generalized to a 
sigma-delta modulator with vector signals and a truncated 
hexagonal lattice quantizer. This vector sigma-delta mod- 
ulator has an interesting output spectrum which is of im- 
portance in assessing performance and interpreting results. 
This paper analytically derives the output spectrum for the 
case of a generic constant input using ergodic theory and 
Fourier series on the hexagon. 

1. INTRODUCTION 

Three phase soft switching converters are of current interest 
in power electronics. In particular, the resonant link con- 
verter uses zero voltage switching to limit switching losses 
and attain relatively high switching frequencies [ 13. Con- 
ventional modulation techniques such as PWM are not ap- 
plicable to resonant link converters because of the discrete 
timing of the switchings. However, the sigma-delta (EA) 
architecture is well suited to modulation of the resonant 
link converter. Indeed switching converters can be viewed 
as analog to digital converters in which an analog refer- 
ence is coded into a low resolution set of discrete switching 
states [2]. The relatively high switching frequency of res- 
onant link converters corresponds to a high oversampling 
ratio with typical values of 20-50. Experimental and simu- 
lation results for first and second order EA hexagonal mod- 
ulators in a resonant dc link system switching at lOOkHz 
with a bandwidth of 2kHz are presented in [2] .  

To apply the conventional EA architecture with binary 
quantization and a single feedback loop to three phase con- 
verters requires some generalization. First, the output volt- 
ages (line-to-neutral) of a three phase converter with bal- 
anced load are limited to a set of seven output vectors (dots 
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in Fig. 2) which form a truncated hexagonal lattice. If we as- 
sume a nearest neighbor partition as in the binary quantizer 
case, the appropriate generalization is the truncated hexag- 
onal lattice quantizer which is well known in communica- 
tions [3]. Second, all modulator signals are augmented from 
scalar quantities to vectors and the scalar integrator is re- 
placed by a vector integrator. This generalized modulator is 
inherently two dimensional and cannot be simply analyzed 
as the Cartesian product of two scalar modulators. 

The output spectrum of a scalar EA modulator is com- 
plicated and it is useful in interpreting results to analytically 
derive the output spectrum. (The approximate white noise 
model of quantization error is useful in design but can be 
misleading for the single-loop case [4].) Powerful tech- 
niques from ergodic theory have been deployed by Gray 
[5, 41, Delchamps [6, 71, and He et al. [8] to derive exact 
formulas for the spectra of scalar modulators for various in- 
puts. In this paper, we build on their methods to derive the 
spectrum of a vector EA modulator with a hexagonal quan- 
tizer and a generic constant input. 

2. HEXAGONAL LATTICES 

It is convenient to define the hexagonal lattice in the plane 
P = {(x,y, z ) ~  E R3 I x+y+z = 0). Define W : R2 P 
and V : P + R2 to be 

VW is the identity on R2 and WV is the identity on P. 
The hexagonal lattice is A = U{Wk I lc E Z2}. The 

lattice dual [3] to A is 

A * =  { p  E P* IpX E Zfora l lX E A}= U{qV I q E 2*2} 
Vectors in P or A are written as column vectors and dual 
vectors in P* or A* are written as row vectors. For example, 
n, E P in Fig. 2 is the column vector $(2, -1, -l)t. The 
columns of W generate A and the rows of V generate A*. 

The Voronoi cells (points closest to a given lattice point) 
of A are hexagons of side @@. Define the set H to be the 
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interior of the Voronoi cell containing 0, together with a spe- 
cific choice of 3 non-opposite hexagon sides and 2 opposite 
hexagon vertices. (These choices ensure that lattice trans- 
lates of H tile the plane with no overlapping points.) H is 
the dark central hexagonal region of Fig. 2. 

3. DISCRETE-TIME MODEL 

A discrete time hexagonal EA modulator is shown in Fig. 1; 
the signals P, U,, 4,. and e ,  are vectors in the plane P c 
R3. The nearest neighbor quantizer q is shown in Fig. 2. 
The input U to q is a point in the plane P and the output 
q(u) is the nearest to U of the 7 truncated hexagonal lattice 
points (0, h i ,  f n f ,  *nb} in Fig. 2. 

From Fig. 1, one can write the following difference equa- 
tions in discrete time n = 0, l, 2, . . . : 

( 2 )  
where P is the constant input, U ,  is the modulator state, and 
q, = q(un) is the quantizer output at time n. 

u,+1 = P + U ,  - dun)  

The quantizer error sequence is 

e ,  = e(u,) = 11, - dun)  (3) 

and the integrator state U ,  and quantizer output q, can be 
expressed in terms of of e,: 

(4) 
(5 )  

U,+1 = e ,  + P 
qn+1 = e ,  - e,+1 + P 

Rewriting (2) in terms of e ,  yields the nonlinear equations: 

eo = e(uo) 
en+l = e(e, + P ) ,  n = 0 ,1 ,2 . .  . (6) 

4. SOLUTION OF THE DIFFERENCE EQUATION 

Our analysis requires the modulator state U,, n = 0,1,2, . . . 
to be contained in the no overload region R of the quantizer. 
R is the shaded region of Fig. 2 consisting of the 7 hexagons 
closest to zero. S is the star shaped shaded region of Fig. 2. 
The following sufficient condition for no overload can be 
shown by induction: If ,B E S and eo E H ,  then e, E H 
and U ,  E R for all n = 0 , 1 , 2 . .  . . We assume P E S and 
eo E H and hence no overload for the rest of the paper. 

A function f on P is hexagonallyperiodic i f f  (z+X) = 
f (z) for all X E A. Define 0 : P + H as the identity 
on H and extend the definition of 0 to P by making 0 
hexagonally periodic. Let z, y E P.  Then 

=(m) (7) 

Since the function e(.) = U - q(u) coincides with 0 
on the no overload region R, the no overload assumption 
implies that the difference equation (6)  can be written as 

e,+l = (m) (8) 

Property (7) can be used to check that the solution to (8) is 

e ,  = (GFQ) (9) 

5. FOURIER AND ERGODIC RESULTS 

We state results about Fourier analysis and ergodic shifts. 
Let f , g  : P + C be hexagonally periodic and Lebesgue 
square integrable on H .  Then f(z) = fPeiaXPz 
where the equality is interpreted in the C2 sense and the 
Fourier coefficients are f, = s, f (s)e-i2spsds.  IHI = 
fi is the area of H .  Parseval’s formula is 

These Fourier results can be obtained either as sketched in 
appendix A or as a particular case of harmonic analysis on 
compact Abelian groups [9]. 

Identify points of P differing by vectors in A to define 
3.1 = P / A  = {z + A I x E P} .  3.1 is a compact Abelian 
group. A function f : H -+ C lifs to a function f : 3t -+ C 
if f(z + A) = f (z) for all z. Lemma 1 gives conditions 
on the input ,8 for the dynamics (9) to induce a uniquely 
ergodic shift on ?l so that time averages of a function f can 
be evaluated as an integral over H :  

Lemma 1. Let p E P be such that the only p E A* with 
p p  E Z is p = 0. Let f : H + R have a continuous lifing 
f : 7-l + R Then for all eo E P, 

Corollary 1. The result of Lemma 1 extends to functions 
f : H R for which there exist sequences offunctions 7k, 
f , k = 1,2, .  . . with continuous lifings such that& (z) 5 
f ( z )  5 -fk (z) for all z and I f k  - TI, loo + 0 as k + 00. 

Lemma 1 can be obtained from standard results on the torus 
[ 101 as indicated in appendix A. 

-k 

6. SPECTRAL ANALYSIS 

We make the generic assumption that the input ,8 satisfies 
the condition of Lemma 1. (If, exceptionally, ,8 does not 
satisfy the condition of Lemma 1 then either e, is periodic 
or e ,  is aperiodic and constrained to a submanifold of H.) 

The mean of the noise process is, using (9), 
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Applying Lemma 1 to each component of the identity map 
on H yields 

Z = & L 5 d s = O  

where (pP) denotes the fractional part of p P .  The quan- 
tizer output q, is obtained by differencing e,  and adding ,f3 
according to (5). Hence the output spectral density matrix 
S,(U) = P 8 PS(w) + 4sin2(~w)S,(w) and, finally, 

so that E is well defined and independent of eo. 
The autocorrelation matrix of the noise process is 

where 8 denotes outer product. Using (9) and (7) gives 

. L-1 

7- U ~ 

n=O 

Let f : H -+ P x P be defined by f(s) = 5 8 (a) . 
Each component of f is continuous except on several line 
segments and satisfies the conditions of Corollary 1. Hence 

Partition A* = At U (n: + A t )  U (-n; + A t ) .  Using 
coordinates p = (pa, pa, p c ) ,  define o and II on A’ by 

if p E -nk + At .  

n(p) = product of nonzero elements of {pa  , pb , p c }  , p # 0 
and n(0) = 1. Let cp be the Fourier coefficients of 0 : 

Appendix B computes cp as 

(13) 

The Fourier coefficients of f(x) = (m) are cp e i 2 H p p k .  
Each entry of the outer product in (12) can be regarded as an 
inner product of functions over H and applying Parseval’s 
formula (1 0) to each entry gives 

R ~ ( / C )  = C; 8 cP eiaxpflck (15) 
PEA’ 

The Bohr-Fourier series (15) implies that the quantization 
error spectral density matrix Se is purely discrete having 
amplitudes c; 8 cp at frequencies (pp) for p E A*: 

Seb) = c; 8 c p  w - (PP)) (16) 
PEA‘ 

7. APPENDIXA 

We transform standard Fourier and ergodic results from the square 
[0, 1)2 to H .  Relate coordinates z’ on [0,1)’ to coordinates z on 
H by z’ = (Vz) and z = (wz’> . Relate coordinates p on A* to 
coordinatesp’onZ*2 byp’ = pW. Suppose f’  E C2([0, 1)2) and 
let f = f‘ o () o V E C 2 ( H ) .  Then f‘(z’) = f‘((Vz)) = f(z), 
dz = IHldz’ and (p’z‘) = (pW(Vz)) = (pz). Write (f,g) = 

(f, g) = (f’, 9‘) and fp = (f ,  e - i 2 n p z )  = (f’, e-i2np’r’ ) = f;,. A 

Moreover, f( ) = f’((V )) = f’((v(z + Y))) 
= f’((z’ + y‘)). Hence the following results can be transformed 
to the results of section 5 :  

Fourier analysis on [0,1)’ [ll]: C2([0,  1)’) is a Hilbert space 
with inner product (f‘, 9‘). {ei2np’z’ I p‘ E Z*2} is a complete or- 
thonormal basis. f’(z’) = CplE2*2 &eizmP 1: where the equal- 
ity is interpreted in the C2 sense and f;, 7 (f’, e-i2np’n’ ). The 
Parseval formula (f’,g’) = Cp,E2*2 f;,jG holds. 

Man& [lo] (thm. I1 3.2, prop. I1 2.7, thm. 19.2) implies: Let 
,f3’ €-Et2 be such that the only p’ E 2’’ with p’p’ E Z is p‘ = 0. 
Let f‘ : W2/Z2 -+ W be continuous. Let R be the canonical 
projection W’ + R2/Z2. Then translation by RP’ is a uniquely 
ergodic shift on W2 /Z2 and, for all eh E W’ , 

+qJHf(~)9*Wz and (f’l9’) = ~~,1)2f’(z’)g’*(z‘)dz’. Then 

I ,  

(Note that .(e; + np’) = .(e; + np’).) Suppose that f’ : 
[0, 1)2 -+ W lifts to f’ so that f’ = f’ o T. Then 

8. APPENDIX B: Compute Fourier coefficients c, 

It is convenient to define vectors n and nL (see Fig. 2): 

-1 -1 

-1 -1 2 

1 

Also define n-* = -ns and n l ,  = -nf for s = a, b, c. 

V-272 



Equation (13) implies CO = 0. Now we compute cp for p # 0. 
Define a : P’ -+ W by a(p)  = - 1. e-i2mpz dx. Then 

and the problem becomes finding an expression for a(p): 

where o,(t) = fn: + nst, t E [-1/2,1/2] parameterizes the 
hexagon edges. Then letting p, = pn, and p$ = pn: gives 

4 P )  =- - I n ’  ~$1’ sin(2.irpo8(t))dt 
~lnLllP12 sE{a,b,c} -’ 

- -- -1 5 sin(rp,)sin(rpf) (18) 
n 2 A l p 1 2  aE{a,b,c} 

Substituting (18) in (17), differentiating, and evaluating a tp  E 
A’ (thenp$ E Z and sin(rpf) = 0) yields 

a 
cp =- 5 sin(rps) cos(rp$)n$ (19) 

6r2 s E {a,b,c} 

In the case p E At - { 0 } ,  pa E Z and sin(7rps)/(rp,) = 0 
and cp = 0 except when p, = 0. When pa = 0, p = knf t ,  
k E Z,p$ = 2k and (14) follows from (19). 

To simplify (19) in the case p E A‘ - At,  consider fs : A* -+ 
W defined by 

f a  (p) = 2 sin(rp,) cos(rp$) = sin(rpnsf) + sin(rpn,) 

where n$ = n, f n:. Notice that n$ 6 2 ~ i ‘ ~ .  Let X E A. Then 

fs(p + x ~ )  =sin(r(p + Xt)n,f) + sin(r(p + At)ni) = fs(p) 

since n: E 2A*t implies that Xtn$ is an even integer. This peri- 
odicity of fa  implies that fs is constant on each of ni + At and 
-n6 + At.  The respective constants can be directly calculated: 
f.(fnk) = f f i f o r s = a , b , c . T h e n f , ( p )  =o(p)f iand 

Now (14) follows by algebra and pa + p b  + pc = 0. 
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