oW | L B et WR | e ...n. el _.J_..._.F-ﬂ"..ch.@wm.
Tt HEY i LR R A |

L Ao B

Fetr e Mhhad Ehnd BH

I RREN S R a...m,.m_
PR R T e T O e L)
“a g e e ey | Deay | e

|7 m—
P!

BB TR e |
2 ..".._i._t._:n..ﬂ.i“m_uﬂ..i Tu.-...n.._quﬂ..
_-*

"R Bt Sined - Sband Rehd Bied ABE

[B | g TR | 2 T |t |

ke _TA.E“ Lot | D oo oy o | o o | e | (T
2

2 o g ey | ey beepg | foapg | s HBehy R

|2

{15

231

i

ilwiy

—wy [.R ﬁ_.ﬂﬁ_

L AR R R e i LT LB
It 5 .:1.&...;:_m_‘ﬂ:.vh"“_i__-ﬂ_._ S g = w.:__-dn_.“m!..._.lmw.
ey | ooyl ooy loayy (Mo | ey | Nedigy | laayg ||
L= e e . r“....,.!- Ty L S e AT

=Rt R W AT W™ R R

4 Sm—— 1

A SYSTEM VERIFICATION STRATEGY
BASED ON THE BST INFRASTRUCTURE

Gustave R. Alves™? and José M. Martins F erreira’

ISEP / DEE
Ruade S. Tome
4200 Porto - PORTUGAL

ABSTRACT

A good verification strategy should bring near the simulation and
real functioning environments. In this paper we describe a
system-level co-verification strategy that uses a common flow for
functional simulation, timing simulation and functional debug.
This last step requires using a BST infrastructure, now widely
available on commercial devices, specially on FPGAs with
mediumy/large pin-counts. *

1. INTRODUCTION

System-level simulation enables a system designer to verify,
before any real hardware is produced, the design correctness. If
the system contains devices whose functionality is determined by
a program stored in memory, then the term co-simulation is better
applied for describing this action, CPLDs and FPGAs arc
currently being used for system rapid prototyping. These devices,
specially those with larger pin-counts, are being released with a
BST infrastructure [1] for some years now. Development systems
for these devices are now extremely powerful and versatile,
enabling complex designs to be entered in multi-level forms
(from schematic to hard/soft IP cores), simulated, synthesised,
fitted, re-simulated {with delays) and finally programmed into one
or more devices, either by using appropriated hardware platforms
or just a simple cable connected to the PC serial / paralle} port.
Some devices, may be programmed / configured through the
TAP, thus enabling quick and efficient in-system alterations.

In view of all these advantages, we proposed ourseives, in a
recent System design to draw a system-levei co-verification
strategy that could, early in the specification phase, combine and
explore the potentialities of the Altera Max+Plus II environment
and the presence of a BST infrastructure on all devices belonging
to the EPF10K family [2]).

The system architecture is described in section 2 and the co-
verification strategy is described in section 3. Section 4 presents
the conclusions and the current status of our work. Section 5
concludes with the references.

2. THE SYSTEM ARCHITECTURE

Our system comprises two generic devices with an extended BST
infrastructure, one emulating an 8-bit non-inverting unidirectional
buffer (*244) and the other emulating an 8-bit latch with tri-state
outputs (*373), a dual-processor controller, and two memories

0-7803-5471-0/99/$10.00©1999 [EEE

’FEUP / DEEC
Rua dos Bragas
4000 Porto — PORTUGAL

containing the program executed by each processor. One of the
processors controls the extended BST infrastructure included in
each generic device. As each one of these devices is to be
implemented in an FPGA from the Altera EP10K Family, already
containing a BST infrastructure, in the end the device will have
iwo TAPs (the original TAP connected to the pre-implemented
BST infrastructure and a second TAP that is part of our design).
The second processor controls the system clock. It contains a
group of 16-generic inputs and a group of 16-generic outputs that
can be used for any generic purposes.

Figure 1 illustrates the system architecture. ROMI and ROM2 are
used for simulation purposes, meaning that they do not
correspond to FPGAs. The controller was implemented in an
EPF10K30, and the ‘244 and ‘373 were implemented in two
EPF10K10. Original TAP pins, power pins and other dedicated
pins belonging to the device are usually not represented.

Our goal was to specify, develop and verify a system-level debug
and test infrastructure based on a buili-in controller and an
extended BST infrastructure, that could be used for functional and
timing debug. The built-in controller would be responsible for
controlling the system BS chains and the system clock, thus
guaranteeing the synchronism between the system functional and
test logic. The extended BS infrastructure would provide support to
Breakpoint (BP) and Real-time analysis (RT) operations. For BP
operations the BS register is configured to detect a condition
corresponding to values present at the input pins or outputs from
the compenent functional logic. For RT operations the BS register
is configured to:
s Store a sequence of two contiguous vectors.
» Store a sequence of two contiguous vectors after a certain
condition is found.
o Store a sequence of two contiguous vectors until a certain
condition is found.

The system’s functionality is described in another paper. In this
document we will focus on our system verification strategy.

3. THE VERIFICATION STRATEGY

In the system specification its was decided to set up a sound
verification strategy that could address the following steps:
functional simulation, timing simulation, and functional debug.
Structural test was also part of the verification strategy, although
it was addressed as an independent task, mainly done through the
original BST infrastructure of the FPGAs, that unfortunately is
not supported by the mode! generation tool of the Max+Plus 11
development system.

I1-35

H i
SV, M RSN . 8D

Lt 3

e al YA L 7] iy

| LTS = A ot

| You 1[0

| r aar

I TEm e . .

"TL.PEY ,EN raTEbes Ty I aniae =T (L1]
b s3] Cj—u‘-.;"{’—-hl Tl b— # il
b L4 ma e g afe Fau + il
o Gy b el Frusr— * I
b Dovn . MR FRART LIPS }?

Taem € W N add

o8 iz rnea Y | FTX

e 8 [T amenn o s
F L LN Pl [EEET RN] ME R PP i 1

Fo B(F. .88 " tan— oy

e tom . P
PeTTEE B R e e T M. it == 2 L
I W [P
o Srim . avh i L
r *
v st %
e
My

Figure 1: The system-level architecture.

The system specification included the specification of each
individual component, and some smail debug and test programs to
be executed by the dual-processor built-in controller, which was
named PRODEP, an acronym that stands for “PROcessors for
DEbugging Purposes”. The design of each component evelved in
a mixed of top-down, bottem-up, block-based design, where some
parts corresponded to previously developed blocks. For instance,
one of the processors belonging 1o the controller comresponds to
an enhanced version of a board-level BIST processor [3]. The first
verification stage corresponded to functionally simulating each
component, individually, with a small number of hand-generated
test vectors. This first pass enabled some confidence on the
component’s functionality, and also specific details to be
thoroughly covered. Functional simulation of the controller
included two stages, one similar to the previous one and another
where the controller typically executed very small programs. To
achieve this, 2 test environment comprising cne controller and
two memories was set up. This consisted of two devices, each
containing one Library of Parameterised Module (LPM)
corresponding to one ROM, connected to the controller.
Functional models of each device were first generated and a
“systemn-level” linked functional model was then created using
the capabilities offered by the Max+Plus 1l compiler.

The debug and test programs were written in assembly, and the
object code and list files were then generated by a small freeware
application that accepts table-defined instruction sets. A small in-
house developed application then took the list file, and using a
template file, produced a Memory Initialisation File (MIF) that is
read by the simulation tool integrated in the Max+Plus !l
environment. This process is illustrated in figure 2.

The second verification stage corresponded to a functional
simulation of the all system. The functional models of each
component were “linked” by the Max+Plus II compiler and larger
programs were written, assembled, and converted to MIFs, for
performing the system-level co-simulation. After detecting,
diagnosing and removing alt design errors (at this stage} a golden
simulation file with input stimulus and output vectors was
produced, for later comparison during the timing simulation
phase. A table file in ASCII format, containing the values for all
system pins, was also generated. Figure 4 illustrates these first
design steps. The design flow then proceeded to the synthesis
phase. Figure 5 illustrates the following design steps.

~

After the synthesis and fitting process, a timing model of each
component was generated for individual timing simulation by re-
using the input stimulus. In the waveform visualisation tool,
integrated in the Max+Plus 1l environment, the values present on
the component outputs were compared against those previously
stored in the golden file, produced after the functional simulation
stage. Although this was a manual process, if an error due to a
long-path occurs, the component behaviour diverges significantly,
and the detection is generally easy (also due to the small length of
individual sirulation files). After removing all errors at this stage,
the design proceeded to the system-level timing co-simutation.

A “linked” timing model of the system was first generated by the
Max+Plus H compiler, and the small test programs used during
system-level functional simulation were now used for system-
level timing simulation. At the end of this verification stage, after
removing all detected errors, a new table file was generated for
automatic comparison with the table file generated during system-
level functional simulation. This automatic process, required an

[-36

intermediate step where the vectors, not corresponding to
moments relative to clock positive edges, were removed from the
original table file. Comparing the two files corresponded to
comparing the outputs generated during functional and timing
simulation. This automatic process enabled larger programs to be
written and verified, without recurring to 1ledious visual
inspections on rather extensive waveform files.

L

%ﬁ Simulator

(From compilation) m;n

Figure 2: Integration of an assembly file in the simulation process

Systern Software
controlling the
board TAP and
all information
regarding the
debug activities

ROM1

H

Controller

1373 p || 244 P

ROM2,

PC parallel port

| = [seeesy

Figure 3: Using TAPPER for system-level functional debug.

The next phase consisted of creating 2 board with the system,
programming the FPGAs, downloading the test programs
(executed by the two processors) to the system memories, and
performing the system functional debug. This verification stage
was carried out using the original BST infrastructure existing in
the FPGAs and a PC-based application program called TAPPER,
able to control two board BS chains. This program emulates the
referred BIST processor, by executing the same instruction set,
and controlling/reading the board TAP signals from the PC
parallel port. Functional debug corresponds to verifying in-circuit
the values obtained during functional simulation {4, 5, 6]. This
verification stage is done in the following way:
1. TAPPER shifts the Sample/Preload instruction to all system
devices
2. TAPPER places TAP controllers in Select-DR
3. The system primary inputs arc externally fed with the right
stimulus
One clock-pulse is applied to the system
TAPPER places TAP controllers in Shifi-DR, through
Capture-DR (where values appearing at component pins are
captured in the BS register), and the first vector is shifted out
and compared against the vector stored in one of the table
files.

Wk

6. Repeat steps 2:5 until all vectors are compared.

The test program executed by TAPPER is generated by an in-
house developed application that uses as input information: the
BSDL files of the FPGAs, a configuration file, and the table file
(for creating the expected values and masks for the comparison).
The functional debug environment is illustrated in Figure 3.

4, CONCLUSION AND FUTURE WORK

We described a system-level co-verification strategy based on the
potentialitics enabled by the Max+Pius Il environment and the
presence of a BST infrastructure on commercial available
FPGAs. Our strategy included four main verification phases:
functional simulation, timing simulation, structural test and
functional debug. Functional simulation provided initial
information for the remaining phases. Vectors obtained during
timing simulation were compared, at clock edges, with those
generated during functional simulation. After simulating the
whole system, the design proceeded to the prototype phase, where
functional debug took place on real hardware. The original
FPGAs BST infrastructure was used for sampling the pin values,
on a vector-by-vector basis. Each vector was compared against
the expected vector, extracted from the table files generated at the
end of the functional simulation siage.

Although it may be confusing that there were (wo BST
infrastructures, it should be reminded that we were developing a
system-level debug and test infrastructure, and because the
FPGAs used for prototyping purposes, already contained a BST
infrastructure, in the end they co-existed, one implemented at the
silicon foundry, the other implemented by us. We used this
approach for debugging our own debug and test infrastructure. In
a near future, we plan to incorporate the extended BST
infrastructure (implemented on each device) and the built-in
controlier, in complex systems. The debug and test infrastructure
will provide the appropriate mechanism for syslem functional
debug and timing debug. This last step was not performed,
because TAPPER does not run the test program at the same
operating speed of the built-in controller, and because the original
FPGAs' BST infrastructure does not match our extended BST
infrastructure. Note that we could not use our controtler for
debugging our present system, because there would be an
overlapping, causing potential conflicts on where could be located
a possible error.

5. REFERENCES

[1]IEEE Standard Test Access Port and Boundary-Scan
Architecture, Oct. 1993, IEEE Std. 1149.1

(2] The Altera web page: hitp://www_altera.com.

[3] J. M. Ferreira et al., “Automatic Generation of a Single-Chip
Solution for Board-Level BIST of Boundary Scan Boards,”
EDAC Proc., March 1992, pp. 154-158.

(4] M. F. Lefébvre, “Functional Test and Diagnosis: A Proposed
JTAG Sample Mode Scan Tester,” in ITC, pp. 294-303, 1990.

15] Richard Sedmak, “Boundary-Scan: Beyond Production Test,”
in ITC, pp. 415-420, IEEE Computer Society Press, 1994,

[6) Andy Halliday et al., "Prototype Testing simplified by
Scannable Buffers and Latches,” in /TC, pp. 174-181, 1989.

I-37

PRODEP Code
specification development
- C[-'fU - Memory
functional Initialisetion File
logic
Funectional
simulation

Integration & model generation I‘——
v

Funectional
simulation

™

PRODEP
synthesis

%

fitting

!

timing
model
generation

v

timing
simulation

~

44— area / speed
constraints

4— floorplanning

Re-use stimulus
applied during

4— functional
simulation.
Compare oulpuls
at clock edges.

Code
development

v

System
specification
u I
‘244 ‘373
specification specification
v vl
Y h 4
[] »]
Block Block
P design design
vve YV Y
Integration & Integration &
model model
generation generation
Functional Functional
simulation simulation
N ok N ox
Y
Y
Functional System lavel
Re-design simulation integration
system N Y
Refine Generate table file for functional debug
gpecification Proceed to symthesis
Figure 4: Design steps leading to the system-level functional simulation
244 373
synthesis > synthesis
fitting —» fitting
timing timing
model model
generation generation
timing timing
simulation simulation
- @
Y
ijstem level integration & timing model generation
Refine
floorplanning

Decrease system
level performance

Refine
synthesis
constraints

O

Figure 5: Design steps leading 1o the system-leve] timing simulation

Timing

simulation |

Memory

Initiglisation File

Generate table file and compare at clock edges
Proceed to device programming and functional debug

1-38

